双胸蚓组织中一种核酸酶的纯化及其底物特异性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     1.双胸蚓组织中核酸酶粗提物的制备及核酸酶的纯化
     2.核酸酶粗提物琼脂糖凝胶测活体系的建立
     3.纯化核酸酶酶学性质的研究
     4.双胸蚓组织核酸酶底物特异性的初步研究方法
     1.双胸蚓组织中核酸酶粗提物的制备及核酸酶的纯化以SDS-PAGE-DNA功能胶和琼脂糖凝胶电泳测活相结合作为双胸蚓组织核酸酶提取过程中核酸酶活性的监测体系。
     以碳酸铵处理,热变性,酸变性及丙酮沉淀后所得粗提物为起点,对核酸酶依次进行柱层析、电泳纯化制备双胸蚓核酸酶样蛋白质纯品。
     2.核酸酶粗提物琼脂糖凝胶测活体系的建立以琼脂糖凝胶电泳作为主要测活体系,研究核酸酶粗提物的最适反应条件。
     3.纯化核酸酶酶学性质的研究
     采用SDS-PAGE电泳法测定酶分子量,毛细管等点聚焦电泳法测定酶等电点,酶活性测定等方法测定核酸酶的最适pH、最适温度、温度稳定性、激动剂、抑制剂,计算酶的动力学常数。
     4.双胸蚓组织核酸酶底物特异性的研究
     测定DNase E在最适反应条件下对不同底物的降解速率,证明DNase E降解底物的选择性;应用琼脂糖凝胶电泳对DNase E水解双链环状DNA后的产物进行鉴定,阐明DNase E的水解方式。
     结果
     1.双胸蚓组织中核酸酶粗提物的制备及核酸酶的纯化应用本室建立的SDS-PAGE-DNA功能胶测活方法对核酸酶提取过程进行监测。在提取过程中产生两组核酸酶,在SDS-PAGE-DNA功能胶中迁移率较慢的一组采用碳酸铵处理+酸变性+热变性+丙酮沉淀的提取方法来获得较好的层析样品。样品依次通过四步柱层析,PAGE-DNA功能胶纯化得到电泳纯的双胸蚓核酸酶样蛋白质纯品,命名为DNase E(Earthworm DNase)。
     2.核酸酶粗提物琼脂糖凝胶测活体系的建立以琼脂糖凝胶电泳法作为主要测活手段,确定了2μl质粒+10μl样品,样品溶于0.1 M pH 5.2NaAc(含20mM Mg2+)缓冲液,37℃共孵育30min后行琼脂糖凝胶电泳的测活体系。
     3.纯化核酸酶酶学性质的研究对DNase E的酶学性质进行了初步研究,结果表明其分子量约为32kDa,等电点为6.05左右,以小牛胸腺DNA为底物时,反应的最适pH值为5.2,最适温度为42℃,其Km值为0.152mg/ml。20mM Mg~(2+),Ca~(2+),Mn~(2+)对其活性有一定的激活作用,Zn~(2+),咪唑,EDTA,K+,Cu~(2+)对其活性有一定的抑制作用,SDS-PAGE的结果表明DNase E为寡聚肽蛋白质,它对酸、碱、有机溶剂稳定。
     4.双胸蚓组织核酸酶底物特异性的研究
     通过DNase E在最适反应条件下对几种不同底物降解速率的研究表明DNase E降解底物存在差异性。应用琼脂糖凝胶电泳对DNase E水解双链环状DNA后的产物进行鉴定,证明了DNase E属于核酸内切酶。
     结论
     1.确立了双胸蚓组织核酸酶粗提液的制备工艺,通过柱层析及电泳纯化的方法,获得了一种核酸酶,命名为DNase E(电泳纯),分子量约为32kDa,等电点为6.05左右,反应的最适pH值为5.2,最适温度为42℃,20mM Mg~(2+),Ca~(2+),Mn~(2+)对其活性有一定的激活作用,Zn~(2+),咪唑,EDTA,K+,Cu~(2+)对其活性有一定的抑制作用。
     2.确立了核酸酶粗提物的琼脂糖凝胶电泳测活体系。实验结果表明,DNase E无序列特异性,属非特异核酸酶类。初步得出DNase E在底物水解方面的差异性,并证明了DNase E属于核酸内切酶。
Objectives
     1. Preparation of rude extracts of Lumbricus Bimastus nucleases and its purification.
     2. To establish the agarose gel electrophoresis system.
     3. Study on enzymology qualities of the nuclease.
     4. A preliminary study on substrate specificity of Lumbricus Bimastus nuclease.
     Methods
     1. Preparation of rude extracts of Lumbricus Bimastus nucleases and its purification Using DNA-casting SDS-PAGE and agarose gel to monitor the activity of the nuclease in the process of extraction.
