热声部件声特性的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热声热机是一种全新的热能转换装置,工作于热声效应机理,并以绿色环保、结构简单、可利用低品位能源的诸多优点引起了众多研究者的重视。
     热声热机主要的部件有冷(热)端换热器、回热器和谐振管。其中谐振管起着影响共振频率、维持平面声场、储存部分声能的作用;回热器是热声热机中实现热声效应的核心部件,这两个部件从来都是热声学研究的重点与难点。近年来商用流体计算软件Fluent被引入到了热声学的研究中,在全面的了解前人研究成果后,本文对谐振管及回热器的声特征进行了研究。主要有如下几个方面:
     1.探讨Fluent模拟计算热声声场的可行性。分别从波动理论的基本原理出发并采用Fluent软件对热声谐振管管内的声场沿程压比分布进行了计算,二者得出了相一致的结论,从另一个方面再次验证了采用Fluent模拟计算的可行性。
     2.工作压力对谐振管压比影响的研究。首次针对驻波热声发动机几种不同管型的谐振管,系统的探讨了工作压力对压比的影响。研究表明:谐振管压比分布与管型、管长等因素有关;高的工作压力有利于提高谐振管的压比。并在课题组已有的实验条件下,验证了工作压力对压比影响的数值计算结论。
     3.驻波型回热器内工质交变流动特性的数值模拟。以课题组设计的板叠回热器为研究模型,选择更切合实际的数值计算条件,利用Fluent模拟计算了驻波型回热器内工质的流动特性,结果表明:回热器内压力、速度、温度均呈现交变流动特性;且管内并不是一种理想的驻波声场。
Thermoacoustic engine is a new type of engine, which is based on the thermoacoustic effect, Due to its advantages of no-pollution,simple structure and high reliability, research on thermoacoustic engine are becoming new hot-points.
     The main component of thermoacoustic engine is cold (hot) heat exchanger, regenerator and the resonant tube. The role of resonant tube in the system is influence resonance frequency、maintain sound field and storage part sound energy; Thermoacoustic effect, the basic mechanism of the thermoacoustic engine, occurs in the regenerator. As a result,these two components are the core component and a research hot-point in the field of thermoacoustic engine. Recently, the commercial computational fluid dynamics (CFD) software FLUENT was introduced to the thermoacoustic research, after systematic understand previous research studies, the paper continues related research work about resonant tube and regenerator. Mainly includes the following respects:
     1. The feasibility about simulated sound field in thermoacoustic system by Fluent is discussed. The pressure distribution along the straight resonator were calculated on the wave theory and simulated by Fluent,The results are well in agreement,which confirm that Fluent can be used in simulating the distribution of acoustic field from another side.
     2. The study on the pressure ratio of the thermoacoustic resonator in different operating pressure. To several different type resonant tube of the standing wave thermoacoustic prime mover engine, the paper first study on the pressure ratio in different operating pressure. Results show that: The pressure distribution of resonator is relate with the type、length and so on; And the higher operating pressure is helpful to the pressure distribution of the resonator. In our existing condition of experiment, verifying the results of numerical simulation by experiment.
     3. Numerical simulation and analyses of oscillating flow characteristics in the regenerator of standing wave thermoacoustic engine. The study sample is the parallel plate regenerator which is designed and manufactured by our research group. A software on computational fluid dynamics,Fluent, is introduced to simulate the oscillating characteristics in the parallel plate fold regenerator. Results show that the pressure、velocity and temperature is changing with the change of time and location;The numerical simulation results also proved that acoustic structure in the standing wave system is not ideal standing wave.
引文
[1]Wheatley J C, Hofler T J, Swift G W, et al. An intrinsically irreversible thermoacoustic heat engine [J]. The Journal of the Acoustical Society of America, 1983, 74(1): 153-170.
    [2]Swift G W. Thermoacoustic engines [J]. The Journal of the Acoustical Society of America, 1988, 84: 1145-1180.
