双胸蚓组织热稳定性核酸酶的分离纯化及其cDNA克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     1、分离纯化双胸蚓组织中的一种热稳定性核酸酶并对其进行特性研究
     2、克隆该热稳定性核酸酶的cDNA,推测其氨基酸序列并进行序列分析
     方法
     1、双胸蚓组织热稳定性核酸酶的分离和纯化
     以SDS-PAGE功能电泳法和紫外分光光度法作为双胸蚓组织热稳定性核酸酶提取过程中的活性监测方法。双胸蚓组织匀浆后通过热变性获得粗酶液;利用硫酸铵分级沉淀和80%丙酮沉淀获得核酸酶的粗品;粗品依次通过离子交换层析、疏水交换层析和凝胶过滤层析进行精细纯化。
     2、双胸蚓组织热稳定性核酸酶的表观特征和酶学性质研究以及杀菌杀病毒活性初探
     运用等电聚焦电泳、基质辅助激光解吸飞行时间质谱(MALDI-TOF-MS)和N-末端Edman技术等多种技术手段,确定双胸蚓组织热稳定性核酸酶的表观特征,如:分子量、等电点、肽质量指纹图谱(PMF)和N-末端氨基酸序列。通过不同条件下的活性对比实验,研究酶学特性,如:反应最适温度、最适pH、热酸碱稳定性等。以常见的几种病原微生物(包括细菌和病毒)为实验对象,采用琼脂铺板计数法和蚀斑减数法对其杀菌杀病毒活性进行初探。
     3、双胸蚓组织热稳定性核酸酶cDNA的克隆
     利用cDNA末端快速扩增(rapid-amplification of cDNA ends,RACE)技术进行cDNA克隆:提取双胸蚓组织总RNA,反转录得到cDNA,根据测定的N-末端氨基酸序列设计简并引物,作为上游扩增引物,ploy(A)通用引物作为下游扩增引物,扩增出双胸蚓组织热稳定性核酸酶的cDNA,与测序载体连接转化感受态细胞,筛选阳性克隆进行测序得到cDNA序列(含3'端非翻译区),以此序列推导出氨基酸序列。
     4、双胸蚓组织热稳定性核酸酶cDNA序列和氨基酸序列的生物信息学分析
     根据获得的双胸蚓组织热稳定性核酸酶结构和功能信息,应用生物软件对其cDNA序列及氨基酸序列进行系统的分析和预测。内容包括核苷酸序列的碱基组成、密码子使用频率和酶切位点分析;氨基酸序列的氨基酸组成、疏水图谱和同源性比对;对蛋白质的分子量和等电点进行估算以及对二级结构和化学修饰位点进行分析预测。
     结果
     1、分离纯化出双胸蚓组织热稳定性核酸酶,纯度95%以上,浓度为0.28 mg/ml。
     2、测得双胸蚓组织热稳定性核酸酶精确分子量29897.322Da,等电点6.11。N-末端13个氨基酸为PLGPYKPKCDEWV。根据检测的肽质量指纹图谱(PMF)在蛋白质数据库中比对,没有检索到与之相匹配的任何蛋白,可能为一种未报道的新蛋白。
     3、通过对比实验确定了酶活性最适温度为25℃、最适pH值pH5.0-5.5之间;对热稳定,70℃保温60min仍具85%以上的残余活性; pH4.0-9.0之间核酸酶稳定性比较好;Mg~(2+)、Mn~(2+)、Ca~(2+)对酶有激活作用,Zn~(2+)、Fe~(2+)、Cu~(2+)对酶有抑制作用;对常用有机溶剂甲醇、乙醇和丙酮不敏感;单链线状DNA为双胸蚓组织热稳定性核酸酶最佳底物;以单链线状DNA为底物测得Km值为0.048mg/ml。
     4、双胸蚓组织热稳定性核酸酶对几种常见病原微生物:大肠埃希菌、金黄色葡萄球菌、白色念珠菌以及乙肝病毒和流感病毒都有不同程度的杀灭作用,其中对白色念珠菌和流感病毒杀灭作用相对较弱。
     5、克隆了双胸蚓组织热稳定性核酸酶的cDNA序列(含3'端非翻译区)。序列为864bp,包含一个729bp的开放阅读框ORF(1-729bp),编码243个氨基酸。
     6、利用生物软件进行分析,获得cDNA序列碱基组成、密码子使用频率和酶切位点等详细数据以及蛋白质理论分子量、等电点和氨基酸组成等情况。蛋白稳定性分析结论为性质稳定。利用BLAST软件,将双胸蚓组织热稳定性核酸酶的蛋白序列与NCBI蛋白序列数据库比对,没有检索到与之相匹配的任何蛋白。二级结构分析获知蛋白主要由无规卷曲组成(约占50%),5个α-螺旋中心(约占20%),其余为20%左右为片层结构。