     After ammonium carbonate processing, thermal denaturation, acid denaturation and acetone precipitation,the rude extracts of nucleases were purified by Column chromatography and electrophoresis.
     2. To establish the agarose gel electrophoresis system
     Using agarose gel electrophoresis system to monitor the activity of the nuclease, to study its optimum reaction conditions.
     3. Study on enzymology qualities of the nuclease
     Using SDS-PAGE gel electrophoresis to measure molecular weight, CE-IEF to measure pI, assay of enzyme activity to determine optimum pH, optimum temperature, temperature stability, activator, inhibitor, and to calculate its Km values.
     4. A preliminary study on substrate specificity of Lumbricus Bimastus nuclease
     To measure degrade rate of DNase E to several different substrate in optimal reaction condition to demonstrate the substrate selectivity of DNase E. Agarose gel electrophoresis was used to investigate the products of DNase E processing double strands cyclic DNA to investigate the action of DNase E.
     Results
     1. Preparation of rude extracts of Lumbricus Bimastus nucleases and its purification Two groups of nucleases with different characters lied in the DNA-casting SDS-PAGE. The group of low migration nucleases were prepared by ammonium carbonate processing +acid denaturation + thermal denaturation + acetone extraction. Through four steps of column chromatography and electrophoresis purification, one kind of nuclease(named DNase E) was obtained.
     2. To establish the agarose gel electrophoresis system
     To identify the agarose gel electrophoresis system that using plasmid 2μl +10μl as samples(sample dissolved in 0.1 M pH 5.2NaAc buffer (containing 20 mM Mg~(2+))), then incubated for 30 min in 37℃.
     3. Study on enzymology qualities of the nuclease
     The enzymatic study results of DNase E showed that the molecular weight of DNase E was approximately 32 kDa, its isoelectric point was about 6.05. When the substrate was the calf thymus DNA, its optimum temperature was 42℃, optimum pH was 5.2, and its Km values was 0.152mg/ml. 20mM Mg~(2+)、Ca~(2+)、Mn~(2+) could activate its activity respectively. Zn~(2+), iminazole, EDTA, K+, Cu~(2+) could inhibit its activity respectively. The SDS-PAGE showed that DNase E was a oligomeric protein, it was stable to acid, alkali, and organic solvents.
     4. A preliminary study on substrate specificity of Lumbricus Bimastus nuclease DNase E degradation studies showed that there were differences in degradation rate of the DNase E to different substrates. The results indicated that DNase E belonging to endonuclease.
     Conclusion
     1. Established a preparation technics of rude extracts of Lumbricus Bimastus nucleases. One kind of nuclease was obtained by a series of purification methods, named DNase E (electrophoresis pure).
     2. The molecular weight of DNase E was approximately 32kDa, its isoelectric point was about 6.05. When the substrate was the calf thymus DNA, its optimum temperature was 42℃, optimum pH was 5.2. 20mM Mg~(2+)、Ca~(2+)、Mn~(2+) could activate its activity respectively. Zn~(2+), iminazole, EDTA, K+, Cu~(2+)could inhibit its activity respectively. The experimental results showed that DNase E had no sequence specificity, it was a non-specific nuclease. There was difference in substrate hydrolysis. DNase E belonged to endonucleases.
引文
[1]单鸿仁,张祖珣等.蚯蚓在医学中的应用研究.山西:山西科学教育出版社,1991年12月.
    [2]钟乐芳,玄福,玄涛.蚯蚓大王谈蚯蚓的生活习性及其饲养管理和病害防治.当代畜禽养殖业,2000,(8):16-18.
    [3]程牛亮,牛勃,张祖珣,等.双胸蚓纤溶酶的纯化及性质.生物化学杂志,1990,6(2):186-190.
