蚯蚓生物标志物在手性有机磷农药污染评价中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今使用的有机磷农药超过30%是手性的,且目前对于手性有机磷农药的对映体选择性的研究多集中在水生毒性上,对于非靶标生物特别是土壤生物的研究比较少。本研究挑选蚯蚓的乙酰胆碱酶、体腔细胞作为生物标志物来评价甲胺磷、马拉氧磷、异马拉硫磷三个手性有机磷农药的对映体选择性,相关研究内容与结果如下:
     (1)以乙酰胆碱酶半抑制浓度(IC_(50))为检测指标,研究了甲胺磷、马拉氧磷、异马拉硫磷三个手性有机磷农药对蚯蚓体内外乙酰胆碱酶抑制作用的立体选择性,结果均表现出显著的对映体选择性。体内抑制研究中,外消旋体和(+)-甲胺磷的IC50值分别为0.0281μg/cm2和0.0860μg/cm~2,相差了3.1倍;马拉氧磷中,(+)-、(-)-异构体的IC50值分别为0.0014μg/cm~2和0.0058μg/cm~2,两者相差4.1倍;异马拉硫磷中,1R,3R-异构体与外消旋体的IC_(50)值相差达331倍之多,差异非常显著。体外抑制的动力学常数中我们也发现了明显的对映体差异性:(-)-和(+)-甲胺磷的k_i值(双分子反应常数,表征乙酰胆碱酶的抑制程度)差异是5倍;(+)-和(-)-马拉氧磷的k_i值差异是3.23倍,异马拉硫磷四个对映体异构体的毒性大小关系是1R,3R-异马拉硫磷>1S,3R-异马拉硫磷>1S,3S-异马拉硫磷>1R,3S-异马拉硫磷,k_i值差异在1.4~12.12倍之间。三个有机磷农药对乙酰胆碱酶的抑制均表现出明显的剂量-效应关系,随着抑制浓度的增加,酶活性的抑制随之增强。酶抑制动力学研究表明不同异构体对AChE的空间取向和磷酰化性能均不相同。
     (2)利用中性红保留时间(NRRT)来评价体腔细胞溶酶体的膜稳定性,研究结果显示有机磷农药污染会使蚯蚓的溶酶体膜发生损害,从而破坏其稳定性,在(±)-甲胺磷中,当浓度为0.0016μg/cm~2时,NRRT值为76.88min,然而当浓度的升高到0.16μg/cm~2时,NRRT值降为29.78min,随着浓度的增加(±)-马拉氧磷的NRRT值从61.13min降到34.13min,(±)-异马拉硫磷的NRRT值从47.60min缩短到34.32min,中性红保留时间越短,说明溶酶体膜稳定性的越差,溶酶体膜破坏的越严重。实验结果也显示了一定的对映体选择性,但是差异不是特别显著,均在2倍以下。蚯蚓作为环节无脊椎动物,它的体腔是免疫系统的重要组成,说明有机磷农药污染会对蚯蚓造成免疫伤害。
     (3)实验还研究了马拉硫磷对蚯蚓乙酰胆碱酶抑制后的恢复状况,表明马拉硫磷对蚯蚓乙酰胆碱酶抑制是一个可逆的过程,蚯蚓经过48h暴露处理后,乙酰胆碱酶的活性被抑制了80%多,转移到干净土壤后的7天内,抑制表现出持续加强的现象,之后酶活并开始逐渐恢复,第30天检测时,酶活只被抑制了27.7%,活性恢复了70%左右的水平。
     (4)通过彗星实验研究了马拉氧磷对蚯蚓体腔细胞的DNA损伤,实验结果表明马拉氧磷对蚯蚓体腔细胞的DNA损伤非常的严重,在最低浓度0.0016μg cm~(-2)的暴露水平下就出现了非常明显的拖尾现象,空白对照组也有一点程度的损伤。
More than 30% of the current used organophosphorus (OPs) insecticides are chiral. The studies of enantioselectivity in the aquatic toxicity of chiral OPs have been steadily increasing, however, research concerning enantioselectivity in the toxicity of OPs to nontarget and nonmammalian species, particularly soil organisms, is still inadequate. In this study, the acetylcholinesterase (AChE) activity and coelomocytes lysosomal membrane stability of earthworm (Eisenia fetida) were selected as biomarkers, and the enantioselective effects of three chiral OPs (methamidophos, malaoxon, and isomalathion) were evaluated. Related research content and results are as follows:
     (1)The inhibition of acetylcholinesterase (AChE) activity by the chiral OPs all showed significant enantioselectivity. In the vivo research, the IC50 value of (±)-methamidophos on the inhibition of the AChE was 0.0281μg/cm~2, the value of (+)-methamidophos was 0.0860μg/cm~2,with 3.1 fold differences between them. The most toxic of malaoxon to AChE was (+)-malaoxon, the IC~(50) value was 0.0014μg/cm~2, the value of the weakest ((-)-malaoxon)was 0.0058μg/cm~2, with 4.1 fold differences. The most obvious difference in the three chiral OPs was 1R,3R-isomalation with (±)-isomalation, they were 331 fold differences. From the value of inhibition kinetic constants