两种不同个体大小的韩国经济贝类的代谢活动与细菌污染状况研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在很多水深较浅的海湾或沿岸水体中,滤食性双壳贝类通常具有重要的生态学作用,因为它们可以通过高效率的滤食活动将大量的浮游植物或其他悬浮颗粒物从水体中滤除。养殖贝类与其养殖水体环境之间的相互作用,一直是养殖生态学的研究热点之一,正受到人们的广泛关注。为了深入地了解贝类与其养殖水体的相互作用,尤其是贝类在沿岸水体净化过程中的作用,一方面需要了解贝类通过自身的生理和代谢活动如何对其周围造成的影响;另一方面,需要了解环境因子的变化对贝类生理和代谢活动的影响。
     本文着重研究了两种韩国主要海产经济贝类——紫贻贝和魁蚶在不同个体大小的情况下对环境因子的生理和代谢响应。本文的研究结果可以为评估紫贻贝的水质净化作用提供基础实验数据,进而可以为韩国富营养化海湾的水体质量控制提供有价值的参考数据。同时,也可以为魁蚶的养殖容量估计提供基础数据。
     作为滤食性动物,双壳贝类同时又是重要食源性病毒携带者。它们通过滤食水中的颗粒性物质,能够在体内组织中积累高浓度的病原性微生物,相对于其它海洋生物,滤食性贝类在传播食源性疾病方面具有相对较高的危险性。因此,本文测定了紫贻贝与魁蚶在个体大小不同情况下的细菌水平,研究了冷藏保存对紫贻贝和魁蚶的作用效果以及应用冷藏保存的必要性。
     虽然多种贝类对环境因子的生理响应以及其细菌学特征已经被广泛研究,但是只有很少的研究探讨了贝类个体大小(通常用贝类壳长表示)对其生理响应和细菌学特征的影响,因此本文着重研究了贝类个体大小对其生理和细菌学特征的影响。
     贝类生理和代谢活动对多种环境的变化都非常敏感。因此贝类的生理活动以及对其所生活的海湾或沿岸生态系统的控制能力受到多种环境因子的影响,比如温度、盐度、浮游植物浓度、金属离子浓度、溶解氧浓度、以及环境污染程度。对贝类而言,温度和盐度是最重要的两种环境因子。作为变温动物的贝类,其生理和代谢活动完全依赖于周围环境温度,同时,因为贝类通常分布于河口或较浅的海湾和沿岸水体中,所以其周围环境中盐度经常发生变化,进而会对贝类的生理和代谢活动产生影响。通常情况下,温度和盐度会呈现季节性变化,进而影响贝类的摄食和呼吸的生理活动。准确了解贝类对不同水温与盐度生理响应,特别是滤食与呼吸作用,是评估贝类对水体质量控制能力的基础。
     为了能够全面地了解养殖贝类与其周围环境的相互作用,同时初步评估其细菌污染程度,对其养殖环境的了解是十分必要的。
     进行紫贻贝养殖的Gwangyang湾(34°55ˊN, 127°50ˊE)是位于朝鲜半岛南部沿海的另一个规模较大的海湾。Gwangyang湾同样是韩国的一处重要海水养殖区域,其海域面积230 km2,最大水深35 m,平均水深10 m。数条季节性河流注入此海湾,各条河流的水质以及携带物的情况不同。随着经济活动的日益频繁以及人口不断增加,其中一些河流成为工业和养殖废水的排放渠道。海湾内的营养盐浓度以及浮游植物浓度明显受到临近区域人类活动和废水排放情况的影响。海湾内的海流情况受到潮汐的显著影响,在涨潮时,湾底处海流速度为10 cm s-1,湾口处海流速度为60 cm s-1;退潮时,湾底处海流速度为10 cm s-1,湾口处海流速度为80 cm s-1,涨、退潮时海流方向完全相反。在Gwangyang湾内的Myodo地区,一月份平均气温最低,为1°C,六月与八月平均气温最高,为26.0°C。12月平均降水量最小,为3 mm。八月份平均降水量最大,为361 mm。此地区月平均风速波动范围为1 m s-1至3 m s-1。最大风速中由4 m s-1至10 m s-1。
     在Gwangyang湾内的Suncheon地区,一月份平均气温最低,为1°C,八月平均气温最高,为26.0°C。12月平均降水量最小,为1.5 mm。九月份平均降水量最大,为551.8 mm。此地区月平均风速波动范围为0.8 m s-1至1.7 m s-1。最大风速中由一月份的1.7 m s-1至三月份的5.4 m s-1。在Gwangyang湾中,紫贻贝是优势养殖贝类。在Gwangyang湾中,紫贻贝养殖采用不同与传统方法的浮筏式养殖。
     Gwangyang湾周围分布有四座城镇(Gwangyang, Suncheon, Yeos, Hadong-gum),共有人口260,392人,以及圈养家禽家畜727,411头(只),拥有孵化场总面积198,270 m2。人类活动以及家禽家畜的排泄物已经对Gwangyang湾的水体质量造成了显著影响。
     进行魁蚶养殖的Gamag湾(34°40ˊN, 127°40ˊE)是位于朝鲜半岛南部沿海的一个规模较大的海湾。Gamag湾是韩国的一处重要海水养殖区域,其海域面积1,020 km2,最大水深40 m,平均水深9 m。海湾内的海流情况受到潮汐的显著影响,在涨潮时,湾底处海流速度为10 cm s-1,湾口处海流速度为40 cm s-1;退潮时,湾底处海流速度为10 cm s-1,湾口处海流速度为40 cm s-1,涨、退潮时海流方向完全相反。湾内月平均风速波动范围为3 m s-1至5 m s-1。一月份平均气温最低,为4°C,六月份平均气温最高,为26.1°C。11月平均降水量最小,为0.1 mm。六月份平均降水量最大,为330.5 mm。在各月观察到的最大风速中,一月份最低(11 m s-1),七月份最高(26 m s-1)。在Gamag湾中,魁蚶是优势养殖贝类,占据约一半的养殖面积。在Gamag湾中,魁蚶根据传统方法进行底播养殖。
     Gamag湾周围分布有五座城镇(Yeosu, Dolsan, Hwayang, Hwaieong, Nam-myeon),共有人口249,229人,以及圈养家禽家畜18,468头(只),拥有孵化场总面积312,352 m2。人类活动以及家禽家畜的排泄物已经对Gamag湾的水体质量造成了影响。
     为了评价滤食性贝类对Gwangyang湾水体质量的控制作用,6个温度梯度和5个盐度梯度下测定了不同个体大小紫贻贝(小: 21.0±1.2 mm;中: 31.1±2.2 mm;大: 50.6±3.3 mm)的清滤率和耗氧率的影响。结果表明,具有不同个体大小的3个组,都在20°C时表现出最大清滤率。清滤率最大值为4.53±0.22 Lg-1h-1,出现在最小个体组。具有不同个体大小的3个组,都在盐度为30时表现出最大清滤率。清滤率最大值为4.94±0.24 Lg-1h-1,出现在最小个体组。在温度实验中,当温度为25°C时,最大耗氧率为1.405±0.070 mgg-1h-1,出现在最小个体组。在盐度实验中,当盐度为40时,最大耗氧率为1.353±0.068 mgg-1h-1,出现在最小个体组。结果表明,紫贻贝的清滤率和耗氧率均随着个体大小的增加而降低。
     为了研究温度和盐度变化对不同个体大小魁蚶(小: 11.8±2.1mm;中: 21.8±1.1 mm;大: 30.1±3.0 mm)的清滤率和耗氧率的影响,实验在6个温度梯度和5个盐度梯度下进行,并根据中性红方法对其清滤率进行测定。结果表明,具有不同个体大小的3个组,都在20°C时表现出最大清滤率。清滤率最大值为1.89±0.12 Lg-1h-1,出现在最小个体组。在各组中,清滤率均随着盐度的升高(10至40)而升高,最大值为2.62±0.21 Lg-1h-1,出现在最小个体组。耗氧率随温度和盐度的变化趋势与清滤率相似,当温度为20°C时,最大耗氧率为0.189±0.003 mgg-1h-1,出现在最小个体组。当盐度为40时,最大耗氧率为0.308±0.018 mgg-1h-1,出现最小个体组。结果表明,魁蚶的清滤率和耗氧率均随着个体大小的增加而降低。
     为了能够了解具有不同个体大小的紫贻贝与魁蚶的细菌污染状况,以及评价采用冷藏储存方法的必要性,本次实验测定了:具有不同个体大小的紫贻贝与魁蚶的初始大肠杆菌数、粪大肠杆数和细菌总数;在冷藏与非冷藏条件下储藏的紫贻贝与魁蚶的大肠杆菌数、粪大肠杆菌数和细菌总数。
     在初始紫贻贝样品中,大肠杆菌数、粪大肠杆菌数和细菌总数分别为960±90 MNP 100g-1, 230±40 MNP 100g-1 and 8,910±870 CFU g-1,显著高于魁蚶样品中的大肠杆菌、粪大肠杆菌和细菌总数(450±60 MNP 100g-1, 90±30 MNP 100g-1 and 1,570±380 CFU g-1)。紫贻贝样品中细菌水平高于魁蚶样品的原因可能是由于紫贻贝养殖水体的污染程度高于魁蚶养殖水体。结果同时表明,紫贻贝的细菌水平随着个体大小(小: 18.7±4.0mm;中: 42.6±5.4 mm;大: 61.4±7.4 mm)的增加而降低。魁蚶的细菌水平随着个体大小(小: 30.0±2.0mm;中: 39.1±0.7 mm;大: 45.9±1.1 mm)的增加而降低。
     紫贻贝与魁蚶在冷藏(4±1°C)与非冷藏(28±1°C)条件下保存48h,以观察细菌含量变化。在冷藏条件下,紫贻贝样品的细菌抑制率显著高于魁蚶样品,说明冷藏储存对紫贻贝的作用效果优于对魁蚶的作用效果。
     经过48 h的冷藏储存,紫贻贝样品中的大肠杆菌、粪大肠杆菌和细菌总数分别为2,000±120 MNP 100g-1, 430±60 MNP 100g-1和10,780±1,240 CFU g-1,显著高于魁蚶样品中的大肠杆菌、粪大肠杆菌和细菌总数(850±70 MNP 100g-1, 130±30 MNP 100g-1和3,360±410 CFU g-1,)。结果表明,冷藏保存有效地抑制了紫贻贝和魁蚶样品中细菌的繁殖,但是冷藏保存只能维持较低的细菌水平,却无法降低原有细菌水平。
     经过48 h冷藏储存,紫贻贝与魁蚶样品中的细菌抑制率均随着其个体大小的增加而降低;紫贻贝样品中细菌抑制率(大肠杆菌抑制率39.4±4.5% ,粪大肠肝菌抑制率54.7±4.8,细菌总数抑制率78.1±8.1)显著高于魁蚶样品中细菌抑制率(大肠杆菌抑制率29.2±3.5% ,粪大肠肝菌抑制率40.9±4.7%,细菌总数抑制率72.3±8.1%)。
As filter-feeding organisms, bivalves often play a significant ecological role in many shallow fjords and coastal water because the remove of phytoplankton and other suspended particles from the water. The interaction between shellfish and ambient environment has always been considered as a research focus of culture ecology and attached with more and more attentions. To get a clear understanding of interactions between cultured shellfish and their ambient environment, especially of the potential function of bivalves in coastal water purification, the knowledge of the influences of physiological and metabolic activities of shellfish on their ambient environment and the influences of environmental factors on physiological and metabolic activities is necessary.