    [4]程牛亮,牛勃,张祖珣,等.地龙提取物对实验性血栓的溶解作用及有效成份的研究.山西医学院学报,1989,20(4):203-206.
    [5]郑国平,程牛亮,张祖珣,等.双胸蚓纤溶酶Ⅲ的分离纯化及其性质研究.山西医学院学报,1996,27(2):81-83.
    [6]程牛亮,王新亚,郑国平,等.双胸蚓纤溶酶Ⅱ的纯化及其性质的研究.中国实验临床免疫学杂志,1996,8(2):8-10.
    [7]赵莹,牛勃,许言午,等.ENP绿色生物消毒剂的灭菌效果观察.中华临床与卫生,2003,2(1):13-14.
    [8]刘凌云,郑光美.动物学.北京:高等教育出版社,1999年,第3版.
    [9]Edward E.,Richard S.,Robert D. Invertebrate Zoology:A Functional Evolutionary Approach(7TH Edition), Publisher:Thomson Learning Published, 2003/08.
    [10] Hanusova R, Bilej M, Brys L, et al. Identification of a coelomic mitogenic factor in Eisenia foetida earthworm. Immunol Lett. 1999,65(3):203-211.
    [11] Kauschke E, Komiyama K, Moro I, et al. Evidence of perforin-like activity associated with earthworm leukocytes.Zoology(Jena), 2001, 104(1):13-24.
    [12] Ito Y, Yoshikawa A, Hotani T. Amino acid sequences of lysozymes newly purified from invertebrates imply wide distribution of a novel class in the lysozyme family.Eur J Biochem,1999,259(1-2):456-61.
    [13]谢江碧,郭振泉,翁宁,等.一种凋亡相关蚯蚓丝氨酸蛋白酶的纯化、活性鉴定及部分性质研究.生物化学与生物物理学进展,2003,30(3):453-460.
    [14] Nitin S. Patil, Sumedha S. Deshmukh,Vepatu Shankar. Extracellular nuclease from a thermophile,Streptomyces thermonitrifi-cans: production, purification and partial characterization of– doublestrand preferential– deoxyribonuclease activity.Process Biochemistry 2005,40:1271–1278.
    [15] Belden JB, Phillips TA, Coats JR. Effect of prairie grass on the dissipation, movement, and bioavailability of selected herbicides in prepared soil columns. Environ Toxicol Chem. 2004 ,23(1):125-132.
    [16]贾弘褆,屈伸,等.生物化学.北京:人民卫生出版社, 2005年8月.
    [17] A. G. Baranovskii, V. N. Buneva, G. A. Neinsky Biochemistry(Moscow), 2004 ,69(6): 587-601.
    [18] Drew,H.R. J.Mol.Biol, 1984,176,535-557.
    [19] Suck,DJ.Mol.Recogn, 1994,7,65-70.
    [20] Bernardi,A.,Gaillard,C., Bernardi,G. Eur.J.Biochem, 1975,52,451-457.
    [21]Scully C, Spandidos DA, Ward Booth P, et al. Serum Alkaline Deoxyribonuclease in oral Cancer and Premalignant Lesions. Biomedicine, 1981, 35:179-180.
    [22] Macanovic M, Lachmann P. J. Measurement of deoxyribonuclease I in the serum and urine of systemic lupus erythematosus(SLE)-prone NZB/NZW mice by a new radial enzyme diffusion assay. Clin Exp Immunol, 1997, 108: 220-226.
    [23] Econmidou–Karaoglou A, Lans M, Taper HS, et al.Variations in Serum Alkaline DNase Activity. Cancer, 1988, 61:1838-1843.
    [24] Napirei M, Karsunky H, Zevnik B, et al.Features of Systemic Lupus Erythematosus in DNase I-Deficient Mice. Nat. Genet, 2000, 25:177-181.
    [25] Lyon, C.J., Aguilera, R.J., Purification and characterization of the immunoglobulin switch quence-specific endonuclease (Endo-SR) from bovine spleen. Mol. Immunol, 1997.34, 209–219.
    [26] Lyon, C.J., Evans, C.J., Bill, B.R., et al. The C. elegans apoptotic nuclease NUC-1 is related in sequence and activity to mammalian DNase II. Gene, 2000.252, 147– 154.