     结论
     1、成功纯化了一种双胸蚓组织热稳定性核酸酶。
     2、该核酸酶表观特征和酶学性质与已知的核酸酶有较大差异,对多种病原微生物具有不同程度的杀灭作用。
     3、成功克隆出该核酸酶cDNA序列。
Object
     1. Separate and purify a thermostable nuclease from Lumbricus Bimastus and study on its properties.
     2. Clone the cDNA of the thermostable nuclease, deduce its amino acid sequence and analyze cDNA and amino acid sequence.
     Menthod
     1. Separation and purification of a thermostable nuclease from Lumbricus Bimastus
     Take SDS-PAGE functional electrophoresis and UV spectrophotometry as activity monitoring methods. Obtain the crude enzyme solution by thermally denature earthworm tissue homogenate. Acquire the crude enzyme by ammonium sulfate fractional precipitation and 80% acetone precipitation. Purify the crude enzyme by ion exchange, hydrophobic exchange and gel filtration chromatography.
     2. Characterization of the nature and enzymatic properties of thermostable nuclease from Lumbricus Bimastus and determination of the killing activity against Bacteria and viruses
     Use isoelectric focusing electrophoresis(IEF)、matrix-assisted laser desorption time of flight mass spectrometry (MALDI-TOF-MS)、N-terminal Edman technique and other technology means to research the apparent characteristics, such as: Molecular weight, isoelectric point, peptide mass fingerprinting (PMF), N-terminal amino acid sequence. Through Comparative experiment under different conditions study on enzyme characteristics, such as: reaction optimum temperature, optimum pH, hot and acid-base stability. Take several common pathogenic microorganisms (including bacteria and viruses) as the experimental object to investigate its antifungal and antiviral activity using agar plate colony counting and plaque counting assay.
     3. cDNA cloning of the thermostable nuclease from Lumbricus Bimastus
     Employ rapid amplification of cDNA ends (RACE) technology for cDNA cloning, Process is as follows: extracted total RNA, reverse transcription obtained cDNA and designed mergers primers, as the upstream primer, according to the determination of the N-terminal amino acid sequence, taked ploy (A) universal primer as the downstream primer.Amplified the cDNA of the thermostable nuclease, Recovered PCR product by Cutting Gel. Connected sequencing vector, transformed into competent cells, followed by selected positive clones have been sequenced cDNA sequences (including 3 'UTR) and deduced the amino acid sequence.
     4. Analysis cDNA sequence and amino acid sequence of the thermostable nuclease from Lumbricus Bimastus with bioinformatics methods
     According to the information of structure and function, analysis cDNA sequence and amino acid sequence of the thermostable nuclease from Lumbricus Bimastus with bioinformatics methods. Include: the base composition of nucleotide sequence, codon usage and restriction site analysis; amino acid sequence composition, the hydrophobic pattern and homology comparison; estimate protein molecular weight and isoelectric point as well as secondary structure prediction and chemical modification sites
     Result
     1. Separated and purified a thermostable nuclease from Lumbricus Bimastus, more than 95% purity, concentration is 0.28 mg/ml.
     2. Measured enzyme precise molecular weight is 29897.322Da and isoelectric point is 6.11. N-terminal 13 amino acids are PLGPYKPKCDEWV. According to comparison peptide mass fingerprinting (PMF) in the protein database, there is no search to match any protein, may be a new unreported protein.
     3. Through comparative experiment under different conditions, identified the optimal activity temperature is 25℃, the optimum pH value between pH5.0-5.5; of heat-stable, 70℃insulation 60min still have more than 85% residual activity; nuclease is stable between pH5.0-5.5 ,Mg~(2+), Mn~(2+), Ca~(2+) has activation effect on the enzyme, Zn~(2+), Fe~(2+), Cu~(2+) has inhibitory effect on the enzyme; not sensitive to acetone and ethanol of common organic solvents methanol. Linear DNA is best substrate to the thermostable nuclease from Lumbricus Bimastus; Km value is 0.048mg/ml with single-stranded linear DNA as substrate.
     4. The thermostable nuclease from Lumbricus Bimastus has fungicidal effect against Escherichia, Staphylococcus, Candida albicans,hepatitis b virus and influenza virus in different extent. The fungicidal effects against Candida albicans and influenza virus are relatively weak.
     5. Cloned the cDNA of thermostable nuclease from Lumbricus Bimastus, which containing 3- 'UTR of the 864bp cDNA sequence, contains a 729bp of the open reading frame ORF (1-729bp), encoding 243 amino acids
     6. With biological software analysis, obtained cDNA sequence base composition, codon usage and restriction site data, as well as detailed theoretical protein molecular weight, isoelectric point and amino acid composition. Protein stability analysis concluded that the nature of stability.Using BLAST software, compared amino acid sequences of thermostable nuclease from Lumbricus Bimastus with the sequences of protein sequence database, homology search to the very poor did not match any protein. Protein secondary structure was informed mainly by the random coil component (about 50%), 5α-helix centers (about 20%), and the remaining 20% of the lamellar structure by biological software analysis
     Conclusion
     1. Successfully purifid a nuclease from Lumbricus Bimastus, characteristics study has confirmed its high thermal stability.