    [3]陈国邦,郭方中,张亮.最新低温制冷技术[M].北京:机械工业出版社, 1994.
    [4]Xiao J H. Thermoacoustic heat transportation and energy transformation Part 1: Formulation of the problem [J]. Cryogenics, 1995, 35(1): 15-19.
    [5]Xiao J H. Thermoacoustic heat transportation and energy transformation Part 2: Isothermal wall thermoacoustic effects [J]. Cryogenics, 1995, 35(1): 21-26.
    [6]Xiao J H. Thermoacoustic heat transportation and energy transformation Part 3: Adiabatic wall thermoacoustic effects [J]. Cryogenics, 1995, 35(1): 27-29.
    [7]Swift G W, Garrett S L. Thermoacoustics: A unifying perspective for some engines and refrigerators [J]. The Journal of the Acoustical Society of America, 2003, 113(5): 2379-2381.
    [8]纪军,刘涛,何雅玲.热声热机研究的发展与展望[J].中国基础科学, 2007, 9(5):15-18.
    [9]胡剑英.液氮至液氢温区的热声驱动低温制冷机的研究[D].博士学位论文,中国科学院研究生院(理化技术研究所), 2007
    [10]康慧芳.高频行驻波型热驱动热声制冷机的理论及实验研究[D].博士学位论文,中国科学院研究生院(理化技术研究所), 2009.
    [11]周远,罗二仓.热声热机技术的研究进展[J].机械工程学报, 2009, 45(3): 14-26.
    [12]赵忠明,李青,胡忠军.热声机械的研究现状及展望[J].流体机械,2009, 37(4): 79-82.
    [13]Luo Ercang, Wu Zhanghua, Dai Wei, et al. A 100W-class traveling-wave thermoacoustic electricity generator. Chinese Science Bulletin, 2008, 53(9): 1453-1456.
    [14] Swift G W, Spoor P S. Thermal diffusion and mixture separation in the acoustic boundary layer. J. Acoust. Soc. Am., Vol.106 (4) Pt 1, 1999: 1794-180.
    [15]Spoor P S, Swift G W. Thermoacoustic Separation of a He-Ar Mixture. Appl. Phys. Lett, Vol. 85(8), 2000: 1646-1649.
    [16]Hiller R A, Swift G W. Continuous-flow thermoacoustic dehumidifier.[J] Acoust Soc Am, Vol. 104(3), Pt 2, 1998: 1772.
    [17]Hiller R A, Swift G W. Condensation in a Steady-flow Thermoacoustic Refrigerator, LA-UR-99-2692, Los Alamos.
    [18]Higgins B.Nicholson’s J.I,130(1802).
    [19]Soundhauss C,Ueber die Schallschwin,ungen den Luft in erhitzten Glasr ohrenund in gedechten Pfeifen von ungleicher Weite [J].Ann Phys(Leipzi- g),1850;1:79.
    [20]Rijke P L,Notiz uber eine neuc Art,die in einer an beiden Enden offenen Rohre enthaltene Luft in Schwingungen zu versetzen [J].Ann Phys(Leip-zig),1859;107:399.
    [21]Kirchhoff G.Ueber den Einfluss der Warmeleitung in einem Gas auf die Schallbewegung [J].Ann Phys(Leipzig),1850;19:1
    [22]Feldman K T.Review of the literature on Sondhauss thermo-acoustic phenomena [J].Sound Vib,1968;7(1):71-82.
    [23]Feldman K T. Review of the literature on Rijke thermoacoustic phenomena [J].Sound Vib,1968;7(1):83 -89.
    [24]Rayleigh L. The theory of sound [J]. Dover Publication UK.1945.
    [25]Taconis K W, Beenakker,Nier, et al. Measurements concerning vapor-liquid equilibrium of solutions of 3He-4He [J].Physica, 1949;15(8-9):733.
    [26]Rott N.Damped and thermally driven acoustic oscillations in wideand narrow tubes[J].Z Angew Math Phys,1969;20:230-243.