    [27] Evans, C.J. The identification and characterization of mammalian DNase II homologs in C. elegans and Drosophila. Dissertation, University of California, Los Angeles, CA. 2002.
    [28] Barry, M.A., Eastman, A.Identification of deoxyribonuclease II as an endonuclease involved in poptosis. Arch. Biochem. Biophys, 1993. 300,440– 450.
    [29] Lyon, C.J., Miranda, G.A., Piao, J.S., et al. Characterization of an endonuclease activity which preferentially cleaves the G-rich immunoglobulin switch repeat sequences. Mol. Immunol, 1996. 33, 157– 169.
    [30] Polzar B, Zanotti S, Stephan H, et al.Distribution of Deoxyribonuclease I in rats tissues and its correlation to cellular turnover and apoptosis(programmed cell death). Eur. J.Cell.Biol, 1994, 64:200-210.
    [31]汪家政,范明.蛋白质技术手册.第二版,北京:科学出版社,2002年4月.
    [32]Yasuda T, Sato W, Kishi K. Purification and characterization of a human urine ribonuclease (RNAaseI)showing genetic polymorphism. BioCHem Biophys Acta, 1988,965(2~3):185~194.
    [33]Blank A, Sugiyama R H, Dekker C A. Activity staining of nucleolytic enzymes after sodium dodecyl sulfate-polyacrylamide gel eletrophoresis: use of aqueous isopropanol to remove detergent from gels. Anal. Biochem., 1982, 120: 267~275.
    [34]张龙翔,张庭芳,李令媛.生化实验方法和技术.第一版,北京:人民教育出版社,1981.11,112-119, 124-132.
    [35]张龙翔,张庭芳,李令媛.生化实验方法和技术.第二版,北京:高等教育版社,1997年7月.
    [36] Napirei M, Ricken A, Eulitz D, et al. Expression pattern of the DnaseⅠgene: lesson from the DnaseⅠknockout monse. Biochem, 2004, 380: 929-937.
    [37] Cory J. Evans, Renato J. Aguilera .DNase II: genes,enzymes and function. Gene,2003,322:1-15.
    [38] Napiri M, Ricken A, Eulitz D, et al. Expression pattern of the DnaseⅠgene: lesson from the DnaseⅠknockout monse. Biochem, 2004, 380:927-937.
    [39]Human Deoxyribonucleases A. G. Baranovskii,V. N. Buneva,and G. A. Neinsky Biochemistry(Moscow), 2004, 69(6): 587-601.
    [1]Voulc RJ,D'Alessio G.Ribonucleases:Structures and functions.New York:Academic Press,1997;491.
    [2]Wu YN,Mikulski SM, Ardelt W,et al.A cytotoxic ribonuclease. J Biol Chem,1993;268(14):10686.
    [3]YouNeng,WuRichard,J.YouleA,CytotoxicRibonuclease.TheJournalofBiologicalChemistry,1993,268:10686-10693.
    [4] Leland PA,Raines RT.Ribonuclease:Avariants with potent cytotoxic activity.Prol Natl Acad Sci,USA,1998;95:10407.
    [5] Darzynkiewicz Z, Carter SP, Shogen K, et al. Cytostatic and cytotoxic effects of Pannon(P-30Protein), a novel anticancer agent. Cell Tissue Kinet,1988;21:169.
    [6] Mikulski SM,Viera A,Shogen K,et al.Tamoxifen and trifluoroperazine (stelazine) potentiate cytostatic/cytotoxic effects of P-30 protein, a novel protein possessing antitumor activity. Cell Tissue Kinet, 1990;23:237.
    [7] Youle RJ,Wu YN,Mikulski SM,et al.RNase inhibition of human immunodeficiency virus infection of H9cells. Prol Natl Acad Sci,USA,1994;91:6012.
    [8] Fett JW, Strydom DJ,Vallee BL.Isolation and characterization of Angiogenin,an angiogenic protein from human carcinoma cells.Biochemistry,1985;24:5480.
    [9] Raines RT,Toscano MP,Auerbach R.Replacing a surface loop endows ribonuclease A with angiogenic activity. J Biol Chemistry,1995;270(29):17180.
    [10] StClair DK,Rylak SM,Riodan JF,et al. Angiogenin abolishes cell-free protein synthesis by specific ribonucleolytic inactivation of 40S ribosomes. Biochemistry,1988;27:7263.