     The aim of the present study was to evaluate the clearance and oxygen consumption rate of Mytilus galloprovincialis and Scapharca broughtonii, which are two common commercial shellfish in South Korea, with different shell sizes to various environmental factors. Results of this study may provide essential data to assess the cleaning potential of these bivalves. Depending on local eutrophication situation, this information could be of value for water quality control throughout south coast of South Korea. And the results also can provide essential data to estimate the carrying capacity for culture of S. broughtonii.
     Simultaneously, as filter feeding organisms, bivalve molluscs are an important source of foodborne diseases. These invertebrates can accumulate high levels of microbial pathogens within their internal tissues, so they are implicated more than other marine animals in seafood-borne illness. Therefore, the aim of the present study was also to have a better understanding of the contamination status of M. galloprovincialis and S. broughtonii with various shell length, and the effects of refrigerated storage on these two shellfishes, as well as the necessity of applications of refrigerated storage.
     Although the physiological responses and bacterial characteristics of many bivalves have been studied, but few studies discussed the effects of body size (commonly means shell sizes for bivalve) on physiological response and bacterial contamination. In present study, the influence of body size was focused on.
     The physiological indexes of shellfish are affected by many environmental factors, and further the controlling role of bivalves which live in estuarine and coastal environments are influenced by many environmental factors such as water temperature, salinity, algae concentrations, nutrient loads, dissolved oxygen and environmental pollutants. As poikilothermic animal which is often distributed in estuarine, shallow fjord and costal waters, water temperature and salinity which vary seasonally can cause significant changes in physiological activities that further influence the ability of the organisms to ingest the phytoplankton. Precise knowledge about the physiological response, especially the filtration and respiration, to different temperature and salinity is essential to evaluate the role of bivalves on water quality control.
     To comprehensively understand the relationship of shellfish and their environment and evaluate the seafood safety, the knowledge of the bays in which they are cultured is essential.
     Gwangyang Bay (34°55ˊ N, 127°50ˊ E), where the M. galloprovincialis was cultured, is a typical semi-enclosed water bay, connecting with the sea with a narrow mouth, with a surface area of 230 km2. Some seasonal streams empty into the bay with varying water and sediment loads. Some rivers have become canals of industrial and domestic waste discharge with the advance of economic activity and increase of population in the region. The changes of nutrient regime and phytoplankton structure are attributed to increased human activity in this region, changed water circulation and increased aquaculture. The maximum water depth is 35 m, and the average water depth is 10 m. The current exist in the bay are significantly affected by tidal current. The tidal current speed during the flood phase ranges from 10 cm s-1 (at the bottom of the bay) to 60 cm s-1 (at the bay mouth), and the range of tidal current speed during the ebb was from 10 cm s-1 (at the bottom of the bay) to 80 cm s-1 (at the bay mouth). In Myodo of Gwangyang bay, the monthly average water temperature ranged from 1°C in Jan to 26.0°C in Jul and Aug. The monthly average rainfall ranged from 3 mm in Dec to 361 mm to Aug. The monthly average wind speed ranged from 1 to 3 m s-1, and the monthly maximum wind speed ranged from 4 m s-1 in Oct to 10 m s-1. In Suncheon of Gwangyang bay, the monthly average water temperature ranged from 1.0°C in Jan to 26.0°C in Aug. The monthly average rainfall ranged from 1.5 mm in Nov to 551.8 to Sep. The monthly average wind speed ranged from 0.8 to 1.7 m s-1, and the monthly maximum wind speed ranged from 1.7 m s-1 in Jul to 5.4 m s-1 in Mar. Mediterranean mussels M. galloprovincialis is dominantly cultivated bivalves in Gwangyang Bay. In Gwangyang Bay, the M. galloprovincialis was farmed on cultivation raft which is different from traditional bottom sawing culture.
     Nearby Gwangyang Bay there are four towns (Gwangyang, Suncheon, Yeosu and Hadong-gum) which have a total population of 260,392 inhabitants, about 727,411 economic animals and about 198,270 m2 hatchery areas, having potential negative impacts on the bay.
     Gamag Bay (34°40ˊN , 127°40ˊ E), where the S. broughtonii was cultured, is a large embayment on the south coast of Korea peninsula. The Gamag Bay is an important mariculture area in South Korea which has a total water area of 1,020 km2. The maximum water depth is 40 m, and the average water depth is 9 m. The current exist in the bay are significantly affected by tidal current. The tidal current speed during the flood phase ranges from 10 cm s-1 (at the bottom of the bay) to 40 cm s-1 (at the bay mouth), and the range of tidal current speed during the ebb was from 10 cm s-1 (at the bottom of the bay) to 40 cm s-1 (at the bay mouth). The monthly average water temperature ranged from 4°C in Jan to 26.1°C in Aug. The monthly average rainfall ranged from 0.1 mm in Nov to 330.5 mm to Jun. The monthly average wind speed ranged from 3 to 5 m s-1, and the monthly maximum wind speed ranged from 11 m s-1 in Oct to 26 m s-1 in Jul. Ark shell S. broughtonii is dominantly cultivated bivalves in Gamag Bay. In Gamag Bay, this production is made according to traditional bottom sawing culture.
     Nearby Gamag Bay there are five towns (Yeosu, Dolsan, Hwayang, Hwaieong, and Nam-myeon) which have a total population of 249,229 inhabitants, about 18,468 economic animals, and about 312,352 m2 hatchery areas, having potential negative impacts on the bay.
     In order to provide essential data to evaluate the effect of filter-feeding bivalves on water quality of Gwangyang Bay in South Korea, the clearance and respiration rates of M. galloprovincialis with different shell length (S: 21.0±1.2 mm; M: 50.6±3.3 mm; L: 31.1±2 mm) were estimated under different temperature and salinity conditions. The results showed that, in all of the three groups, the highest clearance rates appeared at 20°C, and the highest one was 4.53±0.22 Lg-1h-1 in the group with the smallest shell length. The clearance rates of every group had the highest values at salinity 30, and the highest one is 4.94±0.24 Lg-1h-1 in the smallest shell length group. The highest respiration rates were 1.405±0.070 mgg-1h-1 at 25°C and 1.353±0.068 mgg-1h-1 at salinity 40 in the group with the smallest shell length. And the shell size was negatively correlated with clearance and oxygen consumption rates.
     To investigate the effects of temperature and salinity on clearance and oxygen consumption rate of S. broughtonii spat with different growth stages, this study was conducted under 6 different water temperatures and 5 different salinity conditions. The individuals were divided into three groups (S: 11.8±2.1mm; M: 21.8±1.1 mm; L: 30.1±3.0 mm) of different shell sizes and clearance rates were estimated by Neutral red. The results showed that in all of the three groups, the highest clearance rates appeared at 20°C, and the highest one was 1.89±0.12 Lg-1h-1 in the group with the smallest shell length. The clearance rates in every group increased with the rise of salinity in the range from 10 to 40, and the highest one is 2.62±0.21 Lg-1h-1 in the smallest shell length group. The trends of oxygen consumption rates were similar to clearance rates. The highest rates were 0.189±0.003 mgg-1h-1 at 20°C and 0.308±0.018 mgg-1h-1 at salinity of 40 in the group with the smallest shell length. And the results showed that the clearance and oxygen consumption rates were negatively correlated with shell size.
     With the aim of having a better understanding of the contamination status of M. galloprovincialis and S. broughtonii with various shell lengths, as well as the necessity of applications of refrigerated storage, in this study we determined: the initial level of coliform, fecal coliform and total plate count (TPC) in M. galloprovincialis and S. broughtonii with various shell length; the level of coliform, fecal coliform and total aerobic bacteria in these two shellfish under refrigerated and non-refrigerated storage conditions.
     The initial level of coliform, fecal coliform and TPC in M. galloprovincialis were 960±90 MNP 100g-1, 230±40 MNP 100g-1 and 8,930±870 CFU g-1, which were significant high than those in S. broughtonii (450±60 MNP 100g-1, 90±30 MNP 100g-1 and 1,570±380 CFU g-1). It should attribute to the higher contamination level of aquatic environment where M. galloprovincialis was cultured. The initial levels of coliform, fecal coliform and TPC in M. galloprovincialis were negatively correlated with shell length (S: 18.7±4.0mm; M: 42.6±5.4 mm; L: 61.4±7.4 mm). The initial levels of coliform, fecal coliform and TPC in S. broughtonii were also negatively correlated with shell length (S: 30.0±2.0mm; M: 39.1±0.7 mm; L: 45.9±1.1 mm).