     2. The nature and enzymatic properties of thermostable nuclease from Lumbricus Bimastus is quite different form known nuclease. It is able to kill a variety of pathogenic microorganisms with different levels.
     3. Successfully cloned cDNA fragment of the thermostable nuclease from Lumbricus Bimastus
引文
[1]单鸿仁,张祖珣等.蚯蚓在医学中的应用研究[M].山西:山西科学教育出版社,1991,12,第1版,1-5
    [2] Mihara H, et al. Fibrinolytic enzyme extracted from the earthworm. Thromb Haemostas[J], 1983,50:258-263
    [3]王宗伟,梁秀文,范兴亚.蚯蚓生物工程技术研究进展[J].中草药,2000,13:386-389
    [4]程牛亮,牛勃,张祖珣,赵景亥,单鸿仁.双胸蚓纤溶酶的纯化及性质[J].生物化学杂志,1990,6:186-190
    [5]程牛亮,牛勃,张祖珣,单鸿仁.地龙提取物对实验性血栓的溶解作用及有效成份的研究[J].山西医学院学报,1989,20:203-206
    [6]郑国平,程牛亮,张祖珣,单鸿仁.双胸蚓纤溶酶Ⅲ的分离纯化及其性质研究[J].山西医学院学报,1996,27:81-83
    [7]程牛亮,王新亚,郑国平,王惠珍,牛勃.双胸蚓纤溶酶Ⅱ的纯化及其性质的研究[J].中国实验临床免疫学杂志,1996,8:8-10
    [8]刘凌云,郑光美.普通动物学[M].北京:高等教育出版社,1997,6,第3版.175-182
    [9] Edward E, Richard S, Robert D. Invertebrate Zoology:A Functional Evolutionary Approach [M]. New York: Thomson Learning Inc, 2004. 775-777
    [10]钟乐芳,玄福,玄涛.蚯蚓大王谈蚯蚓的生活习性及其饲养管理和病害防治[J].当代畜禽养殖业,2000,8:16-18
    [11]Milochau A, Lassègues M, Valembois P. Purification, characterization and activities of two hemolytic and antibacterial proteins from coelomic fluid of the annelid Eisenia fetida andrei[J].Biochim Biophys Acta. 1997,1337:123-32
    [12]Lassegues M, Milochau A, Doignon F, Du Pasquier L, Valembois P. Sequence and expression of an Eisenia-fetida-derived cDNA clone that encodes the 40-kDa fetidin antibacterial protein[J].Eur J Biochem. 1997,246(3):756-62
    [13]Cho JH, Park CB, Yoon YG, Kim SC. Lumbricin I, a novel proline-rich antimicrobial peptide from the earthworm: purification, cDNA cloning and molecular characterization[J]. Biochim Biophys Acta. 1998,22;1408:67-76
    [14]Dhainaut A, Raveillon B, M'Béri M, et al. Purification of an antibacterial protein in the coelomic fluid of Nereis diversicolor(Annelida Polychaeta): Similitude with a cadmium-binding protein [J]. Comp Biochem Physiol C, 1989, 94:555-560
    [15]Sun Z-J(孙振钧). Study on induced antibacterial peptide in stressed earthworms as a biochemistry biomarker in enviromental risk assessment [J]. J laiyang Agric Coll(莱阳农学院学报),18:325-334
    [16]张希春,孙振钧,高锦,等.蚯蚓抗菌肽EABP-1的分离纯化及部分性质[J].应用与环境生物学报,2003,9:36-38
    [17]张希春,孙振钧,禚如朋,等.蚯蚓两种抗菌肽的分离纯化及部分性质[J].生物化学与生物物理进展,2002,29:955-960
    [18]Liu YQ, Sun ZJ, Wang C, Li SJ, Liu YZ. Purification of antibacterial short peptide in earthworm Eisenia fetida [J]. Acta Biochim Biophys Sin, 2004, 36:297-302
    [19]赵滢滢,牛勃,许言午.ENP绿色生物消毒剂的灭菌效果观察[J].中华临床与卫生,2003,2:13-14
    [20]刘志贞,康慧芳,樊慧杰,等.蚯蚓体腔液抗病毒活性及其机制的研究[J].现代预防医学,2008,35:1132-1134
    [21]张建林,刘志贞,王晓媛,等.蚯蚓脱氧核糖核酸酶纯化及酶学性质(英文) [J].北京大学学报(医学版),2008,40:519-523
    [22]刘志贞,樊慧杰,康慧芳,等.脱氧核糖核酸酶的酶学性质研究[J].中国生物工程杂志,2008,28:21-26
    [23]王晓媛,姚建强,康慧芳,等.一种新型蚯蚓脱氧核糖核酸酶酶学性质的研究[J].中国生化药物杂志,2008,29:12-15
    [24]Belden JB, Phillips TA, Coats JR., Effect of prairie grass on the dissipation, movement, and bioavailability of selected herbicides in prepared soil columns [J]. Environ Toxicol Chem. 2004, 23(1): 125-132