    [11] D'Alessio G, DiDonato A,Mazzarella L,et al. Ribonucleases:Structures and functions.New York:Academic Press,1997:383-423.
    [12] D'Alessio G, DiDonato A,Piccoli R. Seminal RNase: a unique member of the ribonuclease superfamily. Trends Biochem Sci,1991;16:104.
    [13] Pouckova P, SouˇCek J, MatouˇSek J.Antitumor of bovine seminal ribonuclease. Cytostatic effect on human melanoma and mousse eminoma.Neoplasma,1998;45(1):30.
    [14]Kolb J P.Leukemia, 2000;14:1685-1694.
    [15]ChangCF,ChenC,ChenYC,etal.The solutions tructure of a cytotoxic ribonuclease from the oocytes of Rana cat esbeiana(bullfrog).J Mol Biol,1998,283(1):231-244.
    [16]Rosenberg HF.Recombinant human eosinophil cationicprotein. J Biol Chem, 1995; 270(14):7876.
    [17] Schein CH. From housekeeper to microsurgeon:The diagnostic and therapeutic potential of ribonucleases. NatBiotech,1997;15:529.
    [18] Newton DL,Rybak SM. Unique recombinant human ribonuclease and inhibition of kaposi's sarcoma cell growth. J National Cancer Inst,1998;90(23):1787.
    [19]Ellis RJ.Macromolecular crowding: an important but neglected aspect of the intracellular environment.Curr Opin Struct Biol,2001,11:114-119.
    [20]PolakowskiIJ,et al Aribonuclease inhibitor expressanti-angiogenin properties and leads to reduced tumor growth in mice American Journal Pathology, 1993;143(2):507.
    [21]Chomezynski P,SacchiN。Single-step method of RNA isolation by acid guanidinium thiocyanate-phe-nol-chloroform extraction。AnalBiol,1987;162: 156.
    [22]于秀萍,崔秀云.RNasin对小鼠实体瘤生长的抑制作用及其机理.辽宁省第二届青年学术年会《论文集》.大连理工大学出版社,1995,10.
    [23]崔秀云,张晓睛.恶性肿瘤患者血液中核糖核酸酶及核糖核酸酶抑制因子活性测定.肿瘤,1994:14(3):152.
    [24]Mihail S.Iordanov Molecular Determinants of Apoptosis Induced by the Cytotoxic Ribonuclease Onconase:Evidence for Cytotoxic Mechanisms Different from Inhibition of Protein Synthesis.Cancer Research,2000,60:1983-1994.
    [25]Dianne L. Newton .Radtation Research,2001,155:171-174.
    [26]Huang HC,Wang SC,LeuYJ,et al.The rana catesbeiana rcr gene encoding a cytotoxic ribonuclease.J Biol Chem,1998,273:6395-6401.
    [27]Suzuki M,Saxena SK,Boix E,et al.Engineering receptor-mediated cytotoxicity in human ribonucleases by steric blockade of inhibitor inter-action.Nature Biotech,1999,17:265-270.
    [28] Piccoli R,GaetanoSD, LorenzoCD, et al. A dimeric mutant of human pancreatic ribonuclease with selective cytotoxicity toward malignant cells.Proc Natl Acid Sci USA,1999,96:7768-7773.
    [29] Newton DL, Hansin HJ,Mikulski SM, et al. Potent and specific anti-rumor effects of ananti-cd22-targeted cytotocic ribonuclease:potential for the treatment of non-Hodkin lymphoma. Blood,2001,97:527-535.
    [30] Newton DL, Rybak SM. Unique recombinant human ribonuclease and inhibition of Kaposi's sarcoma cell growth. J Natl Cancer,1999,90: 1787-1791.
    [31]Domachowske JB,Dyer KD,Adams AJ,et al. Nucleic Acids Res,1998,26(14):3358-3363.
    [32] Newton D L, Nicolls P J, Rybak S M, et al. J Biolchem, 1994;269(43):26739-26745.
    [33] Suzuki M, Saxena S K, Boix E, et al. Nat Biotechnol, 1999;17(3):265-270.
    [34] Piccoil R, Gaetano S D, Lorenzo C D, et al. Proc Natl Acad Sci USA, 1999;96:7768-7773.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700