    [27]Rott N. Thermally driven acoustic oscillations, PartⅡ:Stability limit for helium[J].Z Angew Math.Phys,1973;24:54.
    [28] Rott N. The influence of heat conduction on acoustic streaming [J].Z Angew Math PHYS,1974;25:417-421.
    [29]Rott N.Thermally driven acoustic oscillations,PartⅢ:Second-order heat flux[J].Z Angew Math Phys,1975;26:43-49.
    [30]Rott N.and G.Zouzoulas. Thermally driven acoustic oscillations, PartⅣ: Tubes with variable cross section[J].Z Angew Math Phys,1976;27: 197 -224
    [31]Rott N.Thermoacoustics [J].Adv Appl Mech,1980;20:135-175.
    [32]Yazaki T,Tominaga A,Narahara Y. Stability limit for thermally driven oscillations[J]. Cryogenics, 1979;19:393-396.
    [33]Yazaki T,Tominaga A,Narahara Y. Experiments on thermally driven acoustic oscillations of gaseous helium[J].Low Temp Phys,1980;41:45-60.
    [34]Swift G W. Thermoacoustic engines[J]. J Acoust Soc Am.,1988,88:1145-1180.
    [35]Ward W C, Swift G W. Design environment for low-amplitude thermoacoustic engines [J]. The Journal of the Acoustical Society of America, 1994, 95(6): 3671-3674.
    [36]Yazaki T, Tominaga A, Narahara Y. Stability limit for thermally driven oscillations [J]. Cryogenics, 1979, 19(7): 393-396.
    [37]Yazaki T, Tominaga A, Narahara Y. Experiments on thermally driven acoustic oscillations of gaseous helium[J]. Journal of Low Temperature Physics, 1980, 41(1): 45-60.
    [38]Bauwens L. Thermoacoustics: Transient regimes and singular temperature profiles. [J]. Physics of fluid, 1998, 10(4): 807-818.
    [39]Karpov S, Prosperetti A. Nonlinear saturation of the thermoacoustic instability [J]. The Journal of the Acoustical Society of America, 2000, 107(6): 3130-3147.
    [40]Karpov S, Prosperetti A. A nonlinear model of thermoacoustic devices [J]. The Journal of the Acoustical Society of America, 2002, 112(4): 1431-1444.
    [41]张晓青.热声热机系统的仿真与优化研究-仿真软件的研制与实验验证[D].博士学位论文,华中科技大学, 2001.
    [42]Guo F Z, Chou Y M, Lee S Z, et al. Flow characteristics of a cyclic flow regenerator [J]. Cryogenics, 1987, 27(3): 152-155.
    [43]Xiang Y, Kuang B, Guo F Z. Parity simulation of thermoacoustic effect in regenerator of Stirling cryocooler [J]. Cryogenics, 1995, 35(8): 489-494.
    [44]董凯军.热声系统的网络模拟及其实验研究[D].博士学位论文,华中理工大学, 2000.
    [45]罗运文. TAD-PTR系统的有源热声网络模型及参数匹配方案研究[D].博士学位论文,华中科技大学, 2000.
    [46]Tu Q, Wu C, Li Q, et al. Influence of temperature gradient on acoustic characteristic parameters of stack in TAE [J]. International Journal of Engineering Science, 2003, 41(12): 1337-1349.
    [47]Tu Q, Li Q, Wu F, et al. Network model approach for calculating oscillating frequency of thermoacoustic prime mover [J]. Cryogenics, 2003, 43(6): 351-357.
    [48]Zhang X Q, Li Q, Guo F Z. Numerical analysis on thermoacoustic engine using network method [J]. Chinese Journal of Acoustics, 2003, 22(4): 166-175.
    [49]Tu Q, Li Q, Liu J X, et al. Optimization design of pin-array thermo-acoustic stack [J]. International Journal of Heat Exchangers, 2004, 5(2): 287-300.