we also could find enantioselective difference, the value of ki expression the degree of AChE inhibition, the value of ki of (-)-methamidophos was 5 times higher than (+)-methamidophos, and (+)-malaoxon was 3.23 times higher than (-)-malaoxon, as to the four stereoisomers of isomalation the order of toxicity was 1R,3R-isomalation> 1S,3R-isomalation>1S,3S-isomalation>1R,3S-isomalation,with 1.4~12.12 fold differences. The relationship between the concentratin of organophosphorus pesticide and AChE inhibtion showed obvious dose effect relationship, with the increase in inhibitory concentration, result in stronger inhibition of enzyme activity. The enzyme inhibition dynamic assays further indicated that both the spatial orientations and phosphorylation properties of different stereoisomers towards AChE were different.
     (2)The research of using neutral red retention time (NRRT) evaluation lysosomal membrane stability of coelomocytes showed organophosphorus pesticide contamination could injure lysosomal membrane stability of earthworm. As the concentration of (±)-methamidophos was 0.0016μg /cm~2, the value of NRRT was 76.88min, with the concentration increase to 0.16μg/cm~2, the value of NRRT reduced to 29.78min, the value of NRRT of (±)-malaoxon dropped from 61.13min to 34.13min, (±)-isomalation’s from 47.60min to 34.32min. The shorter neutral red retention time was, the worse the stability of lysosomal membrane, the more serious damage of lysosomal membrane. Also these researches showed enantioselective effect, but no significant difference contrast to acetylcholine activity study, the differences were maintained at 2 times under. Earthworms as part of invertebrates, its coelom is an important component of the immune system, illustrated that organophosphorus pesticide-contaminated will result in immune injury of earthworms.
     (3)The recovery of AChE of the earthworm after treated by malathion, was studied that malathion inhibited acetylcholine of earthworms is a reversible process, after 48h exposure treatment, AChE activity of earthworms was inhibited 80%,when transfer to a clean soil within 7 days after,sustained inhibition enhanced,after, AChE activity gradually recovered,when detectioned in the 30th day, AChE activity was only inhibited 27.7%,AChE activity recovered 70%.
     (4)The comet assay was used to evaluate the damagement of coelomocytes DNA of earthworm by malaoxon, the result showed that malaoxon cause very serious DNA damage, when at the lowest expose concentration of 0.0016μg/cm~2, Very obvious smearing was observed, and on the control group also have a little degree of injury, We believed that high levels of genetic damage in itself was a universal feature of earthworms.
