磁致旋光—塞曼双频激光器的理论及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光外差干涉仪以其测量精度高、抗环境干扰能力强等优点得到了广泛的应用。其中作为光源的双频激光器在整个干涉系统中起着非常重要的作用。本文提出一种新型中频差双频激光器——磁致旋光-塞曼双频激光器。根据塞曼效应,使Ne原子在纵向磁场的作用下光谱线发生分裂,产生频率不同的两个圆偏振光。将磁光材料放置于磁室内并同时放入激光谐振腔中。根据法拉第效应,在谐振腔内当光通过磁光材料时,由于磁光材料相对于左旋和右旋圆偏振光的折射率不同,从而导致谐振腔内左旋和右旋圆偏振光的谐振腔腔长不同。根据激光谐振腔理论,腔长的微小差异将导致激光输出频率的不同。这时激光器将输出频差为Δv的双频激光。为了提高系统的集成度,本文还讨论了磁性光子晶体应用于磁致旋光-塞曼双频激光器的可行性。论文完成的主要工作如下:
     (1)应用激光谐振腔理论和法拉第效应的宏观理论推导出了输出激光的频差与磁室内磁场、谐振腔腔长的关系公式。结果显示输出频差与腔长成反比,而与磁室内磁场成正比。
     (2)实验研究了激光器塞曼部分的光学输出特性,观察到当纵向磁场大于3mT时输出激光的频率将发生分裂,证实了磁感应强度与频差成正比,与拍频信号峰-峰值成反比。并且发现频差增加的同时,激光纵模个数也在增加。
     (3)应用磁光调制倍频法测量了Tb20、Tb25玻璃和BGO晶体在632.8nm波长的费尔德常数值和磁光优值。结果表明Tb20材料的磁光性能优于BGO晶体。应用MagNet软件设计并制作出了磁屏蔽室,测得其泄漏磁场小于1%,基本达到设计要求。
     (4)应用状态方程分析了一维磁性光子晶体的磁光特性,指出选择适当的结构可以使得材料的法拉第旋转角大幅度的增加。同时在中心波长处具有很高的透射率,而且在很大的入射角范围内,其光学性质基本不发生变化。分析了产生这些现象的原因,即当光波在材料中所形成的驻波波峰正好处于磁光材料区域时,会获得很强的磁光效应。
     (5)利用频域有限差分方法(FDFD)分析了两种二维磁性光子晶体结构(方形和圆形空气孔结构)的模场分布和有效折射率。该种材料的法拉第旋转角较连续分布的磁光介质有显著增加。但是当光通过这类材料后偏振态发生了变化,随着法拉第旋转角的增加出射光的椭圆率也在增加。分析了产生这一现象的原因,并通过在材料中心处引入缺陷解决了偏振态变化这一问题。
Laser heterodyne interferometer has advantages of high measuring precision and anti-environment disturbance ability. It has been broadly applied in mechanical industry. The dual-frequency laser as a light source takes a key element in the interferometer. A new dual-frequency laser of mid-frequency difference, i.e. magnetic rotation-Zeeman dual-frequency laser, has been proposed in this paper. The principle of the laser is as follows: the spectrum of Ne atom is split in the longitudinal magnetic field. The left-handed circularly polarized and right-hand circularly polarized are brought with different frequency. Magneto-optical material is placed in the magnetism screened room which is in the laser resonant cavity. According to the Faraday Effect, when the light which is in the resonant cavity pass the magneto-optical material, the refraction difference between left-handed circularly polarized light and right-handed circularly polarized light leads to the different length of resonant cavity. According to the laser resonant cavity theory, the different length of resonant cavity leads to different frequency. Then the laser will output beams with △v different frequency. The optical property of magnetophotonic crystals is studied in order to enhance the integration rate of the laser system. The main contents are:
    (1) Applied laser resonant cavity theory and the electromagnetic wave theory of Faraday Effect, the relational formula of frequency difference of the laser, magnetic induction intensity and length of resonant cavity is obtained. From the formula, the result that the frequency difference directs with the cavity length and inverse with the magnetic induction intensity is acquired.
    (2) Optical property of the Zeeman part is investigated experimentally. When the magnetic induction intensity is bigger than 3mT, the frequency difference of the laser will become stabilization and it is directly proportional to the magnetic induction intensity and inversely proportional to the peak-peak value of the beat frequency. The number of the longitudinal mode is increasing with the enhancement of the magnetic induction intensity.
    (3) The Verdet constants and magneto-optical figure of merit of magneto-optical materials (BGO, Tb20 glass and Tb25 glass) at 632.8nm are measured by employing the double frequency method. And the results demonstrate that the magneto-optical property of Tb20 is better than BGO. Design the structure of magnetism screened room by using MagNet. Based on the structure, the room is produced, and the leak of magnetic induction intensity is below 1%. The magnetism screened room basically reaches the design requirements.