    [50]陈熙.热声谐振管参数激励机理研究[D].博士学位论文,华中科技大学, 2004.
    [51]涂虬.热声器件的寻优及其与热声热机系统的匹配[D].博士学位论文,华中科技大学, 2004.
    [52]肖家华.热声效应与回热式制冷机(热机)的热声理论[D].博士学位论文,中国科学院,1990.
    [53]Xiao J H. Thermoacoustic theory for cyclic regenerator, PartⅠ: fundament[J]. Cryogenics, 1992; 32 (10):895.
    [54] Xiao J H. Thermoacoustic heat transportation and energy transformation, Part1:Formulation of the problem[J].Cryogenics, 1995;35(1)15~20.
    [55] Xiao J H. Thermoacoustic heat transportation and energy transformation, Part2: Isothermal wall thermoacoustic effects [J]. Cryogenics, 1995; 35(1):21-26.
    [56] Xiao J H. Thermoacoustic heat transportation and energy transformation, Part3: Adiabatic wall thermoacoustic effects[J]. Cryogenics, 1995; 35(1):24-32.
    [57]王波,邱利民,孙大明,等.以CO2为工质的行波热声发动机研究[J].工程热物理学报, 2009, 30(9): 1463-1466.
    [58]金滔,陈国邦.热声系统起振消振行为的实验研究[J].低温工程, 2000(1): 27-31.
    [59]欧阳录春,邱利民.热声系统起振机理的初步研究[J].低温工程, 2002(5): 6-11.
    [60]Chen G B, Jin T. Experimental investigation on the onset and damping behavior of the oscillation in a thermoacoustic prime mover [J]. Cryogenics, 1999, 39(10): 843-846.
    [61]吴锋,郭方中,李端勇.热声回热器有源网络的系统辨识[J].应用科学学报,2001,19(4):362-364.
    [62]吴锋.热声网络理论及其在热声热机工程的应用[J].武汉化工学院学报,2002,24(1):86-90.
    [63]Feng Wu, Chih Wu, Fangzhong Guo et al. Optimization of a Thermoacoustic Engine with a Comlex Heat Transfer Exponent[J]. Entropy,2003,5(5): 444-451.
    [64]Feng Wu, Lingen Cen. Constructal design of stack filled with parrel plates in standing-wave thermoacoustic cooler[J]. Cryogenics, 2009, 49:107-111.
    [65]Carter R L, White M, Steel A M. private communication of atomics International Division of North American Aviation [Z]. Inc, 1962.
    [66]Feldman K T. A study of heat generated pressure oscillations in a closed end pipe [D]. Ph.D Thesis, University of Missouri, Columbia, 1966
    [67]Feldman K T. Review of the literature on Rijke thermoacoustic phenomena [J]. Journal of Sound Vibration, 1968, 7(1): 83-89.
    [68]Wheatley J, Cox A. Natural engines [J]. Physics Today, 1985, 38(8): 50-58.
    [69]Swift G W. Analysis and performance of a large thermoacoustic engine [J]. The Journal of the Acoustical Society of America, 1992, 92(3): 1551-1563.
    [70]Zhou S, Matsubara Y. Experimental research of thermoacoustic prime mover [J]. Cryogenics, 1998, 38(8): 813-822.
    [71]邓晓辉,李青.热声谐振管的实验研究[C].全国低温制冷机学术会议,北京: 1996.
    [72]Chen G B, Jin T. Experimental investigation on the onset and damping behavior of the oscillation in a thermoacoustic prime mover [J]. Cryogenics, 1999, 39(10): 843-846.
    [73] Tang K, Chen G B, Jin T, et al. Influence of resonance tube length on performance of thermoacoustically driven pulse tube refrigerator [J]. Cryogenics, 2005, 45(3): 185-191.
    [74]戴巍,罗二仓,胡剑英,等.改进型驻波热声发动机的实验研究[J].工程热物理学报, 2005, 26(3): 376-378.