引文
[1]张一宾,孙晶.国内外有机磷农药的概况及对我国有机磷农药发展的看法[J].农药, 1999, 38(7): 1-3
    [2]Jamieson B.G.M. On the phylogeny and higer classification of the Oligochaeta[J]. Cladistics,1988,4(4):367-401
    [3]肖能文.乙草胺和转基因棉对蚯蚓Eisenia fetida的毒理效应[D].北京:中国科学院,2005
    [4]张一宾,张怿.农药[M].北京:中国物资出版社, 1997. 279-280
    [5]Garay A. S.Molecular chirality of life and intrinsic chirality of matter[J].Nature ,1978, 271: 186
    [6]de Jong L.P.A., Benshop H.P. Stereoselectivity of Pesticides[M].Amsterdam: Elsevier Science Publishers, 1988.109-149
    [7]Ohkawa H, Mikami N, Kasamatsu K. Stereoselectivity in toxicity and acetylcholinesterase inhibition by the optical isomers of papthion and papoxon[J].Agric.Biol.Chem.,1976a,40: 1857-1862
    [8]Ohkawa H, Mikami N, Miyamoto J. Stereospecific metabolism O-ethyl-O-2-nitro-5 -methylphenyl isopropyl phosphoramidothioate liver microsomal mixed oxidase[J].J.Agric.Biol.Chem.,1976b, 40:2125-2134
    [9]Allahyari R, Hollingshaus JG, Lapp RL et al. ResoIution, absolute configuration, and acute and delayed neurotoxicity of the chiral isomers of O-arylphenylphonothioate analogues related to leptophos[J].J.Agric.Food.Chem.,1980, 28: 594-598
    [10]Eya B.K., Fukuto T.R.. The effect of chiral debromoleptophos oxon isomers on acute and delayed neurotoxicity and their inhibitory activity against acetylcholinesterases and neurotoxic esterase[J].J.Agric.Food.Chem.,1985, 33: 884-888
    [11]Yen J.H., Tsai C.C., Wang Y.S.. Separation and toxicity of enantiomers of organophosphorus insecticide leptophos[J]. Ecotox.Environ.Safety.,2003, 55: 236-242
    [12]Wang Y.S., Tal K.T., Yen J.H.. Separation, bioactivity, and dissipation of enantiomers of the organophosphorus insecticide fenamiphos[J]. Ecotox. Environ.Safety., 2004, 57: 346-353.
    [13]Berkman C.E., Quinn D.A., Thompson C.M.. Kinetics of post-inhibitory reactions of AChE poisoned by chiral isomalathion: a surprising non-reactivation induced by the RP stereoisomers[J]. Chem.Res.Toxicol.,1993b, 6: 724-731
    [14]Ohkawa H, Mikami N, Miyamoto J. Stereoselectivity in metabolism of theoptical isomers of cyanofenphos (O-p-cyanophenyl O-ethyl phenylphosphonothioate) in rats and liver microsomes[J]. J.Agric.Biol.Chem.,1977b, 41: 369-374
    [15]Ueji M., Tomizawa C. Insect toxicity and anti-acetylcholinesterase activity of chiral isomers of isofenphos and its oxon[J].J.Pestic.Sci.,1986, 11: 447-453
    [16] Ueji M., Tomizawa C.. Metabolism of the insecticide isofenphos in rats[J].J.Pestic.Sci.,1987, 12: 269-275
    [17]Ueji M. Biological activity and metabolism of phosphoramidate insecticides[J]. J.Pestic.Sci., 1988, 13: 325-336
    [18]Aaron H.S., Michel H.O., Wittten B. et a. The stereochemistry of asymmetric phosphorus compounds II. Stereospecificity in the irreversible inactivation of cholinesterases by the enantiomorphs of an organophosphorus inhibitor[J].J.Am.Chem.Soc.,1958, 80: 456-459
    [19]Casida J.E., Leader H.. Resolution and biological activity of the chiral isomers of O-(4-bromo-2-chlorophenyl) O-ethyl S-propyl phosphorothioate (profenofos insecticide)[J]. J.Agric.Food.Chem., 1982, 30: 546-552
    [20] Cajaraville M.P., Bebianno M.J., Blasco J et al. The use of biomarkers to assess the impact of pollution in coastal environments of the Iberian Peninsula: a practical approach[J].Science of the total environment,2000,247(2-3): 295-311
    [21]Depledge M.H., Aagaard A, Gy?rk?s P. Assessment of trace metal toxicity using molecular, physiological and behavioural biomarkers[J].Marine Pollution Bulletin,1995, 31(1-3):19-27
    [22]万斌.生态毒理学中生物标志物研究进展[J].国外医学卫生学分册,2000,27(2):110-114