     The bacteriological characteristics of these shellfish were determined after 48-h refrigerated (4±1°C) and non-refrigerated (28±1°C) storages. Under refrigerated conditions, the inhibitory rate of bacterial in M. galloprovincialis was significantly higher than that in S. broughtonii indicating that refrigerated storage was more effective for M. galloprovincialis than S. broughtonii.
     After 48 h refrigerated storage, the level of coliform, fecal coliform and TPC in M. galloprovincialis were 2,000±120 MNP 100g-1, 430±60 MNP 100g-1 and 10,780±1,240 CFU g-1, which were significantly higher than those in S. broughtonii (850±70 MPN 100g-1, 130±30 MNP 100g-1 and 3,360±410 CFU g-1). Refrigerated storage is an effective control measure to slow the rate of bacteria growth in live seafood, and thus can maintain the initial microbial status of the shellfish, but cannot improve it.
     After 48h refrigerated storage, the inhibitory rates in both M. galloprovincialis and S. broughtonii were negatively correlated with shell length. The inhibitory rates of bacterial were significantly different between M. galloprovincialis (39.4±4.5% for coliform, 54.7±4.8 for fecal coliform and 78.1±8.1 for TPC) and S. broughtonii (29.2±3.5% for coliform, 40.9±4.7 for fecal coliform and 72.3±8.1 for TPC).
引文
Adnan, Q. (1992). Algal blooms in Jakarta Bay, Indonesia. In: Marine Coastal Eutrophication (R.A. Vollenweider, R. Marchetti and R. Vicviani, Eds.), pp. 809-818. Elsevier, Amsterdam. Alogi, D.M. (1998). Coastal Ecosystem Processes, pp. 188. CRC Press, Boca Raton.
    Alpine, A.E. and Cloern, J.E. (1992). Trophic interactions and direct physical effects control phytoplankton biomass and production in an estuary. Limnol. Oceanogr. 37, 946-955.
    Anonymous. (1992). Microbiological criteria for raw molluscan shellfish. J. Food Protect.55, 667–671.
    Apeti, D.A., Robinson, L. and Johnson, E. (2005). Relationships between heavy metal concentrations in the American Oyster (Crassostrea virginica) and metal levels in the water column and sediment in Apalachicola Bay, Florida, Am. J. Environ. Sci. 1, 179–186.
    APHA (American Public Health Association). (1970). Recommended procedures for the examination of sea water and shellfish (4th ed.). New York.
    Arifin, Z. and Bendell-Young, L.I. (1997). Feeding response and carbon assimilation by the blue mussel Mytilus trossulus exposed to environmentally relevant seston matrices. Mar. Ecol., Prog. Ser. 160, 241–253.
    Ashie, I., Smith, J. and Simpson, B. (1996) Spoilage and shelf-life extension of fresh fish and shellfish, Cri. Rev. Food Sci. Nutr. 36, 87–121.
    Asmus, H. and Asmus, R.M. (1993). Phytoplankton–mussel bed interactions in intertidal ecosystems. In: Bivalve filter feeders in estuarine and coastal ecosystem processes (R.F. Dame, Ed.), NATO ASI Ser Vol. 33, pp. 57–84. Springer, Berlin.
    Bacher, C., Duarte, P., Ferreira, J.G., Héral, M. and Raillard, O. (1998). Assessment and comparison of the Marennes-Oléron Bay (France) and Carlingford Lough (Ireland) carrying capacity with ecosystem models. Aquat. Ecol. 31, 379–394.
    Baden, S.P., Loo, L.O., Phil, L. and Rosenberg, R. (1990). Effects of eutrophication on benthic communities including fish: Swedish west coast. AMBIO 19, 113-122.
    Barbieri, E., Falzano, L., Fiorentini, C., Piatitti, A., Baffone, W., Fabbri, A., Matarrese, P., Caisere, A., Katouli, M., Kühn, I., Molby, F., Bruscolini, F. and Donelli, G. (1999). Occurrence, diversity, and pathogenicity of halophilic Vibrio spp. And non-O1 Vibrio cholerae from estuarine waters along the Italian Adriatic Coast. Appl. Environ. Micrbiol. 65, 2748-2753.
    Baudinet, D., Alliot, E., Berland, B., Grenz, C., Plante-Cuny, M.R., Plante, R. and Salen-Picard, C . (1990). Incidence of mussel culture on biogeochemical fluxes at the sedimentwater interface. Hydrobiologia 207, 187–196.
    Bayne, B.L., Iglesias, J.I.P., Hawkins, A.J.S., Navarro, E., Héral, M. and Deslous-Paoli, J.M. (1993). Feeding behaviour of the mussel, Mytilus edulis: responses to variations in quantity and organic content of the seston. J. Mar. Biol. Assoc. UK 73, 813–829.
    Bayne, B.L. and Newell, R.C. (1983). Physiological energetics of marine mollusus. In: The Mollusca: Physiology, Part 1 (A.S.M. Saleuddin, K.M. Wilbur, Eds.), pp. 407-515. Academic Press, New York.
    Bayne, B.L., Thompson, R.J. and Widdows, J. (1976). Physiology. In: Marine mussels: Their ecology and physiology (B.L. Bayne, Ed.), pp. 121–206. Cambridge University Press, Cambridge.
    Bergstein-Ben Dan, T. and Stone, L. (1991). The distribution of fecal pollution indicator bacteria in Lake Kinneret. Water Res. 25, 263–270.
    Blanco, J., Fernández, M.L., Miguez, A. and Moro?o, A. (1999). Okadaic acid depuration in the mussel Mytilus galloprovincialis: one- and two-compartment models and the effect of environmental conditions. Mar. Ecol. Prog. Ser. 176, 153–163.
    Bhole, B. (1972). Effects of adaptation to reduced salinity on filtration activity and growth of mussels (Mytilus edulis). J. Exp. Mar. Biol. Ecol. 10, 41-49.
    Bonsdorff, E., Blomqvist, E.M., Matilla, J. and Norkko, A. (1997). Long-term changes and coastal eutrophication. Examples from the Aland Islands and the Archipelago sea, Northern, Baltic Sea. Oceanol. Acta 20, 1.
    Boskou, G. and Debevere, J. (2000). Shelf-life extension of cod fillets with an acetate buffer spray prior to packaging under modified atmospheres. Food Addit. Contam. 17, 17–25.
    Bostr?m, B., Andersen, J.M., Fleischer, S. and Jansson, M. (1988). Exchange of phosphorus across the sediment–water interface. Hydrobiologia 170, 229–244.
    Bougrier, S., Hawkins, A.J.S. and Héral, M. (1997). Preingestive selection of different microalgal mixtures in Crassostrea gigas and Mytilus edulis, analysed by flow cytometry. Aquaculture 150, 123–134.
    Bricker, S.B., Ferreira, J.G. and Simas, T. (2003). An integrated methodology for assessment ofestuarine trophic status. Ecol. Model. 169, 39–60.
    Bruschetti, M., Luppi, T., Fanjul, E., Rosenthal, A. and Iribarne, O. (2008). Grazing effect of the invasive reef-forming polychaete Ficopomatus enigmaticus (Fauvel) on phytoplankton biomass in a SW Atlantic coastal lagoon. J. Exp. Mar. Ecol. Biol. 354, 212-219.
    Butman, C.A., Fréchette, M., Geyer, W.R. and Starczak, V.R. (1994). Flume experiments on food supply to the blue mussel Mytilus edulis L. as a function of boundary layer flow. Limnol. Oceanogr. 39, 1755–1768.
    Cadée, G.C. and Hegeman, J. (1974). Primary production of phytoplankton in the Wadden Sea. Neth. J. Sea Res. 8, 240–259.
    Caraco, N.F., Cole, J.J. and Likens, G.E. (1990). A comparison of phosphorus immobilization in sediments of freshwater and coastal marine systems. Biogeochemistry 9, 277–290.
    Caraco, N.F., Cole, J.J., Raymond, P.A., Strayer, D.L., Pace, M.L., Findlay, S.E.G. and Fischer, D.T. (1997). Zevra mussel invasion in a large, turbid river: phytoplankton response to increased grazing. Ecology 78, 588-602.
    CEC (1976). Commission of the European Communities, Commissiion Directive 76/160/EEC concerning the quality of bathing water. Off. J. Eur. Communities L31, 1-7.
    Chemodanov, A.V. and Maximovich, N.V. (1997). Internal structure of Mytilus edulis L. shells as an indication of their seasonal growth variation. In: Proc. of the 7 the Malac. Conference, Nauka, Leningrad, pp. 178-180.
    Choo, Y.J. and Kim, S.J. (2006). Detection of human adenoviruses and enteroviruses in Korea oyster using cell culture, integrated cell culture-PCR, and direct PCR. J. Microbiol. 44, 162-170.
    Chigbu, P., Gordon, S. and Strange, T.R. (2005). Fecal coliform bacteria disappearance rates in a north-central Gulf of Mexico estuary. Estuar. Coast. Shelf S. 65, 309-318.
    Cloern, J.E. (1982). Does the benthos control phytoplankton biomass in South San Francisco Bay? Mar. Ecol. Prog. Ser. 9, 191–202.
    Cloern, J.E. (2001). Our evolving conceptual model of the coastal eutrophication problem. Mar. Ecol. Prog. Ser. 210, 223-253.
    Coelho, J.P., Pereira, M.E., Duarte, A. and Pardal, M.A. (2005). Macroalgae response to a mercury contamination gradient in a temperate coastal lagoon (Ria de Aveiro, Portugal). Estuar.Coast. Shelf S. 65, 492–500.
    Coen, L. and Luckenbach, M. (2000). Developing success criteria and goals for evaluating oyster reef restoration: ecological function or resource exploitation? Ecol. Eng. 15, 323-343.