    [25]周爱儒,查锡良.生物化学[M].北京:人民卫生出版社,2004,第六版
    [26]康慧芳,樊慧杰,王晓媛,等.蚯蚓组织脱氧核糖核酸酶EWD3的生化性质[J].中国生物制品学杂志,2008,21:288-291
    [27]刘志贞,康慧芳,樊慧杰,等.蚯蚓脱氧核糖核酸酶的底物特异性及降解产物的特性[J].中国生物制品学杂志,2008,21:356-359
    [28]姚建强,王晓媛,康慧芳,等.一种蚯蚓脱氧核糖核酸酶分离纯化和性质研究[J].药物生物技术,2008,15:185-190
    [29]樊慧杰,康慧芳,姚建强,等.地龙脱氧核糖核酸酶的部分性质研究及作用初探[J].中国中医药信息杂志,2008,15:41-42
    [30]30Scopes RK. Strategies for protein purification [J]. Curr Protoc Protein Sci. 2001,5
    [31]31Gr?slund S, Nordlund P, Weigelt J, et al. Protein production and purification [J]. Nat Methods. 2008,5:135-46
    [32]32Araki N.Methods for protein purification from biological samples [J]. Tanpakushitsu Kakusan Koso. 2004,49:1495-505
    [33]陆健,等编著.蛋白质纯化技术及应用[M].北京:化学工业出版社,2005,6
    [34]Consums A. protein purification I : liquid chromatography [J]. The Scientist,2002,16:40
    [35]蛋白质纯化方法的进化与展望Constans A. Protein purification II: Afinity tags [J]. The Scientist,2002,16:37
    [36]Smith C.Liquid chromatography. Products in the protein chemist-tool chest [J]. The Scientist,1998,12:14
    [37]PROTEAN等电聚焦电泳仪操作手册[M].美国Bio-Rad公司
    [38]赵安庆,尹国盛,张蒙,等.电聚焦电泳测定草菇低温诱导蛋白等电点的研究[J].郑州粮食学院学报,2000,2:57
    [39]任随周,郭俊,王亚丽,等.细菌脱色酶TpmD的酶学特性研究[J].微生物学报,2006,5:66
    [40]Brand L, Johnson ML. Preface Methods in Enzymology [J]. Methods Enzymol, 2008;450
    [41]张秀艳,何国庆.微生物产β-葡聚糖酶的储存稳定性研究[J].食品科技,2007,9
    [42]王群,季怡萍,倪嘉缵.重组内皮抑素的性质表征与生物活性分析[J].分析化学.2005,4
    [43]Song L, Ren S, Yu R, Yan C, Li T, Zhao Y.Purification, characterization and in vitro anti-tumor activity of proteins from Arca subcrenata Lischke [J].Mar Drugs. 2008;6:418-30
    [44]Shu Q, Huang R, Liang S.Assignment of the disulfide bonds of huwentoxin-II by Edman degradation sequencing and stepwise thiol modification [J]. Eur J Biochem. 2001,268:2301-7
    [45]徐秀璋.蛋白质顺序分析技术[M].北京:科学出版社,1988,144-149
    [46]Kamp R.M, Choli-Papadopoulou T, Wittmann-Liebold B. Protein Structure Analysis. Preparation, Characterization and Microsequencing [J]. Springer-Verlag Berlin Heidelberg, 1997
    [47]Samuelsson J, Dalevi D, Levander F, et al. Modular scriptable and automated analysis tools for high-throughput peptide mass fingerprinting [J].Bioinformatics. 2004,20:3628-35
    [48]Deng HM,Lai ZH. Application of the Fragments and Structure Analysis of Matrix-assistde Laser Desorption/Ionization Time-of-flight Mass Spectrometry in Peptide Sequencing [J]. Acta Biochimica et Biophysica Sinica. 2000 ;32(2):179—182.
    [49]马学军,舒跃龙译著.精编分子生物学实验指南[M].北京:科学出版社,2005,2
    [50]Sambrook J,Fritsch E,Maniatis T,著.金冬雁,黎孟枫,译.分子克隆实验指南[M].第2版,北京:科学出版社,1995,19-22,57-58
    [51]牛勃,著.现代生物学技术进展[M].太原:山西人民出版社,2007,5
    [52]黄文,朱佩芳,王正国.人类疾病相关基因定位研究的策略和方法[J].第三军医大学学报,2003,2:349-251
    [53]Frohman MA.On beyond classic RACE (rapid amplification of cDNA ends) [J].PCR Methods Appl. 1994,4:S40-58
    [54]杨丽君,郁卫东,梁蓉,等.基因组简并寡核苷酸引物聚合酶链反应的影响因素.北京大学学报(医学版) [J],2005,4:121-125
    [55]陈炯,陈剑平.Potyvirus属成员基因组全序列的简并引物PCR和RACE扩增方法[J].病毒学报,2002,4:65-69
    [56]Don RH, Cox PT, Wainwright BJ, et al. Touchdown PCR to circumvent spuriouspriming during gene amplification [J].Nucleic Acids Res, 1992, 19:4008.