    [23]孔繁翔.环境生物学[M].北京:高等教育出版社,2000
    [24]Spurgeon D.J., Weeks J.M. et al. A summary of eleven years progress in earthwormecotoxicology[J]. Pedobiologia, 2004, 47(6):588-606
    [25]Decaens T, Mariani L, Lavelle P. Soil surface macrofaunal communities associated with earthworm casts in grasslands of the Eastern Plains of Colombia[J]. Applied. Soil Ecology,1999,13(1):87–100
    [26]张卫信,陈迪马,赵灿灿.蚯蚓在生态系统中的作用[J].生物多性,2007,15(2):142-153
    [27]Decaens T., Rangel A. F., Asakawa N., Thomas R. J.. Carbon and nitrogen dynamics in ageing earthworm casts in grasslands of the eastern plains of Colombia[J]. Biology and Fertility of Soils,1999,30(1-2):20–28
    [28]刘志贞,樊慧杰,康慧芳.蚯蚓体内一组脱氧核糖核酸酶的酶学性质研究[J]. China Biotechnology,2008,28(3):89-94
    [29]Pimentel D., Edwards C.A.. Pesticides and ecosystems[J]. Bioscience, 1982, 32 (7): 595-600
    [30]OECD Guideling for testing of chemicals NO.207, Earthworm acute toxicity test[S]
    [31] David J. Spurgeona, Claus Svendsena, Lindsay J. Lister et al. Earthworm responses to Cd and Cu under ?uctuating environmental conditions: A comparison with results from laboratory exposures[J]. Environmental pollution, 2005, 136(3):443-452
    [32]Peakall D.B.. Biomarkers, the way forward in environmental assessment. Toxicol.Exotoxicol.News.,1994,1:55-60
    [33]Spurgeon D.J., Ricketts H., Svendsen C. et al. Hierarchical Responses of SoilInvertebrates (Earthworms) to Toxic Metal Stress[J]. Environ. Sci. Technol,2005, 39(14):5327-5334
    [34]许碧君,陆光华.胆碱脂酶作为水生生物的生物标志物研究进展[J].2006,25(5):87-90
    [35]Rault M., Mazzia C., Capowiez Y.. Tissue distribution and characterization of cholinesterase activity in six earthworm species[J]. 2008, 71(10): 1832-1839
    [36]Magali Rault, Beatrice Collange, Christophe Mazzia et al. Dynamics of acetylcholinesterase activity recovery in two earthworm species following exposure to ethyl-parathion[J]. Soil Biology & Biochemistry, 2008,40(12): 3086-3091
    [37]Rao J.V., Pavan Y.S., Madhavendra S.S.. Toxic effects of chlorpyrifos onmorphology and acetylcholinesterase activity in the earthworm, Eisenia foetida[J]. Ecotoxicology and Environmental Safety, 2003,54(3):296-301
    [38]Branimir K.. Hackenberger, Davorka, Sandra Stepic. Effect of temephos on cholinesterase activity in the earthworm Eisenia fetida (Oligochaeta, Lumbricidae) [J]. Ecotoxicology and Environmental Safety, 2008,71(2):583-589
    [39] N.Chakra Reddy, J.Venkateswara Rao. Biological response of earthworm, Eisenia foetida (Savigny) to an organophosphorous pesticide, profenofos[J]. Ecotoxicology and Environmental Safety, 2008,71(2):574-582
    [40]Soveig,Konestabo, Sverdrup et al.Recovery of cholinesterase activity in the earthworm Eisenia Fetida savigny following exposure to chlorpyrifos[J]. Environmental Toxicology and Chemistry, 2007,26(9):1963-1967
    [41]孙存普.自由基生物学导论[M].北京:中国科学技术大学出版社,1999
    [42] Prakash M.,Gunasekaran, Elumalai K.. Effect of earthworm powder on antioxidant enzymes in alcohol induced hepatotoxic rats[J]. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES,2008, 12(4):237-243
    [43]Osman A.M., Den Besten P.J., Noort P.C.M. van. Menadione enhances oxyradical formation in earthworm extracts: vulnerability of earthworms to quinone toxicity[J] . Aquatic Toxicology,2003,65(1):101-109
    [44]胡玲.农药单一和复合污染对虹蝎蛋白和酶活力的影响研究[D].南京:南京农业大学,2006
    [45]王景安.蚯蚓超氧化物歧化酶理化性质及其提取条件的研究[D].天津:天津师范大学,2006
    [46]Schreck E., Geret F., Gontier L. et al. Neurotoxic effect and metabolic responses induced by a mixture of six pesticides on the earthworm Aporrectodea caliginosa nocturna[J].Chemosphere,2008,71(10):1832-1839