    Colakoglu, F.A., Sarmasik, A. and Koseoglu, B. (2006). Occurrence of Vibrio spp. And Aeromonas spp. In shellfish harvested off Dardanelles coast of Turkey. Food Control 17, 648-652.
    Colby, J.W., Enriquez-Ibara, L.G. and Flick, G.J. (1995). Shelf life of fish and shellfish. In: Shelf life studies of foods and beverages, chemical, biological, physical and nutritional Aspects (G. Charalambous, Ed.), pp. 85–143. Elsevier, New York.
    Cole, H.A. and Hepper, B.T. (1954). The use of neutral red solution for the comparative study of filtration rate of Lamellibranchs. J. Cons. Int. Explor. Mer. 20, 197-203.
    Collins, R. and Rutherford, K. (2004). Modelling bacterial water quality in streams draining pastoral land. Water Res. 38, 700–712.
    Cordova, J.L., Jamett, A., Fauré, M.T., Villaroel, O. and Cardenas, L. (2001). An in vitro assay to detect paralytic shellfish poison. J. Shellfish Res. 20, 55–61.
    Cotou, E., Papathanassiou, E. and Tsangaris, C. (2002). Assessing the quality of marine coastal environments: comparison of scope for growth and Microtox? bioassay results of pollution gradient areas in eastern Mediterranean (Greece). Environ. Pollut. 119, 141-149.
    Cranford, P.J. and Hargrave, B.T. (1994). In situ time-series measurement of ingestion and absorption rates of suspension-feeding bivalves: Placopecten magellanicus. Limnol. Oceanogr. 39, 730–738.
    Crowther, J., Kay, D. and Wyer, M.D. (2002). Faecal-indicator concentrations in waters draining lowland pastoral catchments in the UK: relationships with land use and farming practices. Water Res. 36, 1725–1734.
    Dame, R.F. (1996). Ecology of marine bivalves: an ecosystem approach. pp. 254. CRC Press, Boca Raton.
    Dame, R.F. and Kristmanson, D. (1996). Ecology of Bivalves: An Ecosystem Approach. CRC Press LLC, Boca Raton.
    Dame, R.F. and Prins, T.C. (1997). Bivalve carrying capacity in coastal ecosystems. Aquat. Ecol. 31, 409–421.
    Daniels, N.A., MacKinnon, L., Bishop, R., Altekruse, S., Bay, B., Hammond, R.M., Thompson, S., Wilson, S., Bean, N.H., Griffin, P.M. and Slutsker, L. (2002). Vibrio parahaemolyticus infections in the United States, 1973–1998. J. Infect. Dis. 181, 1661–1666.
    Davis, E.M., Casserly, D.M. and Moore, J.D. (1977). Bacterial relationships in stormwaters. Water Res. Bull. 13, 895–905.
    De Groot, C.J. and Golterman, H.L. (1993). On the presence of organic phosphate in some Camargue sediments: evidence for the importance of phytate. Hydrobiologia 252, 117–126.
    Dekshenieks, M.M., Hofmann, E.E., Klinck, J.M. and Powell, E.N. (2000). Quantifying the effects of environmental change on an oyster population: a modeling study. Estuaries 23, 593–610.
    Denis, L., Alliot, E. and Grzebyk, D. (1999). Clearance rate responses of Mediterranean mussels, Mytilus galloprovincialis, to variations in the flow, water temperature, food quality and quantity. Aquat. Living Resour. 12, 279-288.
    Desprez, M., Rybarczyk, H., Wilson, J.G., Ducrotoy, J.P., Sueur, F., Olivesi, R. and Elkaim, B. (1992). Biogical impact of eutrophication in the Bay of Somme and the induction of impact of anoxia. Neth. J. Sea Res. 30, 149-159.
    Diaz, R.J. and Rosenberg, R. (1995). Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna Oceanography. Mar. Biol. Annu. Rev. 33, 45–303.
    Doran, J.W.and Linn, D.M. (1979). Bacterial quality of runoff water from pasture land. Appl. Environ. Microbiol. 37, 985–991.
    Doucette, G.J. (1995). Interactions between bacteria and harmful algae: a review, Nat. Toxins 3, 65–74.
    Dowd, M. (1997). On predicting the growth of cultured bivalves. Ecol. Model. 104, 113–131.
    Duinker, A., Bergslien, M., Strand, ?., Olseng, C.D. and Svardal, A. (2007). The effect of size and age on depuration rates of diarrhetic shellfish toxins (DST) in mussels (Mytilus edulis L.). Harmful Algae 6, 288-300.
    EPA (2000). Improved enumeration methods for recreational water quality indicators: Enterococci and Escherichia coli. United States Environmental Protection Agency. EPA-821-R-97-004.
    Fang, J., Sun, H., Kuang, S., Sun, Y., Zhou, S., Song, Y., Cui, Y., Zhao, J., Yang, Q., Li, F.,Grant, J., Emerson, C., Wang, X. and Tang, T. (1996). Study on the carrying capacity of Sanggou Bay for the culture of scallop Chlamys farreri. Mar. Fish. Res. 17, 18–31.
    FAO (2004). The State of World Fisheries and Aquaculture (SOFIA). Food and Agriculture Organization of the United Nations, Rome.
    FDA (1992). Bacteriological analytical manual, AOAC International, Arlington, VA.
    Fegley, S.R., MacDonald, B.A. and Jacobsen, T.R. (1992). Short-term variation in the quantity and quality of seston available to benthic suspension feeders. Estuar. Coast. Shelf Sci. 34, 393–412.
    Fegley, S.R., MacDonald, B.A. and Jacobsen, T.R. (1992). Shortterm variation in the quantity and quality of seston available to benthic suspension feeders. Estuar. Coast. Shelf. Sci. 34,393–412.
    Ferguson, C.M., Coote, B.G., Ashbolt, N.J. and Stevenson, I.M. (1996). Relationships between indicators, pathogens and water quality in an estuarine system. Water Res. 30, 2045–2054.
    Ferreira, J.G., Duarte, P. and Ball, B. (1998). Trophic capacity of Carlingford Lough for oyster culture-analysis by ecological modelling. Aquat. Ecol. 31, 361–378.
    Ferreira, J.G., Hawkins, A.J.S. and Bricker, S.B. (2007). Management of productivity, environmental effects and profitability of shellfish aquaculture—the Farm Aquaculture Resource Management (FARM) model. Aquaculture 264, 160-174.
    Foster-Smith, R.L. (1975). The effect of concentration of suspension on the filtration rates and pseudofaecal production for Mytilus edulis L., Cerastoderma edule (L.) and Venerupis pullastra (Montagu). J. Exp. Mar. Biol. Ecol. 17, 1-22.
    Franca, S., Viegas, S., Mascarrenhas, V., Pinto, L. and Doucette, G.J. (1995). Prokaryotes in association with a toxic Alexandrium lusitanicum in colture. In: Harmful Marine Algal Blooms: Proceedings of the Sixth International Conference on Toxic Marine Phytoplankton. (P.G. Arzul, E. Erard, P. Gentien and C. Marcaillou, Eds), pp. 46–51 Lavoisier, Paris.
    Fréchette, M. and Bourget, E. (1985). Foodlimited growth of Mytilus edulis L. in relation to the benthic boundary layer. Can. J. Fish. Aquat. Sci. 42, 1166–1170.
    Fréchette, M. and Grant, J. (1991). An in situ estimation of the effect of wind-driven resuspension on the growth of the mussel Mytilus edulis L. J. Exp. Mar. Biol. Ecol. 148, 201–213.
    Gallacher, S., Flynn, K.J., Franco, J.M., Brueggemann, E.E. and Hines, H.B. (1997). Evidence for production of paralytic shellfish toxins by bacteria associated with Alexandrium spp. (Dinophyta) in culture, Appl. Environ. Microbiol. 63, 239–245.
    Gangnery, A., Bacher, C. and Buestel, D. (2001). Assessing the production and the impact of cultivated oysters in the Thau lagoon (Mediterranee, France) with a population dynamic model. Can. J. Fish. Aquat. Sci. 58, 1012-1020.
    Gannon, J.J., Busse, M.K.and Schillinger, J.E. (1983). Fecal coliform disappearance in a river impoundment. Water Res. 17, 1595–1601.
    Gardner, J.P.A. (2002). Effects of seston variability on the clearance rate and absorption efficiency of the mussels Aulacomya maoriana, Mytilus galloprovincialis and Perna canaliculus from New Zealand. J. Exp. Mar. Biol. Ecol. 269, 83-101.
    GEASMP (1990). Joint Group of Experts on the Scientific Aspect of Marine Pollution: the State of the Marine Environment UNEP Regional Seas Reports and Studies. No. 115, UNEP.
    Gerritsen, J., Holland, A.F. and Irvine, D.E. (1994). Suspension-feeding bivalves and the fate of primary production: an estuarine model applied to Chesapeake Bay. Estuaries 17, 403–416.
    Gomoiu, M. (1992). Marine eutrophication syndrome in the north-western part of the Black Sea. In: Marine Coastal Eutrophication (R.A. Vollenweider, R. Marchetti and R. Vicviani, Eds.), pp. 683-696. Elsevier, Amsterdam.
    Gonenc, I.E. and Wolflin, J.P. (2005). Coastal Lagoons. Ecosytem Processes and Modelling for Sustainable Use and Development, pp. 500. CRC Press, Boca Raton.
    Gottlieb, S. and Schweighofer, M. (1996). Oyster and the Chesapeake Bay ecosystem: a case for exotic species introduction to improve environmental quality? Estuaries 19, 639-650.
    Gowen, R.J., Tett, P., Kenningto, K., Mills, D.K., Shammon, T.M., Stewart, B.M., Greenwood, N., Flanagan, C., Devlin, M. and Wither, A. (2008). The Irish Sea: Is it eutrophication. Estuar. Coast. Shelf S. 76, 239-254.
    Gram L. and Huss, H.H. (2000). Flesh and process fish and shellfish. In: The microbiological safety and quality of food vol. 1 (B.M. Lund, T.C. Baird-Parker and G.W. Gould, Eds.), pp. 472-506. Aspen Publishers Inc., Maryland.