    [57]Aquila RT, Bechtel LJ, Videler JA, et al. Maximixing sensitivity andspecificity of PCR by pre-amplification heating [J].Nucleic Acids Res, 1991, 19:3749.
    [58]李秀芳,孙俊宁,刘永昌,等.影响巢式RT-PCR反应效果的因素分析[J].山西临床医药, 2001,3
    [59]王剑利,杨章民.利用生物信息学技术研究蛋白功能的几种方法[J].国外医学.分子生物学分册,2001,4:89-92
    [60]朱蔚,郑佐华,袁有忠,等.编码序列的(G+C)%与蛋白质的耐热性相关性分析[J].遗传学报,1999,26(4):418-427
    [61]任红妍.嗜热微生物[J].生物学通报,1995,3:58-62
    [62]Wright F. The effective number of codons' used in a gene [J]. Gene,1990,87:23-29
    [63]卢柏松,王国力,黄培堂.嗜热与嗜常温微生物的蛋白质氨基酸组成比较[J].微生物学报,1998,1:89-92
    [64]马挺,刘如林.嗜热菌耐热机理的研究进展[J].微生物学通报,2002,2:20-25
    [65]Matsumura M, Becktel WJ, Matthews BW. Hydrophobic stabilization in T4 lysozyme determined directly by multiple substitution of Ile 3 [J]. Nature,1988, 334:406-410
    [66]Ammendola S, Raucci G,Incani O,et al. Replacing the glutamate ligand in the structural zinc site of Sulfolobus solfataricus alcohol dehydrogenase with a cysteine decreases thermostability [J]. Protein Engineering,1995, 8:31-37
    [67]徐建华,朱家勇.生物信息学在蛋白质结构与功能预测中的应用[J].医学分子生物学杂志,2005,3:102-106
    [1] Moore S. Pancreatic DNase [J]. The Enzymes,1981,14:281-296
    [2] Mosbaugh DW, Linn S.Excision repair and DNA synthesis with a combination of HeLa DNA polymerase beta and DNase V [J]. J.Biol.Chem, 1983,258:108-118
    [3] Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S. Acaspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD[J]. Nature,1998,391:43-50
    [4] Kishi K, Yasuda T,Ikehara Y, Sawazaki K, Sato W, Iida R.Human serumdeoxyribonuclease I (DNase I) polymorphism:pattern similarities among isozymes from serum,urine, kidney, liver, and pancreas[J]. Am. J. Hum. Genet,1990,47:121-126
    [5] Tsutsumi S, Kaneko Y, Asao T, Kuwano H, Kudo S, Takeshita H, Yasuda T, Kishi K. DNase I is present in the chief cells of human and rat stomachs[J]. Histochem. J,2001,33:531-535
    [6] Yasuda T, Nadano D, Awazu S, Kishi K. Human urine deoxyribonuclease II (DNase II) isoenzymes: a novel immunoaffinity purification, biochemical multiplicity, genetic heterogeneity and broad distribution among tissues and body fluids[J]. Biochim. Biophys. Acta,1992,1119:185-193
    [7] Johnson DA. and Kalu DN. Influence of thyroxine in the regulation of rat parotidsalivary protein composition[J]. J. Dent. Res,1988,67:812-816
    [8] Nadano D, Yasuda T, Kishi K. Purification and characterization of genetically polymorphic deoxyribonuclease I from human kidney[J]. J. Biochem,1991,110: 321-323
    [9] Abe A, Liao TH. The immunological and structural comparisons of deoxyribonucleases I. Glycosylation differences between bovine pancreatic and parotid deoxyribonucleases[J]. J. Biol. Chem,1983,258:10283-10288
    [10]Los M, Neubuser D, Coy JF, Mozoluk M, Poustka A, Schulze-Osthoff K. Functional characterization of DNase X, a novel endonuclease expressed in muscle cells[J]. Biochemistry,2000,39:7365-7373
    [11]Kaneko Y, Takeshita H, Mogi K, Nakajima T, Yasuda T, Itoi M, Kuwano H, Kishi K. Molecular, biochemical and immunological analyses of canine pancreatic DNase I[J]. J. Biochem,2003,134:711-718
    [12]Hu CC, Lu SC, Cheng CC, Chen LH, Liao TH. Chicken deoxyribonuclease: purification, characterization, gene cloning and gene expression[J]. J. Protein Chem,2003,22:41-49
    [13]Stoynov SS, Bakalova AT, Dimov SI, et al. Single-strand-specific DNase activity is an inherent property of the 140-kDa protein of the snake venom exonuclease[J]. FEBS Lett,1997,409:151-154
    [14]Chen CY, Lu SC, Liao TH. The distinctive functions of the two structural calcium atoms in bovine pancreatic deoxyribonuclease[J]. Protein Sci,2002,11:659-668
    [15]Focareta T, Manning PA. Distinguishing between the extracellular DNases of Vibrio cholerae and development of a transformation system[J]. Mol. Microbiol,1991,5(10):2547-2555
    [16]Boogaard R, de Jongste JC, Merkus PJ. Pharmacotherapy of impaired mucociliary clearance in non-CF pediatric lung disease[J]. Pediatr Pulmonol. 2007, 42(11):989-1001.