    [47]Pickett C.Q.,Lu A.Y.H.. Glutathione-S-transferases: gene structure, regulation,and biological function[J].Annual review of biochemistry,1989,58:743-764
    [48]Edwards.The function and regulation of glutathione-S-transferases in plants[J]. Abstracts of papers of the American chemical society, 1992,204:52-agro
    [49] Tuomas Lukkari, Mirka Taavitsainen, Markus Soimasuo et al. Biomarkerresponsers of the earthworm Aporrectodea tuberculata to copper and zinc exposure: differences between populations with and without earlier metal exposure[J]. Environmental Pollution ,2004,129(3):377–386
    [50]Booth L.H., Heppelthwaite V., Eason C.T. et al. Cholunesterase and Glutathione-S-transferases in the earthworm Apporectodea caliginosa as biomarkers of organophospharte exposure.Pesticide Performance and Monitoring. Proceedings of 51st New Zealand Plant Protection Conference,1998:138-142
    [51]Hans R.K., Khan M.A.,Farooq M. et al. Glutathione-S-transferases activity in an earthworm exposed to three insecticides[J]. Soil Biol Biochem,1993,25(4):509-511
    [52]Brown P.J., Long S.M., Spurgeon D.J. et al. Toxicological and biochemical responses of the earthworm Lumbricus rubellus to pyrene, a non-carcinogenic polycyclic aromatic hydrocarbon[J]. Chemosphere,2004,57(11):1675-1681
    [53] Sweet Li. Xenobiotic-induced apoptosis: significance and potential application as a general biomarker of response[J]. BIOMARKERS,1999, 4(4): 237-242
    [54]生秀梅,熊丽,唐红枫等.细胞色素P450酶系作为生物标志物在毒理学上的应用[J].四川环境,2005,24(3):47-50
    [55]Zhang W., Song Y.F., Gong P et al. Earthworm cytochrome P450 determination and application as a biomarker for diagnosing PAH exposure. Journal of Environmental[J] Monitoring,2006,8(9):963-967
    [56]Nusetti O., Parejo E., Esclapes J.M.M. et al. Acute-Sublethal Copper Effects on Phagocytosis and Lysozyme Activity in the Earthworm Amynthas hawayanus[J]. Environ. Contam. Toxicol, 1999,63(3):350-356
    [57] Weeks, Svendsen. Neutral red retention by lysosomes from earthworm(lumbricus rubellus) coelomocytes: a simple biomarker of exposure to soil copper[J]. Environmental Toxicology and Chemistry, 1996,15(10): 1801–1805
    [58]M.S.Maboeta, S.A.Reinecke, A.J.Reinecke. The Relation Between Lysosomal Biomarker and Population Responses in a Field Population of Microchaetus sp. (Oligochaeta) Exposed to the Fungicide Copper Oxychloride[J]. Ecotoxicology and Environmental 2002,52(3):280-287
    [59]Lynn h. booth, Kathryn o’Halloran. A comparison of biomarker responses in theearthworm aporrectodea caliginosa to the organophosphorus insecticides diazinon and chlorpyrifos[J].Environmental toxicology and chemistry, 2001,20(11):2494–2502
    [60]S.A. Reinecke, A.J. Reinecke. Biomarker response and biomass change of earthworms exposed to chlorpyrifos in microcosms[J]. Ecotoxicology and Environmental Safety,2007,66(1):92-101
    [61]A.J.Morgan,S.R.Sturzenbaum, C. Winters. Differential metallothionein expression in earthworm (Lumbricus rubellus) tissues[J]. Ecotoxicology and Environmental Safety,2004,57(1),11-19
    [62]Joanna Homaa, Ewa Olchawaa, Stephen R. Sturzenbaum et al. Early-phase immunodetection of metallothionein and heat shock proteins in extruded earthworm coelomocytes after dermal exposure to metal ions[J]. Environmental Pollution,2005, 135(2):275-280
    [63]Kurelec B.. The genotoxic disease syndrome[J]. Marine Environmental Research, 1993,35(4):341-348
    [64]Klobucar G.I.V., Pavlica M., Erben R et al. Application of the micronucleus and comet assays to mussel Dreissena polymorpha haemocytes for genotoxicity monitoring of freshwater environments[J]. Aquatic Toxicology, 2003, 64(1):15-23