    Gram, L. and Huss, H.H. (1996). Microbiological spoilage of fish and fish products. Int. J. Food Microbiol. 33, 589–595.
    Grant, J. (1996). The relationship of bioenergetics and the environment to the field growth of cultured bivalves. J. Exp. Mar. Biol. Ecol. 200, 239–256.
    Grant, J., Bacher, C., Cranford, P.J., Guyondet, T. and Carreau, M. (2007). A spatially explicit ecosystem model of seston depletion in dense mussel culture. J. Marine Syst. In Press.
    Grant, J., Cranford, P., Carreau, M., Schofield, B., Armsworthy, S., Burdett-Coutts, V. and Ibarra, D. (2005). A model of aquaculture impacts for multiple estuaries and its field verification at mussel culture sites in Eastern Canada. Can. J. Fish. Aquat. Sci. 62, 1271–1285.
    Grant, J., Dowd, M., Thompson, K., Emerson, C. and Hatcher, A. (1993). Perspectives on field studies and related biological models of bivalve growth and carrying capacity. In: Bivalve filter feeders in estuarine and coastal ecosystem processes (R.F. Dame, Ed.), pp. 371–420. SpringerVerlag, Berlin.
    Griffin, D.W., Donaldson, K.A., Paul, J.H. and Rose, J.B. (2003) Pathogenic human viruses in coastal waters. Clin. Microbiol. Rev. 16, 129–143
    Grimes, D. J., Atwell, R. W., Brayton, P. R., Palmer, L. M., Rollis, D. M. and Roszak, D. B. (1986). The fate of enteric pathogenic bacteria in estuarine and marine environments. Microbiol. Sci. 3, 324–329.
    Hallengraef, G. (1995). Algal blooms in Australian coastal waters. Water 22, 20-23.
    Hansen, W., Freney, J., Benyegoub, H., Letouzey, M.N., Gigi, J. and Wauters, G. (1993). Severe human infections caused by Vibrio metschnikovii, J. Clin.l Microbiol. 31, 2529–2530.
    Harrigan, W. F. and McCance, M. E. (1976). Techniques in applied microbiology. Laboratory methods in food and dairy microbiology, pp. 141–143. Academic Press Limited. London.
    Harvell, C.D., Mitchell, C.E., Ward, J.R., Altizer, S., Dobson, A.P., Ostfeld, R.S. and Samuel, M.D. (2002). Climate warming and disease risk for terrestrial and marine biota. Science 296, 2158–2162.
    Hauton, C., Hawkins, L.E. and Hutchinson, S. (1998). The use of the neutral red retention assay to examine the effects of temperature and salinity on haemocytes of the European flat oyster Ostrea edulis (L). Comp. Biochem. Phys. B. 119, 619-623.
    Hawkins, A.J.S., Duarte, P., Fang, J.G., Zhang, J.H., Zhang, X.L. and Zhu, M.Y. (2002). A functional model of responsion-feeding and growth in bivalve shellfish, configured and validated for the scallop Chlamys farreri during culture in China. J. Exp. Mar. Biol. Ecol. 281,13-40.
    Hawkins, A.J.S., Fang, J.G., Pascoe, P.L., Zhang, J.H., Zhang, X.L. and Zhu, M.Y. (2001). Modelling short-term responsive adjustments in particle clearance rate among bivalve suspension-feeders: separate unimodal effects of seston volume and composition in the scallop Chlamys farreri. J. Exp. Mar. Biol. Ecol. 262, 61–73.
    Hawkins, A.J.S., James, M.R., Hickman, R.W., Hatton, S. and Weatherhead, M. (1999). Modelling of suspension-feeding and growth in the green-lipped mussel Perna canaliculus exposed to natural and experimental variations of seston availability in the Marlborough Sounds, New Zealand. Mar. Ecol., Prog. Ser. 191, 217–232.
    Hawkins, A.J.S., Smith, R.F.M., Bayne, B.L. and Héral, M. (1996). Novel observations underlying fast growth of suspension-feeding shellfish in turbid environments: Mytilus edulis. Mar. Ecol., Prog. Ser. 131, 179–190.
    Hawkins, A.J.S., Smith, R.F.M., Tan, S.H. and Yasin, Z.B. (1998). Suspension-feeding behaviour in tropical bivalve molluscs: Perna viridis, Crassostrea belcheri, Crassostrea iradelei, Saccostrea cucculata and Pinctada margarifera. Mar. Ecol., Prog. Ser. 166, 173–185. Hayes, P.R. (1992). Microbiological examining methods. Food microbiology and hygiene, pp. 184–223. Elsevier, New York.
    He, T.R., Feng, X.B., Guo, Y.N., Qiu, G.L., Li, Z.G., Liang, L. and Lu, J.L. (2007). The impact of eutrophication on the biogeochemical cycling of mercury species in a reservoir: A case study from Hongfeng Reservior, Guizhou, China. Environ. Poll. In press.
    Helm, M.M. (2007). Cultured aquatic species information programme—Crassostrea gigas. cultured aquatic species fact sheets. FAO, Rome.
    Herman, P.M.J. (1993). Aset ofmodels to investigate the role of benthic suspension feeders in estuarine ecosystems. In: Bivalve filter feeders in estuarine and coastal ecosystem processes (R.F. Dame, Ed.), pp. 421–454. SpringerVerlag, Berlin.
    Higano, J. (2004) Influence of environmental change in the tidal flats on the filtration and respiration of bivalve mollusks. B. Fish. Res. Agency 33-44.
    Hirata, S. (1985). Phosphorus and metals bound to organic matter in coastal sediments-an investigation of complexes of P, Cu, Zn, Fe, Mn, Ni, Co and Ti by inductively coupled plasma-atomic emission Spectrometry with sephadex gel chromatography. Mar. Chem. 16,23–46.
    Hrtweel, S.I., Wright, D.A., Tackass, R. and Hocutt, C.H. (1991). Relative Respiration and Feeding Rates of Oyster and Brackish Water Clam in Variously Contaminated Waters. Mar. Poll. Bull. 22, 191-197.
    Hunter, C., Perkins, J., Tranter, J. and Gunn, J. (1999). Agricultural land-use effects on the indicator bacterial quality of an upland stream in the Derbyshire Peak District in the UK. Water Res. 33, 3577–3586.
    Huss, H. H., Reilly, A. and Embarek, P. K. B. (2000). Prevention and control of hazards in seafood. Food Control. 11, 149–156.
    Hwang, K. and Regenstein, J. (1995). Hydrolysis and oxidation of mackerel (Scomber scombrus) mince lipids with NaOCl and NaF treatments. J. Aquat. Food Prod. Technol. 4, 19–30.
    ICMSF (International Commission on Microbiological Specifications for Food). (1986). Microorganisms in Food 2. Sampling for microbiological analysis: Principles and specific applications. 2nd ed. Blackwell Scientific Publications, UK.
    Inglis, G.J., Hayden, B.J. and Ross, A.H. (2000). An Overview of Factors Affecting the Carrying Capacity of Coastal Embayments for Mussel Culture, NIWA Client Report CHC00/69, Christchurch, New Zealand .
    James, M.R. and Ross, A.H. (1997). Sustainability—how many mussels can we farm? Aquac. Update 18, 1–4.
    Jeong, J.H., Jin, H.J., Sohn, C.H., Suh, K.H. and Hong, Y.K. (2000). Algical activity of the seaweed Corallina pilulifera against red tide microalgae. J. Appl. Phucol. 12, 37-43.
    Jiang, J.M., Powers, C., Bryant, R.G. and Abbott, S.I. (1988). Current perspectives on the epidemiology and pathogenesis of clinically significant Vibrio spp. Clin. Microbiol. Rev. 1, 245-267.
    Jokiel, P.L., Dubinsky, Z. and Stambler, N. (1994). Results of the 1991 United States-Israel workshop,“nutrient limitation in symbiotic association between zooxanthellae and reef-buiding coras”. Pac. Sci. 48, 215-218.
    Jones, H.D., Richards, O.G. and Southern, T.A. (1992). Gill dimensions water pumping rate and body size in the mussel Mytilus edulis. J. Exp. Mar. Biol. Ecol. 155, 213–237.
    Jorgensen, B.B. (1980). Seasonal oxygen depletion in the bottom waters of a Danish fjord and itseffect on the benthic community. Oikos 34, 68–76.
    J?rgensen, C.B. (1990). In: Bivalve Filter Feeding: Hydrodynamics, Bioenergetics, Physiology and Ecology (Olsen and Olsen, Eds.), pp. 1–140. Fredensborg.
    Justic, D., Rabalais, N.N. and Turner, R.E. (1995). Stoichiometric nutrient balance and origin of coastal eutrophication. Mar. Pollut. Bull. 30, 41-46.
    Justic, D., Rabalais, N.N., Turner, R.E. and Dortch, Q. (1995). Changes in nutrient structure of river-dominated coastal waters; stoichiometric nutrient balance and its consequencs. Estuar. Coast. Shelf S. 40, 339–356.
    Kang, H.K., Par, H.J., Kim, Y.H., Seon, S.C. and Zhou, B. (2008). Filtration and oxygen consumption rates on various growth stages of Scapharca broughtonii spat. Aquac. Res. (in press).
    Kaspar, H.F., Gillespie, P.A., Boyer, I.C. and McKenzie, A.L. (1985). Effects of mussel aquaculture on the nitrogen cycle and benthic communities in Kenepuru Sound, Marlborough Sounds, New Zealand. Mar. Biol. 85, 127–136.
    Kerr, S. and Ryder, R.A. (1992). Effects of cultural eutrophication on coastal marine fisheries: a comparative approach. In: Marine Coastal Eutrophication (R.A. Vollenweider, R. Marchetti and R. Vicviani, Eds.), pp. 599-614. Elsevier, Amsterdam.