    [17]Suri R, Grieve R, Normand C, et al. Effects of hypertonic saline, alternate day and daily rhDNase on healthcare use, costs and outcomes in children with cystic fibrosis[J]. Thorax. 2002, 57(10): 841-846
    [18]Suri,R, Metcalfe,C, Wallis,C. et al. Assessing the usefulness of outcomes measured in a cystic fibrosis treatment trial[J]. Respiratory medicine, 2007 ,101,2
    [19]Frederiksen B, Pressler T, Hansen A. et al. Effect of aerosolized rhDNase (Pulmozyme) on pulmonary colonization in patients with cystic fibrosis[J]. Acta Paediatr. 2006 ,95(9):1070-1074
    [20]Suri R. The Use of Human Deoxyribonuclease (rhDNase) in the Management of Cystic Fibrosis[J]. BioDrugs: Biotechnology and Clinical Innovation, 1173-8804, 2005 v.19.135-144
    [21]Peroni DG, Boner AL. Atelectasis: mechanisms, diagnosis and management[J]. Paediatr Respir Rev. 2000,1(3): 274-278
    [22]Hendriks T, Hoog M, Lequin MH, Devos AS, Merkus PJ. DNase and atelectasis in non-cystic fibrosis pediatric patients[J]. Crit Care. 2005,9(4): R351-R356
    [23]Slattery DM, Waltz DA, Denham B. Bronchoscopically administered recombinant human DNase for lobar atelectasis in cystic fibrosis[J]. Pediatr Pulmonol. 2001,31(5):383-388
    [24]Samya Z.Nasr, Peter J.Strouse, Errol Soskolne, et al.Efficacy of Recombinant Human Deoxyribonuclease I in the Hospital Management of Respiratory Syncytial Virus[J] Bronchiolitis Chest, 2001, 120: 203-208
    [25]Simpson G, Roomes D, Reeves B. Successful treatment of empyema thoracis with human recombinant deoxyribonuclease[J].Thorax.2003,58:365-366
    [26]Durward,A, Forte V, Shemie SD. Resolution of mucus plugging and atelectasis after intratracheal rhDNase therapy in a mechanically ventilated child with refractory status asthmaticus[J]. Critical care medicine,2000,28,560-562
    [27]Riethmueller J, Borth-Bruhns T, Kumpf M, et al. Recombinant human deoxyribonuclease shortens ventilation time in young, mechanically ventilated children[J]. Pediatr Pulmonol. 2006, 41(1): 61-66
    [28]Haiming Xu, Donghong Ju, Tiffany Jarost. et al. Diminished feedback regulation of proteasome expression and resistance to proteasome inhibitors in breast cancer cells[J]. Breast Cancer Res Treat ,2008,107:267-274
    [29]Baranovskii AG, Buneva VN, Nevinsky GA.Human deoxyribonucleases [J].Biochemistry (Mosc). 2004,69(6):587-601
    [30]Cherepanova AV, Tamkovich SN, Bryzgunova OE.et al. Deoxyribonuclease activity and circulating DNA concentration in blood plasma of patients with prostate tumors[J]. Ann N Y Acad Sci. 2008,1137:218-21
    [31]Tamkovich SN, Cherepanova AV, Kolesnikova EV. et al. Circulating DNA and DNase activity in human blood[J]. Ann N Y Acad Sci. 2006,1075:191-6
    [32]Shklyaeva OA, Mironova NL, Malkova EM, et al. Cancer-suppressive effect of RNase A and DNase I[J].Biochem Biophys.2008,420:108-11
    [33]Haruo T,Tamiko N,Kouichi M,et al. Rapid quantification of DNaseI activity in one-microliter serum samples[J].ClinChem ,2004,50(2):446-448
    [34]Kawai Y, Yoshida M, Arakawa K. et al. Diagnostic use of serum deoxyribonuclease I activity as a novel early-phase marker in acute myocardial infarction.Circulation[J].2004, 25;109(20):2398-400
    [35]Giannitsis E, Katus HA. Ability of DNase I activity to detect myocardial ischaemia invasospastic angina--a view through a monocle[J] Eur Heart J. 2007,28(24):2955-6
    [36]ArakawaK , KawaiY , KumamotoT, et al. Serum deoxyribonucleaseⅠactivity can be used as a sensitive marker for detection of transient myocardial ischemia induced by percutaneous coronary intervention[J].EurHeart J, 2005,26:2375-2380
    [37]Norihiro Morikawa, Yasuyuki Kawai, Kenichiro Arakawa. et al. Serum deoxyribonucleaseⅠactivity can be used as a novel marker of transient myocardial ischaemia: results in vasospastic angina pectoris induced by provocation test[J].European Heart Journal 2007 .28,2992–2997