    [65]P. Rajaguru, S. Suba, M. Palanivel et al. Genotoxicity of a Polluted River System Measured Using the Alkaline Comet Assay on Fish and Earthworm Tissues[J]. Environmental and Molecular Mutagenesis, 2003,41(2):85–91
    [66]A.A.Apte, R.S.Manerikar, V.S.Ghole. Application of DNA Diffusion Assay in Earthworm Coelomocytes[J]. Environmental Toxicology,2007,23(2):278-283
    [67]Tamiji Nakashima et al.8-Hydroxydeoxyguanosine generated in the earthworm Eisenia fetida grown in metal-containing soil[J]. Mutation Research, 2008, 654(2):138-144
    [68]Liu W.P., Gan J.Y., Schlenk D et al. Environmental Effects of Chiral Pesticides[J]. Proc.Natl.Acad.Sci.USA, 2005, 102(3):517-518
    [69]Williams A.Opportunities for Chiral Agrochemicals[J]. Pestic. Sci.,1996, 4 6:3-9
    [70]Liu W.P., Gan J.Y., Shneak D et al.Enantioselevtivity in environmental safety of current chiral insevticide[J]. Proc. Natl. Acad. Sci.,2004a,102:701-706
    [71]Liu W.P., Gan J.Y., Lee S et al. Selectivity in aquatic toxicity and biodegradation of bifenthrin and permethrin[J]. Environ.Toxicol.Chem.,2005b,24:1861-1866
    [72]McBIain W.A., Lewin V., Wolfe F.H.. Differing estrogenic activities for the enantiomers of o,p’-DDT in immature female rats[J].Can.J.Physiol.Pharmacol.,1976,54:629-632
    [73]卢定强,李衍亮,凌岫泉等.手性药物分离技术的研究进展[J].时珍国医国药,2009,20(7):1731-1734
    [74]Ashraf G, Hubert H, Hassan Y, et al. Application and comparison of immobilized and coated amylase[J].Talanta, 2006, 68: 602
    [75]Cirilli R, Simonelli A, Ferretti R, et al. Analytical and semipreparative high performance liquid chromatography enantioseparation of new substituted 1-thiocarbamoyl-3,5-diaryl-4,5-dihydro-(1H)-pyrazoles on polysaccharide-based chiral stationary phases in normal-phase, polar organic and reversed-phase conditions[J].Journal of Chromatography A, 2006, 1101: 198
    [76]李健,郑庆柱,董爱荣.甲胺磷降解菌的筛选及降解速率[J].东北林业大学学报, 2004, 32(1): 51-54
    [77]Lin K.D., Zhou S.S., Xu C et al. Enantiomeric resolution and biotoxicity of methamidophos[J]. J. Agric. Food Chem.,2006, 54: 8134-8138
    [78]张安平.环糊精对几种手性农药环境行为的影响[D].浙江:浙江大学,2006
    [79]Stewart DKR, Chisholm D, Ragab MTH. Long term persistence of parathion in soil[J].Nature,1971,229(5279),47-&
    [80]周珊珊.手性有机磷农药的稳定性及立体选择性生物行为研究[D].浙江:浙江大学,2009
    [81]Forget J, Bocquene G. Partial purification and enzymatic characterizaion of acetylcholinesterase from the intertidal marine copepod Tifriopus[J]. Comparative Biochemistry and Physiology Part B, 1999,123:345-350
    [82]Milesoki B.E., Chambers J.E., Chen W.L. et al. Common mechanism of toxicity: a cause study of organophosphorus pesticides[J]. Toxicol.Sci., 1998, 41:8-20
    [83] Lee K.E.. Some trends and opportunities in earthworm research[J]. Soil Biol Biochem,1992,24(12):1765-1772
    [84]郭永灿,王振中,赖勤等.农药污染对蚯蚓的群落结构与超微结构影响的研究[J].中国环境科学,1997,17(1):67-71
    [85]孔志明,臧宇,崔玉霞等.两种新型杀虫剂在不同暴露系统对蚯蚓的急性毒性[J].生态学杂志,1999,18(6):20-23
    [86] Mishra P.C., Pradhan S.C.. Inhibition and recovery kinetics of acetylcholinesterase activity in Drawida calebi and Octochaetona surensis, the tropical earthworms, exposed to carbaryl insecticide[J].Bulletin of environmental contamination and toxicology, 1998,60(6):904-908
    [87]Ellman G.L., Courtney K.D., Andres V. et al.A new and rapid colorimetric determination of acetylcholinesterase activity[J].Biochemical pharmacology,1961,7(2): 88-&
    [88]Filho M.V.S., Oliveira M.M., Salles J.B. et al. Methyl-paraoxon comparative inhibition kinetics for acetylcholinesterases from brain of neotropical fishes[J]. Toxicol. Lett. ,2004,153:247-254