    Khan, M.A., Parrish, C.C. and Shahidi, F. (2005). Enumeration of total heterotrophic and psychrotrophic bacteria using different types of agar to evaluate the microbial quality of blue mussel (Mytilus edulis) and sea scallops (Placopecten magellanicus). Food Res. Int. 38, 751-758.
    Kho, K.H. and Kim, C.W. (2004). Effect of Water Temperature and Salinity on Dietary Feeding of Manila clam (Ruditapes philippinarum). Korean J. Environ. Biol. 22, 28-34.
    Kim, J.B., Lee, S.Y., Jung, C.G., Jung, C.S. and Son, S.G. (2007) The effects of the spat planting time and environmental factors in the ark shell, Scarpharca broughtonii Schrenck culture. J. Aquacul. 20, 31-40.
    Kim, Y.S. (1995). Filtering rate model of farming oyster, Crassostrea gigas with effect of water temperature and size. J. Korean Fish. Soc. 28, 589-598.
    Kim, Y.S. and Mun, T.S. (1998). Filtering Rate with Effect of Water Temperature and Size of Two Farming Ascidians Styela clava and S. Plicata, and a Farming Mussel Mytilus edulis. J.Korean Fish. Soc. 31, 272-277.
    Klinck, J.M., Hofmann, E.E., Powell, E.N. and Dekshenieks, M.M. (2002). Impact of channelization on oyster production: a hydrodynamic-oyster population model for Galveston Bay, TX. Environ. Mod. Assess. 7, 273–289.
    Kodama, M. (1990). Possible links between bacteria and toxin production in algal blooms. In: Toxic Marine Phytoplankton (E. Granéli, B. Sundstrom, L. Edler and D.M. Anderson, Eds), pp. 52–61. Elsevier Science Publishers, New York.
    Koutsoumans, K. and Nychas, G.J.E. (1999). Chemical and sensory changes associated with microbial flora of Mediterranean boque (Boops boops) stored aerobically at 0, 3, 7, and 10°C. Appl. Environ. Microbiol. 65, 698–706.
    Kraft, A.A. (1992). Spoilage of eggs and fish. Psychrotrophic bacteria in foods; disease and spoilage, pp. 99-112. CRC Press, FL.
    Kraus, L. (1992). Refrigerated sea water treatment of herring and mackerel for human consumption. In: Pelagic fish. The resource and its exploitation, Fishing News Books (J. Burt, R. Hardy and K. Whittle, Eds.), pp. 73–81.Aberdeen, Scotland, UK.
    Kunio, K., Takehiko, H. and Tomiji, H. (2003). Natural water-purification system observed in a shallow coastal lagoon: Matsukawa-ura, Japan. Mar. Pollu. Bull. 47, 148-154.
    Kutt, E.C., Martin, D.F. (1974). Report on a biochemical red tide repressive agent. Environ. Lett. 9, 195-208.
    Le Guyader, F., Haugarreau, L., Miossec, L., Dubois, E. and Pommepuy, M. (2000). Three-year study to assess human enteric viruses in shellfish. Appl. Environ. Microbiol. 66, 3241–3248.
    Le Guyader, F.S., Neill, F.H., Dubois, E., Bon, F., Loisy, F., Kohli, E., Pommepuy, M. and Atmar, R.L. (2003). A semi-quantitative approach to estimate Norwalk-like virus contamination of oysters implicated in an outbreak. Int. J. Food Microbiol. 87, 107–112.
    Lee, B.K. and Chin, P. (1981). Effects of body size, temperature-salinity and starvation on the rates of filtration in Crassostrea gigas and Mytilus edulis. Publ. Inst. Mar. Sci. Nat. Fish. Univ. Busan. 13, 37-41.
    Lees, D. (2000). Viruses and bivalve shellfish. Int. J. Food Microbiol. 59, 81-116.
    Lees, D.N. (2000). Viruses and bivalve shellfish. Int. J. Food Microbiol. 59, 81–116.
    Leftley, J.W. and Hannah, F. (1998). Phycotoxins in seafood. In: Natural Toxicants in Food (D.H. Watson, Eds.), pp. 182–224. Sheffield Academic, Sheffield.
    Levinton, J.S. and Suchanek, T.H. (1978). Geographic variation, niche beath, and genetic differentiation at different geographic scales in the mussels Mytilus californianus and M. edulis. Mar. Biol. 49, 363-375.
    Lipp, E.K. and Rose, J.B. (1997). The role of seafood in foodborne diseases in the United States of America. Rev. Sci. Tech. Off. Int. Epiz. 16, 620–640.
    Liu, S.M., Zhang, J., Chen, H.T. and Zhang, G.S. (2005). Factors influencing nutrient dynamics in the eutrophic Jiaozhou Bay, North Chian. Prog. Oceanogr. 66, 66-85.
    Livingston, R.J., Howell, R.L., Niu, X., Lewis, F.G. and Woodsum, G.C. (1999). Recovery of oyster reefs in a Gulf estuary following disturbance by two hurricanes. Bull. Mar. Sci. 64, 465–483.
    Livingston, R.J., Lewis, F.G., Woodsum, G.C., Niu, X.F., Galperin, B., Huang, W., Christensen, J.D., Monaco, M.E., Battista, T.A., Klein, C.J., Howell IV, R.L. and Ray, G.L. (2000). Modeling oyster population response to variation in freshwater input. Estuar. Coast. Shelf Sci. 50, 655–672.
    Loayza-Muro, R. and Elías-Letts, R. (2007). Responses of the mussel Anodontites trapesialis (Unionidae) to environmental stressors: Effect of pH, temperature and metals on filtration rate. Environ. Pollut. 149, 209– 215.
    Loo, L.-O. and Rosenberg, R. (1989). Bivalve suspension-feeding dynamics and benthic-pelagic coupling in an eutrophicated marine bay. J. Exp. Mar. Biol. Ecol. 130, 253-276.
    Lucas, L.V., Koseff, J.R., Cloern, J.E., Monismith, S.G. and Thompson, J.K. (1999). Processes governing phytoplankton blooms in estuaries. I. The local production–loss balance. Mar. Ecol. Prog. Ser. 187, 1–15.
    Mallin, M.A., Ensign, S.H., McIver, M.R., Shank, G.C.and Fowler, P.K. (2001). Demographic, landscape, and meteorological factors controlling the microbial pollution of coastal waters. Hydrobiologia 460, 185–193.
    Mann, K.H. and Lazier, J.R.N. (1996). Dynamics of Marine Ecosystems. Biological-physical Interactions in the Ocean. pp. 1-394. Blackwell Science, Inc.
    McHenry, R. (1993). Mollusks. In: The new encyclopaedia Britannica, 15th ed (R. McHenry, Ed.),pp. 296-322. Encyclopaedia Britannica, Chicago.
    McIntyre, A.D. (1995). Human impact on the Oceans: the 1990s and beyond. Mar. Pollut. Bull. 31, 147–151.
    McKindsey, C.W., Thetmeyer, H., Landry, T. and Silvert, W. (2006). Review of recent carrying capacity models for bivalve culture and recommendations for research and management, Aquaculture 261, 451–462.
    Mesnage, V., Ogier, S., Bally, G., Disnar, J.R., Lottier, N., Dedieu, K., Rabouille, C. and Copard, Y. (2007). Nutrient dynamics at the sediment-water interface in a Mediterranean lagoon (Thau, France): Influence of biodeposition by shellfish farming activites. Mar. Environ. Res. 63: 257-277.
    Miescier, J.J., Hunt, D.A., Redman, J., Salinger, A. and Lucus, J.P. (1992). Molluscan oysters, mussels, and clams. In: Compendium of methods for the microbiological examination of foods (3rd ed.) (C. Vanderzant, D.F. Splittstoesser, Edis), pp. 897–918. American Public Health Association Inc, Washington, DC.
    Mills, D. (2000). Combined effects of temperature and algal concentration on survival, growth and feeding physiology of Pinctata maxima (Jameson) spat. J. shellfish Res. 19, 159-166.
    M?hlenberg, F. and Riisg?rd, H.U. (1978). Efficiency of particle retention in 13 species of suspension feeding bivalves. Ophelia 17, 239-246.
    Murchie, L.W., Cruz-Romero, M., Kerry, J.P., Linton, M., Patterson, M.F., Smiddy, M. and Kelly, A.L. (2005). High pressure processing of shellfish: A review of microbiological and other quality aspects. Innovat. Food Sci. Emerg. Tech. 6, 257-270.
    Navarro, J.M. and Winter, J.E. (1982). Ingestion rate, assimilation efficiency and energy-balance in Mytilus chilensis in relation to body size and different algal concentrations. Mar. Biol. 67, 255-266.
    National Oceanic and Atmospheric Administration (2006). National Offshore Aquaculture Act, http://www.nmfs.noaa.gov/mediacenter/aquaculture/docs/03_National%2520Offshore%2520Aquaculture%2520Act%2520FINAL.pdf, Available.
    Navarro, E. and Iglesias, J.I.P. (1993). Infaunal filter-feeding bivalves and the physiological response to short-term fluctuations in food availability and composition. In: Bivalve Filter Feeders in Estuarine and Coastal Ecosystem Processes (R.F. Dame, Ed.) NATO ASI Ser Vol.33, pp. 25–56. Springer, Berlin.
    Navarro, E., Iglesias, J.I.P., Perez Camacho, A., Labarta, U. and Beiras, R. (1991) The physiological energetics of mussels (Mytilus galloprovincialis Lmk) from different cultivation rafts in the Ria de Arosa (Galicia, N.W. Spain). Aquaculture 94, 197–212.
    Navarro, E., Iglesias, J.I.P., Pérez-Camacho, A. and Labarta, U. (1996). The effect of diets of phytoplankton and suspended bottom material on feeding and absorption of raft mussels (Mytilus galloprovincialis Lmk). J. Exp. Mar. Biol. Ecol. 198, 175-189.