    [38]彭呈东,曾秋棠.冠心病患者血清DNA酶I与超敏C反应蛋白检测的临床意义.中国实用内科杂志[J].2008,1,28
    [39]Tsukumo S, Yasutomo K. DNase I in pathogenesis of systemic lupus erythematosus[J]. Clin Immunol. 2004,113(1):14-8
    [40]Napirei, M.Gultekin, A.Kloeckl, T. Systemic lupus-erythematosus: deoxyribonuclease I in necrotic chromatin disposal [J] . Int J Biochem Cell Biol,2006,38(3):297-306
    [41]Sallai K, Nagy E, Derfalvy B. Antinucleosome antibodies and decreased deoxyribonuclease activity in sera of patients with systemic lupus erythematosus[J].Clinical and Diagnostic Laboratory Immunology,2005,12:56-59
    [42]Martínez Valle F, Balada E, Ordi-Ros J. et al. DNase 1 and systemic lupus erythematosus [J]. Autoimmun Rev. 2008,7(5):359-63
    [43]Napirei M, Karsunky H, Zevnik B. et al. Features of Systemic Lupus Erythematosus in DNase I-Deficient Mice [J]. Nat Genet,2000, 25:177-181
    [44]王展,曾凡钦.系统性红斑狼疮患者血和尿DNase I与肌动蛋白的相关性研究[J].中华皮肤科杂志[J].2003,11:177-180
    [45]Miyauchi K, Yamamoto T. Development of a Radioimmunoassay for Human Deoxyribonuclease I [J]. Clin. Chim.Acta,1986, 154:115-123
    [46]Miyauchi K, Ogawa M, Murata A, Nakano I, Funakoshi A. Serum Deoxyribonuclease I determined by a Radioimmunoassay and an Enzymatic Assay in Malignant Disesse [J]. Clin. Chem.Acta, 1989, 184:115-120
    [47]Gavasto F, Buffa F, Moraini G. Serum Deoxyribonuclease I and II in pathologic condition other than pancrease Diseases [J]. Clin. Chim.Acta,1959, 4:192-196
    [48]Kowlessar OD, McEvoy R.K. Deoxyribonuclease I Activity in pancreatic Diseases [J]. J. Clin. Ivest, 1958, 35:1325-1330
    [49]Spandidos DA, Ramandanis G. Serum Deoxyribonuclease in Patients with Breast Cancer [J]. Eur J Cancer, 1980, 16:1615-1619
    [50]Lykourinas M, Constantinidis C, Spantidios A, Manthopoulos A. Dimopoulos C . TheRole of Acid and Alkaline DNase as Tumour Markers in Cancer of the Genitourinary Tract [J]. Urol Res, 1982, 10: 67-70
    [51]Adamiec R, Szewczyk Z, Prochera J, Szopa J. Deoxyribonuclease activity in lymphocytes of patients with chronic renal failure treated conservatively [J]. Int. Urol. Nephrol,1991,23:371-382
    [52]Macanovic M, Lachmann P. J. Measurement of deoxyribonuclease I in the serum and urine of systemic lupus erythematosus(SLE)-prone NZB/NZW mice by a new radial enzyme diffusion assay [J], Clin Exp Immunol, 1997, 108: 220-226
    [53]Polzar B, Zanotti S, Stephan H, Rauch F, Peitsch M.C, Irmler M, Tschopp J and Mannherz H.G. Distribution of Deoxyribonuclease I in rats tissues and its correlation to cellular turnover and apoptosis(programmed cell death) [J]. Eur. J.Cell.Biol, 1994, 64:200-210
    [54]Tsutsumi S, Asao T, Nagamachi Y. et al. Phenotype 2 of deoxyribonuclease I may be used as a risk factor for gastric carcinoma [J].Cancer,1998,82(9):1621-1625
    [55]Tsutsumi S, Takeshita H, Yasuda T. et al. Association of the DNase I phenotype 2 with colorectal carcinoma risk in a Japanese population [J].Cancer Lett,2000,159(1):109-112
    [56]Kumamoto T, Kawai Y, Arakawa K. et al. Association of Gln222Arg polymorphism in the deoxyribonuclease I(DNase I)gene with myocardial infarction in Japanese patients [J]. Eur Heart J,2006,27(17):2081-2087
    [57]倪玉华,张建军,戴秋艳,等.中国汉族人群DNA酶I基因多态性特点及与急性心肌梗塞的关系[J].现代生物医学进展,2008,8:109-112
    [58]Takeshita H, Fujihara J, Soejima M. et al. Extremely high prevalence of DNASE1*1 allele in African populations [J].Cell Biochem Funct.2008,26(2):151-3
    [59]Fujihara J, Yasuda T, Shiwaku K. et al. Frequency of a single nucleotide (A2317G) and 56-bp variable number of tandem repeat polymorphisms within the deoxyribonuclease I gene in five ethnic populations [J].Clin Chem Lab Med. 2006;44(10):1188-91
    [60]Fujihara J, Takatsuka H, Kataoka K. et al. Two deoxyribonuclease I gene polymorphisms and correlation between genotype and its activity in Japanese population [J]. Leg Med (Tokyo). 2007 ,9(5):233-6