    [75] Dai W, Yu G, Zhu S, et al. 300 Hz thermoacoustically driven pulse tube cooler for temperature below 100 K [J]. Applied Physics Letters, 2007, 90: 24104.
    [76] Ceperley P H. Gain and efficiency of a short traveling wave heat engine [J]. The Journal of the Acoustical Society of America, 1984, 75(1): 35.
    [77] Backhaus S, Swift G W. A thermoacoustic-Stirling heat engine [J]. Nature, 1999, 399: 335-338.
    [78] Backhaus S, Swift G W. A thermoacoustic-Stirling heat engine: Detailed study [J]. The Journal of the Acoustical Society of America, 2000, 107(6): 3148-3166.
    [79] Sun D, Qiu L, Zhang W, et al. Investigation on traveling wave thermoacoustic heat engine with high pressure amplitude [J]. Energy conversion and management, 2005, 46(2): 281-291.
    [80] Luo E, Ling H, Dai W, et al. A high pressure-ratio, energy-focused thermoacoustic heat engine with a tapered resonator [J]. Chinese science bulletin, 2005, 50(3): 284-286.
    [81] Gifford W E, Longsworth R C. Pulse tube refrigeration [J]. Trans ASME, J Eng Ind, 1964, 86: 264-270.
    [82] Hofler T J. Thermoacoustic refrigerator design and performance [D]. Ph.D Thesis, University of California at San Diego,USA: 1986.
    [83] Garrett S, Adeff J, Hofler T. Space thermoacoustic refrigerator for space applications [J]. Journal of Thermophysics and Heat Transfer, 1993, 7(4): 595-599.
    [84] http://www.acs.psu.edu/thermoacoustics/ refrigeration /star.htm. Space thermoacoustic refrigerator[Z].
    [85]http://www.acs.psu.edu /thermoacoustics/refrigeration/setac.htm. Shipboard electronics thermoacoustic cooler[Z].
    [86]Arman B., Wollan J.J., Swift G.W.,et al., Thermoacoustic natural gas liquefiers and recent developments.Cryogenices and Refrigeration-Proceedings of ICCR’2003,International academic Publishers,2003;123-127
    [87]欧阳录春,蒋珍华,俞卫刚,等.扬声器驱动热声制冷机的研究进展[J].应用声学, 2005, 24(1): 59-65.
    [88]罗二仓,黄云,戴巍,等.高性能室温行波热声制冷机[J].科学通报, 2005, 50(2): 192-194.
    [89] Luo E C, Dai W, Zhang Y, et al. Experimental investigation of a thermoacoustic-Stirling refrigerator driven by a thermoacoustic-Stirling heat engine [J]. Ultrasonics, 2006, 44(s1): 1531-1533.
    [90]谢秀娟.高频斯特林新型热声发动机和制冷机的理论探索及研制[D].博士学位论文,中国科学院情报文献中心, 2006.
    [91]胡忠军.高频级联型热声系统研究[D].博士学位论文,中国科学院研究生院(理化技术研究所), 2007.
    [92] D.Gedeon. A globally implicit Stirling cycle simulation[C].In proceedings of the 21st intersociety energy conversion engineering conference . American Chemical Society,1986
    [93] J.Gary, A.O’Gallagher,and R.Radabaugh.A numerical model or regenerator performance[J].Technical report ,NIST-BOULder,1994
    [94]G.W.Swift and W.C.Ward. Simple harmonis analysis of regenerators[J]. Thermoacoustic and Heat Transfer, 1996
    [95]陈丽娟.热声装置回热器中机械振荡与热振荡特性的模拟及分析[D].东南大学硕士论文,2007
    [96]张晓青,吴迎文,张稳等.热声热机声场的格子气分析[J].工程热物理学报, 2010, 31(2): 185-188.