    Navarro, J.M., Leiva, G.E., Martinez, G. and Aguilera, C. (2000). Interactive effects of diet and temperature on the scope for growth of the scallop Argopecten purpuratus during reproductive conditioning. J, Exp. Mar. Biol, Ecol. 137, 67-83.
    Nehring, D. (1992). Eutrophication in the Baltic Sea. Marine Coastal Eutrophication (R.A. Vollenweider, R. Marchetti and R. Vicviani, Eds.), pp. 673-682. Elsevier, Amsterdam.
    Newell, C.R. (1990). The effects of mussel (Mytilus edulis, Linnaeus, 1758) position in seeded bottom patches on growth at subtidal lease sites in Maine. J. Shellfish Res. 9, 113–118.
    Newell, R.I.E. (1988). Ecological changes in Chesapeake Bay: Are they the result of overharvesting the American oyster, Crassostrea virginica? In: Understanding the estuary: advances in Chesapeake Bay research (M.P. Lynch and E.C. Krome, Eds.), pp. 536–546. Chesapeake Research Consortium, Solomon.
    Noble, R.T. and Fuhrman, J.A. (2001). Enteroviruses detected by reverse transcriptase polymerase chain reaction from the coastal waters of Santa Monica Bay, California: low correlation to bacterial indicator levels, Hydrobiologia 460, 175–184.
    Norén, F., Haamer, J. and Lindahl, O. (1999). Changes in the plankton community passing a Mytilus edulis mussel bed. Mar. Ecol. Pro. Ser. 191, 187-194.
    Officer, C.B., Smayda, T.J. and Mann, R. (1982). Benthic filter feeding: a natural eutrophication control, Mar. Ecol., Prog. Ser. 9, 203–210.
    Ogata, T., Kodama, M., Komaru, K., Sakamoto, S., Sato, S. and Simidu, U. (1990). Production of paralytic shellfish toxins by bacteria isolated from toxic dinoflagellates. In: Toxic Marine Phytoplankton (E. Granéli, B. Sundstrom, L. Edler and D.M. Anderson, Eds.), pp. 311–315. Elsevier Science Publishers, New York.
    Olafsdóttir, G., Martinsdóttir, E., Oehlenschl?ger, J., Dalgaard, P., Jensen, B., Undeland, I.,Mackie, I.M., Henehan, G., Nielsen, J. and Nilsen, H. (1997). Methods to evaluate fish freshness in research and industry, Trend. Food Sci. Technol. 8, 258–265.
    Olsson, P., Granéli, E., Carlsson, P. and Abreu, P. (1992). Structure of a postspring phytoplankton community by manipulation of trophic interactions. J. Exp. Biol. Ecol. 158, 249-266.
    Paludan, C. and Jensen, H.S. (1995). Sequential extraction of phosphorus in freshwater wetland and lake sediment: Significance of humic acids. Wetlands 15, 365–373.
    Pantazi, D., Papavergou, A., Pournis, N., Kontominas, M.G. and Savvaidis, I.N. (2007). Shelf-life of chilled fresh Mediterranean swordfish (Xiphias gladius) stored under various packaging conditions Microbiological, biochemical and sensory attributes. Food Microbiol. (in press)
    Parsons, T.R., Takahashi, M. and Hargrave, B. (1984). Biological Oceanographic Process, pp. 330. Pergamon Press.
    Parveen, S., Farrah, S., Gonzalez, C., Zamudio, A. and Tamplin, M. (2003). Characterization of a clinical Vibrio cholerae O139 isolate from Mexico. Can. J. Microbiol. 49,65–70.
    Pérez-Camacho, A., Gonzalez, G. and Fuentes, J. (1991). Mussel culture in Galicia (N.W. Spain). Aquaculture 94, 263-278.
    Pérez-Camacho, A., Labarta, U. and Beiras, R. (1995). Growth of mussels (Mytilus edulis galloprovincialis) on cultivation rafts: influence of seed source, cultivation site and phytoplankton availability. Aquaculture 138, 349– 362.
    Phil, L. (1994). Changes in the diet of demersal fish due to eutrophication-induced hypoxia in the Kattegat, Sweden. Can. J. Fish. Aquat. Sci. 51, 321-336.
    Potasman, I., Paz, A. and Odeh, M. (2002). Infection outbreaks associated with bivalve shellfish consumption: A worldwide perspective. Clin. Infect. Dis. 35, 921-928.
    Potasman, I., Paz, A. and Odeh, M. (2002). Infectious outbreaks associated with bivalve shellfish consumption: a worldwide perspective. Clin. Infect. Dis. 35, 921–928.
    Prins, T.C., Escaravage, V., Smaal, A.C. and Peeters, J.C.H. (1995). Nutrient cycling and phytoplankton dynamics in relation to mussel grazing in a mesocosm experiment. Ophelia 41, 289-315.
    Rabalais, N.N., Turner, R.E., Wiseman, W.J. and Boesh, D.F. (1991). A brief summary ofhypoxia on the northern Gulf of Mexico shelf: 1985–1988. In: Modern and Ancient Continental Shelf Anoxia (R.V. Tyson and T. H. Pearson, Eds), pp. 35-47. Geological Society Special Publ. 58, London.
    Radway, J.C., Wilde, E.W., Whitaker, M.J. and Weissman, J.C. (2001). Screening of algal strains for metal removal capabilities, J. Appl. Physiol. 13, 451–455.
    Raillard, O.and Menésguen, A. (1994). An ecosystem box model for estimating the carrying capacity of a macrotidal shellfish system. Mar. Ecol., Prog. Ser. 115, 117–130.
    Refugio Casta?eda Chávez, C., M., Sedas, V.P., Borunda, E.O. and Reynoso, F.L. (2005). Influence of water temperature and salinity on seasonal occurrences of Vibrio cholerae and enteric bacteria in oyster-producing areas of Veracruz, México. Mar. Pollut. Bull. 50, 1641-1648.
    Reiger, H.A., Tuunainen, P., Russek, Z. and Persson, L.E. (1998). Rehabilitative redevelopment of the fish and fisheries of the Baltic Sea and the Great Lakes. AMBIO 17, pp. 121–130.
    Resgalla Jr., C., Brasil, E.S. and Salom?o, L.C. (2006). Physiological rates in different classes of sizes of Perna perna (Linnaeus, 1758) submmited to experimental laboratory conditions. Braz. J. Biol. 66, 325–336.
    Resgalla Jr., C., Brasil, E.S., Laitano, K.S. and Reis-Filho, R.W. (2007). Physioecology of the mussel Perna perna (Mytilidae) in Southern Brazil. Aquaculture 270, 464– 474.
    Richards, G.P. (1988). Microbial purification of shellfish a review of depuration and relaying, J. Food Prot. 51, 218–251.
    Richoux, N.B. and Thompson, R.J. (2001). Regulation of particle transport within the ventral groove of the mussel (Mytilus edulis) gill in response to environmental conditions. J. Exp. Mar. Biol. Ecol. 260, 199-215.
    Riegman, R. (1995). Nutrient-related selection mechanism in marine plankton communities and the impact of eutrophication on the plankton food web. Water Sci. Technol. 32, 63-75.
    Riisgaard, H.U., Seerup, D.F., Jensen, M.H., Glob, E. and Larsen, P.S. (2004). Grazing impact of filter-feeding zoobenthos in a Danish fjord. J. Exp. Mar. Biol. Ecol. 307, 261-271.
    Riisgard, H. U. (2001). On measurement of filtration rates in bivalves-the stony road to reliable data: review and interpretation. Mar. Ecol, Prog. Ser. 211, 275-291.
    Riisgard, H.U. (1991). Filtration rate and growth in the blue mussel, Mytilus edulis Linnaeus,1758: dependence on algal concentration. J. Shellfish Res. 10, 29– 35.
    Riisg?rd, H.U. (1998) Filter feeding and plankton dynamics in a Danish fjord: a review of the importance of flow, mixing and density-driven circulation. J. Environ. Manag. 53,195–207.
    Riisgard, H.U., Kittner, C. and Seerup, D.F. (2003). Regulation of opening state and filtration rate in filter-feeding bivalves (Cardium edule, Mytilus edulis, Mya arenaria) in response to low algal concentration. J. Exp. Mar. Biol. Ecol. 284, 105 -127.
    Riou, P., Le Saux, J.C., Dumas, F., Caprais, M.P., Le Guyader, S.F. and Pommepuy, M. (2007). Microbial impact of small tributaries on water and shellfish quality in shallow coastal areas. Water Res. 41, 2774–2786.
    Robertson, L.J. (2007). The potential for marine bivalve shellfish to act as transmission vehicles for outbreak of protozoan infections in humans: A review. Int. J. Food Microbiol. 120, 201-216. Robson, A.A., Kelly, M.S. and Latchford, J.W. (2007). Effect of temperature on the spoilage rate of whole, unprocessed crabs: Carcinus maenas, Necora puber and Cancer pagurus. Food Microbiol. 24, 419-424.
    Rodríguez, O., Velázquez, J.B., Pi?eiro, C., Gallardo, J.M. and Aubourg, S.P. (2006). Effects of storage in slurry ice on the microbial, chemical and sensory quality and on the shelf life of farmed turbot (Psetta maxima). Food Chem. 95, 270-278.
    Rosenberg, R. (1985). Eutrophication– the future marine coastal nuisance. Mar. Pollut. Bull. 16, 227–331.
    Satoshi, T. and Yasushi, K. (1994). Preliminary study of management of red tide water by the filter feeder Mytilus edulis galloprovincialis. Mar. Poll. Bull. 28, 662-667.
    Schulte, E.H. (1975). Influence of algal concentration and temperature on the filtration rate of Mytilus edulis. Mar. Biol. 30, 331– 341.
    Scott, G.I., Fulton, M.H., Wirth, E.F., Chandler, G.T., Key, P.B., Daugomah, J.W., Bearden, D., Chung, K.W., Strozier, E.D., DeLorenzo, M., Siversten, S., Dias, A., Sanders, M., Macauley, J.M., Goodman, L.R., LaCroix, M.W., Thayer, G.W. and Kucklick, J. (2002). Toxicological studies in tropical ecosystems: an ecotoxicological risk assessment of pesticide runoff in south Florida estuarine ecosystems. J. Agr. Food Chem. 50, 4400–4408.