    [61]Dutta-Gupta A, Sridevi R. Differential hormone regulation of acid DNase activity in the testes and fat body of Spodoptera litura (Lepidoptera-Insecta) [J]. Biochem. Int,1991,24:77-83
    [62]MacLea KS, Krieser RJ, Eastman A. A family history of deoxyribonuclease II: surprises from Trichinella spiralis and Burkholderia pseudomallei [J]. Gene,2003, 305:1-12
    [63]Yasuda T, Takeshita H, Iida R, et al. Molecular cloning of the cDNA encoding human deoxyribonuclease II [J].J Biol Chem. 1998,30; 273(5): 2610-6
    [64]Kawane K, Fukuyama H, Kondoh G, Takeda J, Ohsawa Y, Uchiyama Y, Nagata S.Requirement of DNase II for definitive erythropoiesis in the mouse fetal liver [J]. Science,2001,292:1546-1549
    [65]Nishimoto S, Kawane K, Watanabe-Fukunaga R, et al. Nuclear cataract caused by a lack of DNA degradation in the mouse eye lens. Nature, 2003,424:1071-1074
    [66]Chou SF, Chen HL, Lu SC. Sp1 and Sp3 are involved in up-regulation of human deoxyribonuclease II transcription during differentiation of HL-60 cells [J]. Eur. J. Biochem,2003,270:1855-1862
    [67]Krieser RJ, MacLea KS, Longnecker DS, Fields JL, Fiering S, Eastman A. Deoxyribonuclease IIalpha is required during the phagocytic phase of apoptosis and its loss causes perinatal lethality [J]. Cell Death Differ,2002,9:956-962
    [68]Barry MA, Reynolds JE, Eastman A. Etoposide-induced apoptosis in human HL-60 cells is associated with intracellular acidification [J].Cancer Res. 1993,15(53):2349-57
    [69] Li J, Eastman A. Apoptosis in an interleukin-2-dependent cytotoxic T lymphocyte cell line is associated with intracellular acidification. Role of the Na(+)/H(+)-antiport [J].J Biol Chem. 1995, 270:3203-11
    [70]Shigekazu Nagata.Chronic polyarthritis caused by mammalian DNA that escapes from degradation in macrophages [J].Nature, 2006,7:203-11
    [71]Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD [J]. Nature,1998,391:43-50
    [72]Lechardeur D, Drzymala L, Sharma M, Zylka D, Kinach R, Pacia J, Hicks C, Usmani N, Rommens JM, Lukacs G. L. Determinants of the nuclear localization of the heterodimeric DNA fragmentation factor (ICAD/CAD) [J]. J. Cell Biol,2000, 150:321-334
    [73]Inohara N,Koseki T,Chen S,Benedict MA,Nunez G. Identification of regulatory and catalytic domains in the apoptosis nuclease DFF40/CAD [J]. J. Biol. Chem,1999,274:270-274
    [74]Nagase H, Fukuyama H, Tanaka M, Kawane K, Nagata S. Mutually regulated expression of caspase-activated DNase and its inhibitor for apoptotic DNA fragmentation [J]. Cell Death Differ,2003,10:142-143
    [75]Higami Y, To K, Ohtani H, Masui K, Iwasaki K, Shiokawa D, Tanuma S, Shimokawa I. Involvement of DNase gamma in apoptotic DNA fragmentation in histiocytic necrotizing lymphadenitis [J]. Virchows Arch,2003,443:170-174
    [76]Torriglia A, Perani P, Brossas JY, Chaudun E, Treton J, Courtois Y, Counis MF. L-DNase II, a molecule that links proteases and endonucleases in apoptosis, derives from the ubiquitous serpin leukocyte elastase inhibitor [J]. Mol. Cell. Biol. 1998,18:3612-3619
    [77]Mass P, Hoffmann K, Gambichler T, Altmeyer P, Mannherz HG. Premature keratinocytedeath and expression of marker proteins of apoptosis in human skin after UVB exposure [J]. Arch. Dermatol. Res,2003,295:71-79
    [78]Oliveri M, Daga A, Cantoni C, Lunardi C. Millo R, Puccetti A. DNase I mediates internucleosomal DNA degradation in human cells undergoing drug-induced apoptosis [J]. Eur. J. Immunol,2001,31:743-751
    [79]De Maria A, Arruti C. Bovine DNase I: gene organization, mRNA expression, and changes in the topological distribution of the protein during apoptosis in lens epithelial cells [J]. Biochem. Biophys.Res. Commun,2003,312: 634-641

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700