    [97]刘旭,陈宇,张晓青.热声发动机的格子气模拟[J].计算物理.第6期.2004
    [98]张晓青,蒋华,胡兴华等.热声振荡的格子气模拟[J].华中科技大学学报:自然科学版, 2007, 35(7): 85-88.
    [99]J.A.Lycklama a Nijeholt,M.E.H.Tijani and S. Spoelstra. Simulation of a traveling-wave Thermoacoustic engine using computational fluid Dynamics[J].Journal of acoustic socirty America , Volume 118,Issue 4 ,pp 2265-2270
    [100]余国瑶.热声发动机自激振荡过程及热声转换特性研究[D].中国科学院研究生院博士论文,2008。
    [101]孙生生.基于fluent的热声元件特性研究[D].哈尔滨工程大学硕士论文,2008.
    [102]Cheng C F, David Ngu T W. CFD Study of Traveling Wave within a Piston-Less Striling Heat Engine [C]. Computational Fluid Dynamics 2008. 2009, 41 (2) : 813- 814.
    [103]刘钰,邱利民,王波等.多段式回热器的斯特林热声发动机CFD仿真[J].低温工程,2010,38(5):1-5.
    [104]罗二仓,凌虹,戴巍,张泳.采用锥形谐振管的高压比聚能型热声发动机[J].科学通报,2005(6):605-607。
    [105]T.S.Zhao,P.Cheng,Heat transfer in oscillatory flows,Annual Review of Heat transfer,‘Volume IX,l 998
    [106]何琳,朱海潮,邱小军,等编.声学理论与工程应用[M].科学出版社.2006
    [107]韩占忠,王敬,兰小平编. Fluent流体工程仿真计算实例及应用[M].北京理工大学出版社.2004.
    [108]邓晓辉.热声谐振管的实验和理论研究[R].武汉:华中理工大学博士后研究工作报告, 1996.
    [109]罗运文,董凯军,李青,郭方中.热声谐振管的实验研究[J].华中理工大学学报2000,28(2):105-107.
    [110]李晓明,凌虹,戴巍,等.谐振管几何形状对热声发动机工作性能的影响[J].低温工程,2005,145(3):11-15.
    [111]陈萍,邱利民,孙大民,等.热声发动机压力特性研究[J].低温工程,2005,145(03):27-30.
    [112]于波,戴巍,罗二仓,等.采用正弦型谐振管的高频驻波热声发动机[J].低温工程,2009,167(1):1-4.
    [113]张泳,罗二仓,戴巍.驻波型热声发动机中谐振管与谐振腔的实验研究与数值模拟[C]. 2004年中国工程热物理学会热机气动力学学术会议论文集.2004:477-481.
    [114]胡鹏.高频声驱动热声制冷机的理论探索与实验研究[D].北京:中国科学院研究生院博士学位论文,2007.
    [115]刘光启,马连湘,刘杰编.化学化工物性数据手册(无机卷)[M].北京:化学工业出版社(工业装备与信息工程出版中心,2002.
    [116] Zou Wenjing,Wu Feng, Shu Anqing,etc. Study on a newtraveling wave thermoacoustic engine with external excitation [J]. 2009 Asia-Pacific Power and Energy Engineering Conference,vol.3:2555-2558.
    [117]URI B N,DAN M. Low cost and high performance screen lamimate regenerator matrix[J].Cryogenics,2004,44(6/8):439-444.
    [118]李山峰,吴张华,罗二仓,等.行波热声发动机中平板与丝网回热器的对比实验研究[J].低温工程, 2009,(01):16-19.
    [119]邓晓辉.热声器件的热声机理及热声热机的设计理论[D].华中理工大学博士学位论文.1994.
    [120]李晓明.热声理论及热声驱动脉管制冷机实验研究[D].浙江大学博士学位论文.2005.
    [121]周刚.小型行波热声热机系统的研究[D].华中科技大学博士学位论文.2007.
    [122]包锐.驻波型热声发动机性能强化及其驱动脉管制冷特性研究[D].浙江大学博士学位论文.2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700