    [89]Kitz R, Wilson I. Ester of methanesulfonic acid as irreversible inhibitors of acetylcholinesterase[J].Biol. Chem.,1962, 237:3245-3249
    [90]Main A. Affinity and phosphorylation constant for the inhibition of esterases by organophosphates[J].Science,1964,144:992 993
    [91]Sturm A., Hansen P.D et al. Cholinesterases of marine teleost fish:enzymological characterization and potential use in the monitoring of neurotoxic contamination[J]. Marine Environmental Research, 1999, 47: 389-398
    [92]徐家驹.有机磷杀虫剂的生化[J].生命的化学,1989,9:22-24
    [93]Dell’Omo G, Turk A., Shore R.E. Secondary poisoning in the common shrew(Sorex araneus) fed earthworms exposed to an organophosphate pesticide[J].Environmental Toxicology and Chemistry, 1999,18:237–240
    [94]Booth L.H., O’Halloran K.A comparison of biomarker responses in the earthworm Aporrectodea caliginosa to the organophosphorus insecticides diazinon and chlorpyrifos[J].Environmental Toxicology and Chemistry, 2001, 20:2494–2502
    [95]Booth L.H, Hodge S, O’Halloran K. Use of cholinesterase in Aporrectodeacaliginosa (Oligochaeta; Lumbricidae) to detect organophosphatecontamination: Comparison of laboratory tests, mesocosms, and ?eld studies[J].Environmental Toxicology and Chemistry, 2000,19:417–422
    [96]Panda S.,Sahu S.K.. Recovery of acetylcholine esterase activity of Drawida willsi (Oligochaeta) following application of three pesticides to soil[J]. Chemosphere, 2004, 55:283–290
    [97]Kristoff G, Guerrero N.V., de D’Angelo A.M.P. et al. Inhibition of cholinesterase activity by azinphos-methyl in two freshwater invertebrates:Biomphalaria glabrata and Lumbriculus variegatus[J]. Toxicology, 2006,222:185–194
    [98]Lowe D.M., Moore M.N., Evans B.M..Contaminant impact on interactions of molecular probes with lysosomes in living hepatocytes from dab Limanda limanda[J].Mar.Ecol.Prog.Ser.,1992,91:135-140
    [99]Salagovic J, Gilles J, Verschaeve L, Kalina I. The comet assay for the detection of genotoxic damage in the earthworms: a promising tool for assessing the biological hazards of polluted sites[J].Folia. Biol.,1996,42(1-2): 17-21
    [100]Reinecke S.A, Reinecke A.J. The comet assay as biomarker of heavy metal genotoxicity in earthworms[J].Arch.Environ.Contain.Toxicol,2004,46(2):208-15
    [101] Zang Y, Zhong Y, Luo Y, Kong ZM.Genotoxicity of two novel pesticides for the earthworm Eisenia fetida[J]. Environ. Pollut,2000, 108(2): 271-8
    [102]OECD Guideling for testing of chemicals, NO207. Earthworm acute toxicity test.
    [103]Weeks J.M, Svendsen C.Neutral red retention by lysosomes from earthworm(Lumbricus rubellus) coelomocytes: a simple biomarker of exposure to soil copper[J].Environ.Toxicol.Chem.,1996,15:1801-1805
    [104] Singh N.P., McCoy M.T., Tice RR et al. A simple technique for quantitation of low levels of DNA damage in individual cells[J]. Exp.Cell. Res., 1988,175:184-191
    [105]Hostette R.K., Cooper E.L. Celomocytes as effector cells in earthworm immunity[J]. Imunological communications, 1972,1(2):155-&
    [106]Engelmann P, Palinkas L, Cooper EL et al. Monoclonal antibodies identify four distinct annelid leukocyte markers[J]. Developmental and comparative immunology, 2005,29(7):599-614
    [107] Mitchelmore C.L., Chipman J.K. DNA strand breakage in aquatic organisms andthe potential value of the comet assay in environmental monitoring[J].Mutat. Res.,1998,399:135-147
    [108]Bajpayee M, Pandey A.K., Zaidi S et al. DNA damage and mutagenicity induced by endosulfan and its metabolites[J]. Environ Mol Mutagen,2006,47:682–692

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700