    (4) Several kinds of structure of one-dimensional magnetophotonic crystals are analyzed using equation of state. By choosing proper structure, the Faraday rotation can be increased by several thousand times, and the transmissibility is also increased in the center wavelength.
引文
1.周炳琨,高以智,陈倜嵘,陈家骅.激光原理.北京:国防工业出版社,2000.4-22,123-159,165-182.
    2.陈钰清,王静环.激光原理.杭州:浙江大学出版社,1992.32-52.
    3. T. H. Maiman. Stimulated optical radiation in ruby. Nature. 187, 493. (1960).
    4. T. H. Maiman. Optical and microwave-optical experiments in ruby. Phys. Rev. Letters. 4(11), 564-566. (1960).
    5. T. H. Maiman. Stimulated optical Emission in fluorescent solids. Ⅱ. Spectroscopy and stimulated emission in ruby. Phys. Rev. 123(4), 1151-1157. (1961).
    6.王云.二级管泵浦的连续和声光调Q双波长激光器理论和实验研究.硕士学位论文.山东师范大学.2005.
    7.赵建林.高等光学.北京:国防工业出版社,2002.1-3.
    8. Anthony Dandridge, Alan B. Tventen, Thomas G. Giallorenzi. Homodyne demodulation scheme for fiber optic sensors using phase generated carder. IEEE J. QUANTUM ELECT. 18(10), 1647-1653. (1982).
    9.杨国光.近代光学测试技术.杭州:浙江大学出版社,2002.118-121.
    10.张书练.正交偏振激光原理.北京:清华大学出版社,2004.7-12,42-46,76-97
    11.范志军.中频差双频激光干涉测量系统的初步研究.硕士学位论文.清华大学.2004.
    12.范志军,所睿,李岩,张书练.一种中频差外差信号处理的整数检测法.激光与红外.34(4),260-263.(2004).
    13.所睿,范志军,李岩,张书练.双频激光干涉仪技术现状与发展.激光与红外.34(4),251-254.(2004).
    14.闫晓茹.高速双纵模双频激光干涉仪系统的研究.硕士学位论文.四川大学.2004.
    15.康岩辉.双纵模双频激光干涉仪信号处理系统的研究.硕士学位论文.四川大学.2005.
    16. Osami Sasaki, Yoshiaki Anbe, Shinnosuke Takagi. Tomographic visualization of acoustic field from intensity of diffracted light. Opt. Lett. 24(14), 2097-2102. (1985).
    17.蓝信钜.激光技术.北京:科学出版社,2005.108-117.
    18.尤政.表面粗糙度理论及其测量方法的研究.博士学位论文.华中科技大学.1990.
    19.张书练,李岩.面向21世纪的双频激光及相关测量科学技术.中国机械工程.11(3),266-269.(2000).
    20.焦明星,祁瑞利.双频激光技术研究新进展及发展趋势.光学技术.30(1),125-128.(2004).
    21.张书练,徐亭,李岩,朱钧.正交线偏振激光器原理与应用(I).自然科学进展。14(2),145-154.(2004).
    22. W. Holzapfel, W. Seffgast. Precise force measurement over 6decades applying the resonator-internal photoelastic effect. Appl. Phys. B. 49(2), 69-72. (1989).
    23. J. C. Braasch, W. Holzapfel. Frequency stabilization of monomode semiconductor lasers to birefringent resonators. Electronics letter. 28(9), 849-851. (1992).
    24.李岩,张书练,韩艳梅.新型应力双折射双频激光器.光电子·激光.12(3),275-277.(2001).
    25.朱钧,杨风雷,陈钰清,王静环,陈根生,何友生.纵模分裂式正交偏振双频He-Ne激光器.光子学报.28(3),284-288.(1999).
    26.李岩,张书练,韩艳梅.频差3~40MHz的He-Ne双频激光器.高科技通讯.11(3),41-44.(2001).
    27. Xiao Yan, Zhang Shulian, Li Yan, Zhu Jun. Tuning Characteristics of Frequency Diference for Zeem an-Birefringence He-Ne Dual Frequency Laser. Chin. Phys. Lett. 20(2), 230-233. (2003).
    28.周肇飞,张涛,朱目成,尹伯彪.双纵模激光拍频干涉仪的研究.中国激光.32(1),101-104.(2005).
    29. Brunel M, Bretenaker F, A. Le Floch. Tunable optical microwave using spatially resolved laser eigenstates. Opt. Lett. 5(384), 384-386. (1997).