    Shirota, A. (1989). Red tide problem and countermeasures (2). Int. J. Aquat. Fish Tech. 1, 195-293.
    Shumway, S. (1992). Mussels and public health. In: The mussel Mytilus: ecology, physiology, genetics and culture (E. Gosling, Eds.), pp. 511-542. Elsevier, Amsterdam.
    Shumway, S.E., Cucci, T.L., Newell, R.C. and Yentch, T.M. (1985). Particle selection, ingestion and absorption in filter-feeding bivalves. J. Exp. Mar. Biol. Ecol. 91, 77–92.
    Siewicki, T.C. (1998). Overview of NMFS shellfish depuration research. J. Shellfish Res. 7, 133.
    Simidu, U., Nuguchi, T., Hwang, D.F., Shida, Y. and Hashimoto, K. (1987). Marine bacteria which produce tetrodoxin. Appl. Environ. Microbiol. 53, 1714–1715.
    Singleton, F.L., Attwell, R., Jangi, S. and Colwell, R. (1982). Effects of temperature and salinity on Vibrio cholerae growth. Appl. Environ. Microbiol. 44, 1047-1058.
    Smaal, A.C. and Haas, H.A. (1997). Seston dynamics and food availability on mussel and cockle beds. Estuar. Coast. Shelf Sci. 45, 247-259.
    Smaal, A.C. and Prins, T.C. (1993). The uptake of organic matter and the release of inorganic nutrients by bivalve suspension feeder beds. In: Bivalve filter feeders in estuarine and coastal ecosystem processes (R.F. Dame, Ed.), 271–298. SpringerVerlag, Berlin.
    Smaal, A.C., Verhagen, J.H.G., Coosen, J. and Haas, H.A. (1986). Interaction between seston quantity and quality and benthic suspension feeders in the Oosterschelde, The Netherlands. Ophelia 26, 385–399.
    Smayda, T.J. (1990). Novel and nuisance phytoplankton blooms in the sea: Evidence for a global epidemic. In: Toxic marine phytoplankton (E. Granéli, B. Sundstrom, D.M. Anderson, Eds.), pp. 29–40. Elsevier, New York.
    Souchu, P., Vaquer, A., Collos, Y., Landrein, S., Deslous-Paoli, J.M. and Bibent, B. (2001). Influence of shellfish farming activities on the biogeochemical composition of the water column in Thau lagoon. Mar. Ecol. Prog. Ser. 218, 141–152.
    Stachowitsch, M. (1992). Benthic communities: eutrophication’s“memory mode”. Sci. Total Environ. No. Supplement, 1017-1028.
    Stevenson, G.R. and Rychert, R.C. (1982). Bottom sediment: a reservoir of Escherichia coli in rangeland streams. J. Range Manage. 35, 119–123.
    Strasser, C.A., Mullineaux, L.S. and Walther, B.D. (2008). Growth rate and age effects on Mya arenaria shell chemistry: implication for biogeochemical studies. J. Exp. Mar. Bio. Ecol. 355, 153-163.
    Sugawara, T., Taguchi, S., Hamasaki, K., Toda, T. and Kikuchi, T. (2003). Response of natural phytoplankton assemblages to solar ultraviolet radiation (UV-B) in the coastal water, Japan. Hydrobiologia 493, 17-26.
    Sukhotin, D., A.A., Abele, D. and Portner, H.O. (2002). Growth, metabolism and lipid peroxidation in Mytilus edulis: age and size effects. Mar. Ecol. Prog. Ser. 226, 223-234.
    Sukhotin, A.A., Lajus, D.L. and Lesin, P.A. (2003). Influence of age and size on pumping activity and stress resistance in the marine bivalve Mytilus edulis L. J. Exp. Mar. Biol. Ecol. 284, 129-144.
    Swanson, K.M.J., Busta, E.H., Peterson, E.H. and Johnson, M.G. (1992). Colony count method. In: Compendium of methods for the microbiological examination of foods (3rd ed.) (C. Vanderzant and D.F. Splittstosesser, Eds.), pp. 75–96. American Public Health Association Inc, Washington, DC.
    Takeda, S. and Kurihara,Y. (1994). Preliminary study ofmanagement of red tide water by the filter feeder Mytilus edulis galloprovincialis. Mar. Poll. Bull. 28, 662–667.
    Tamplin, M.L. (1990). A bacterial source of tetrodotoxins and saxitoxins. In: Marine Toxins: Origin, Structure, and Molecular Pharmacology (S. Hall and G.R. Strichartz, Eds). American Chemical Society, Washington, DC.
    Temelli, S., Dokuzlu, C. and Sen, M.K.C. (2006). Determination of microbiological contamination sources during frozen snail meat processing stages. Food control. 17, 22-29.
    Tetsunori, I. and Masumi, Y. (2000). Respiration and ingestion rates of the filter-feeding bivalve Musculista senhousia: implications for water-quality control. J. Marine Syst. 26, 183-192.
    Thompson, R.J. and Bayne, B.L. (1974). Some relationship between growth, metabolism and food in mussel Mytilus edulis. Mar. Biol. 27, 317-326.
    Tortora, G.J., Funke, B.R. and Case, C.L. (2001) Microbiology, An Introduction (7th ed.), Addison Wesley Longman, Inc. New York.
    Tzikas, Z., Ambrosiadis, I., Soultos, N. and Georgakis, Sp. (2007). Quality assessment of Mediterranean horse mackerel (Trachurus mediterraneus) and blue jack mackerel (Trachurus picturatus) during storage in ice. Food control. 18, 1172–1179.
    Ulanowicz, R.E. and Tuttle, J.H. (1992). The trophic consequences of oyster stock rehabilitation in Chesapeake Bay. Estuaries 15, 298– 306.
    Van Dolah, F.M. (2000). Marine algal toxins: origins, health effects and their increased occurrence, Environ. Health Perspect. 108, 133–141.
    Vernocchi, P., MaVei, M., Lanciotti, R., Suzzi, G. and Gardini, F. (2007). Characterization of Mediterranean mussels (Mytilus galloprovincialis) harvested in Adriatic Sea (Italy). Food Control. 18, 1575-1583.
    Vollenweider, R.A. (1992). Coastal marine eutrophication: principles and control. In: Marine Coastal Eutrophication (R.A. Vollenweider, R. Marchetti and R. Vicviani, Eds.), pp. 1-20. Elsevier, Amsterdam.
    Wang, H.Q., Huang, W.R., Harwell, M.A., Edmiston, L., Johnson, E., Hsid, P., Milla, K., Christensen, J., Stewart, J. and Liu, X.H. (2007). Modeling oyster growth rate by coupling oyster population and hydrodynamic models for Apalachicola Bay, Florida, USA. Ecol. Model. 211, 77-89.
    Wang, Y. and Yu, Z.M. (2005). Biological strategies in controlling or mitigating marine harmful algal blooms (HABs). Acta Phytoecol. Sinica 29, 665-671.
    Watling, H. (1981). The effects of metals on mollusc filtering rates. T. Roy. Soc. South Afr. 44, 441– 451.
    Weiss, E.T., Carmichael, R.H. and Valiela, I. (2002). The effect of nitrogen loading on the growth rates of quahogs (Mercenaria mercenaria) and soft-shell clams (Mya arenaria) through changes in food supply. Aquaculture 211, 275–289.
    Winter, J.E. and Langton, R.W. (1976). Feeding experiments with Mytilus edulis L. at small laboratory scale. The influence of the total amount of food ingested and food concentration on growth. In: Proceedings of the 10th Eur. Symp. Mar. Biol vol.1 (G. Persoone, E. Jaspers, Eds.), pp. 565-581. Universea Press, Wetteren.
    Whittle, K., Hardy, R. and Hobbs, G. (1990) Chilled fish and fishery products. In: Gormley, T. Editor, Chilled foods, pp. 87–116. The state of the art. Elsevier Applied Science, New York, USA.
    Whittman, R.J. and Flick, G.J. (1996). Microbial contamination of shellfish prevalence risk to human health and control strategies. Annu. Rev. Publ. Health 16, 123–140.
    Widdows, J. (1978). Combined effects of body size, food concentration and season on the physiology of Mytilus edulis. J. Mar. Biol. Assoc. UK 58, 109–124.
    Widdows, J. and Bayne, B.L. (1971). Temperature acclimation of Mytilus edulis with reference to its energy budget. J. Mar. Biol. Assoc. UK 51, 827–843.
    Widdows, J. and Johnson, D. (1988). Physiological energetics of Mutilus edulis: scope for growth. Mar. Ecol. Prog. Ser. 46, 113–121.
    Wildish, D.J. and Kristmanson, D.D. (1984). Importance to mussels of the benthic boundary layer. Can. J. Fish. Aquat. Sci. 41: 1618–1625.
    Winter, J.E. (1978). A review on the knowledge of suspensionfeeding in lamellibranchiate bivalves, with special reference to artificial aquaculture systems. Aquaculture 13, 1–33.
    Wu, R.S.S. (1982). Periodic defaunation and recovery in a subtropical epibenthic community. J. Exp. Mar. Biol. Ecol. 64, 253-270.
    Wu, R.S.S. (1999). Eutrophication, water borne pathogens and xenobiotic compounds: environmental risk and challenges. Mar. Pollut. Bull. 39, 11-22.
    Xu, Z.Y., Li, Z.H., Wang, J.X., Xiao, Z.P. and Dong, D.X. (1992). Ecology and prevention of a shellfish associated hepatitis A epidemic in Shanghai China. Vaccine 10, 567-568.
    Yu, Z.M., Zou, J.Z. and Ma, X.N. (1994). Application of clays to removal of red tide organisms. Coagulation of red tide organism with clays. Chinese J. Oceanol. Limnol. 12, 193-200.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700