    30.焦明星,张书练,梁晋文.腔内石英晶片产生的Nd:YAG激光纵模分裂现象.清华大学学报(自然科学版).39(2),62-64.(1999).
    31.黄春宁,李岩,郭辉.新型大频差可调谐双频激光器.光电子·激光.13(3),229-231.(2002).
    32. S. S. Pajarola, G. Suekos, H. Kawaguchi. Frequency tunable beat note from adual-polarization emitting external cavitydiode laser. Optical and Quantum Electronics. 29, 489-499. (1997).
    33. Hsu A, Chuang S L, T. Tanbun. Tunable dual-mode operation in a chirped grating distributed-feedback laser. IEEE PHOTONIC. TECH. L. 12(8), 963-965. (2000).
    34.刘芸.LD泵浦双频Nd:YAG激光技术的研究.硕士学位论文.西安理工大学.2002.
    35.天津大学精仪系编译.激光技术.北京:科学出版社,1972.57-60.
    36.伍长征,王兆永,陈凌冰,赵衍盛.激光物理学.上海:复旦大学出版社.1989.192-200.
    37.褚圣麟.原子物理学.北京:高等教育出版社,1979.184-185.
    38.田来科,白晋涛,田东涛.激光原理.西安:陕西科学技术出版社,2004.135-138.
    39.廖延彪.偏振光学.北京:科学出版社,2003.133-136.
    40.赵凯华,钟锡华.光学(下册).北京:北京大学出版社.223-225.
    41.马科斯·波恩,埃米尔·沃尔夫.光学原理(下册).北京:电子工业出版社,2005.
    42.赵建林.光学.北京:高等教育出版社,2005.311-312.
    43. D. H. Werner, R. Mittra Frontiers. Electromagnetics Piscataway. NJ:IEEE Press, 2000. 732-738.
    44.张克潜,李德杰.微波与光电子学中的电磁理论.北京:电子工业出版社,2001.9-11.
    45.A.亚里夫,P.叶.晶体中的光波.北京:北京科学出版社,1991.81-88.
    46.刘公强,乐志强,沈德芳.磁光学.上海:上海科学技术出版社,2001.30-33.
    47.郭硕鸿,电动力学.北京:高等教育出版社,1997.
    48.关安信,袁树忠,刘玉照.双频激光干涉仪.北京:中国计量出版社,1987.62-63.
    49. A. Papp, H. Harms. Magneto-optical current transformer principles. Applied Optics. 19, 3729-3734. (1980).
    50.刘公强,刘湘林.磁光调制和法拉第旋转测量.光学学报.4(7),588-591.(1984).
    51.赵凯华,钟锡华.光学(上册).北京:北京大学出版社.
    52.底楠.用于法拉第偏频器磁光介质的光学均匀性及温度特性研究.硕士学位论文.西北工业大学.2006.
    53.杨德兴.光折变LiNbO_3全息存储应用研究.硕士学位论文.西北工业大学.
    54. W. Z. Zhao. Magneto-optic properties and sensing performance of garnet YbBi:YIG Sensor and Actuator A. 89, 250-254. (2001).
    55.赵凯华,陈熙谋.电磁学(下册).北京:高等教育出版社,1984.601.
    56. J. C. Knight, J. Broeng, T. A. Birks, P. St. J. Russell. Photonic band gap guidance in optical fibers. Science. 282(5393), 1476-1478. (1998).
    57. T. A. Birks, J. C. Knight, P. St. J. Russell. Endlessly single-mode photonic crystal fiber. Opt. Lett. 23(21), 961-963. (1998).
    58. M. Inoue, K, Anti, T. Fujii, M, Abe. One-dimensional magnetophotonic crystals. J. Appl. Phys. 85(8), 5768-5770. (1999).
    59. S. I. Khartsev and A. M. Grishin. [Bi_3Fe_5O_(12)/Gd_3Ga_5O_(12)]~m magneto-optical photonic crystals. Appl. Phys. Lett. 87(12), 122504(1)-122504(3). (2005).
    60. M. lnoue, K, Arai, T. Fujii, M. Abe. Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers. J. Appl. Phys. 83(11), 6768-6770. (1998).
    61. M. J. Steel, M. Levy, R. M. Osgood. Photonic Bandgaps with Defects and the Enhancementof Faraday Rotation. J. Lightwave Technol. 18(9), 1297-1308. (2000).
    62. I L Lyubchanskii, N N Dadoenkoval, M I Lyubchanskii, E A Shapovalov, Th Rasing. Magnetic photonic crystals. J Phys. D: Appl. Phys. 36, 277-287. (2003).
    63. T. Yoshida, K. Nishimura, H. Uchida, M. Inoue. One-dimensional magnetophotonic crystals with granular magnetic films. J. Appl. Phys. 93(10), 6942-6944. (2003).
    64. M. Inoue, T. Fujii. A theoretical analysis of magneto-optical Faraday effect of YIG films with random multilayer structures. J. Appl. Phys. 81(8), 5659-5661. (1997).
    65. S. Kahl, A. M. Grishin. Enhanced Faraday rotation in all-garnet magneto-optical photonic crystal. Appl. Phys. Lett. 84(9), 1438-1440. (2004).
    66. G. Sails, M. Moser. Faraday-rotation spectrum of electron spins in microcavity-embedded GaAs quantum wells. Phys. Rev. B. 72(11), 115325. (2005).
    67. M. Tanaka, H. Shimizua, M. Miyamura. Enhancement of magneto-optical effect in a GaAs:MnAs hybrid nanostructure sandwiched by GaAs/AIAs distributed Bragg reflectors: epitaxial semiconductor-based magneto-photonic crystal. Journal of Crystal Growth. 227, 839-846. (2001).
    68. H. Shimizu, M. Tanaka. Magneto-optical properties of a Si-doped GaAs:MnAs-based magneto-photonic crystal operating at 1:55μm. Physica E. 13, 579-601. (2002).
    69.张登国,倪娜,安鹤南,欧阳征标,许桂雯.一维磁性光子晶体的电磁场分析和数值计算.光子学报.33(8),1007-1010.(2004).
    70.温晓文,李国俊,仇高新,李永平,丁磊.隋展.多缺陷结构的一维磁光多层膜隔离器.物理学报.53(10),3571-3576.(2004).
    71. K. Matsumoto, S. Sasaki, K. Haraga, K. Yamaguchi, T. Fujii, I. Okamoto, T. Kimura, I. Fujii. Magneto-optical Faraday effect of porous films comprised of cobalt-substituted barium ferdte fine particles dispersed in a resin. J. Appl. Phys: 73(1), 339-342. (1993).
    72. K. Isamoto, T. Yamamoto, M. Inoue, T. Fujii. Analysis of Magneto-Optical Faraday Effect in Discontinuous Magnetic Medium with Periodic Air Gaps. IEEE T. MAGN. 31(6), 3286-3288. (1995).
    73. Y. Ikezawa, K. Nishimura, H. Uchida, M. Inoue. Preparation of two-dimensional magneto-photonic crystals of bismus substitute yttrium iron garnet materials. J. Magn. Magn. Mater 272, 1690-1691. (2004).
    74. N. Kono, Y. Tsuji. A Novel Finite-Element Method for Nonreciprocal Magneto-Photonic Crystal Waveguides. J. Lightwave Technol. 22(7), 1741-1747. (2004).
    75. N. Kono, M. Koshiba. General Finite-Element Modeling of 2-D Magnetophotonic Crystal Waveguides IEEE PHOTONIC TECH. L, 17(7), 1432-1434. (2005).
    76. A. B. Khanikaev, A. V. Baryshev, M. Inoue. Two-dimensional magnetophotonic crystal: Exactly solvable model. Phys. Rev. B. 72(3), 035123. (2005).
    77. K. Naoya, K. Masanori. Three-dimensional finite element analysis of nonreciprocal phase shifts in magneto-photonic crystal waveguides. Opt. Express. 13(23), 9155-9166. (2005).
    78.Weng Cho Chew著,聂在平,柳清伙译.非均匀介质中的场和波.北京:电子工业出版社,1994.109-112.
    79.林永昌,卢维强.光学薄膜原理.北京:国防工业出版社,1992.
    80. S. Viˇsˇnovsk'y, R. Lopuˇsn'ik, M. Bauer J. Bok, J. Fassbender, B. Hillebrands. Magnetooptic ellipsometry in multilayers at arbitrary magnetization. Opt. Express. 9(3), 121-135. (2001).
    81. A. Ferrando, E. Silvestre, J. J. Miret, P. Andr'es. Full-vector analysis of a realistic photonic crystal fiber. Opt. Lett. 24(5), 276-278. (1999).
    82. Zhao M Z and Brown T G. Full-vectorial finite-difference analysis of microstructured optical fibers. Opt. Express. 10(17), 853-864. (2002).
    83. Shangping Guo, Feng Wu, Sacharia Albin. Photonic band gap analysis using fmite difference frequency-domain method. Opt. Express. 12(8), 1741-1746. (2004).
    84. S. Wittekoek, T. J. A. Popma, J. M. Robertson, P. F. Bongers. Phys. Rev. B. 12(7), 2777-2788. (1975).
    85. H. Kato, M. Inoue. Reflection-mode operation of one-dimensional magnetophotonic crystals for use in film-based magneto-optical isolator devices. J. Appl. Phys. 91(10), 7017-7019. (2002).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700