木质素催化转化制芳香化合物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木质素是木质纤维素生物质的主要成分之一。从分子角度看,木质素是一种无定型的、结构复杂的三维网状芳香类天然高聚物,它是自然界中唯一能提供大宗可再生芳香基化合物的天然资源。受环境保护和石油资源短缺压力的影响,如何将木质素高效利用已经成为研究热点课题之一。木质素通过催化转化可制备石化工业中重要的基础原料,如苯、甲苯、二甲苯、乙苯、异丙苯等高值芳香族化工产品,而目前这些芳香族化合物的生产几乎全部依赖石油或煤等不可再生资源。本论文探索研究了利用木质素催化转化制备高附加值的芳香族化合物,主要结果如下:
     1.木质素催化转化制取三苯的研究
     考察了不同孔径和酸度的HZSM-5、HY和MCM-22催化剂,优选了木质素催化裂解制备三苯BTX(苯、甲苯、二甲苯)的HZSM-5催化剂。同时详细研究了木质素催化裂解的反应过程及其反应条件影响(包括反应温度、载气流速、催化剂/木质素配比)。木质素催化裂解产物主要由苯、甲苯和二甲苯构成,不同反应条件对产物分布影响极大:BTX的选择性随着反应温度的升高而增加,但过高的反应温度也增强了二次裂解反应,使得大于600℃时BTX的产率明显下降;催化剂用量的增加有利于提高BTX的芳香选择性,但过量的催化剂使得木质素裂解油在催化剂上进一步裂解生成烷烃、烯烃类产物,从而降低了BTX的产率。实验表明,当裂解温度为550℃、载气流速为300ml/min.催化剂与木质素的质量配比等于2时,木质素催化裂解得到的BTX芳香选择性达到79.8C-mol%, BTX碳产率为25.3%C-mol%。详细分析了木质素热裂解和催化裂解过程,发现二者最大的区别在于:与热裂解相比,催化裂解过程得到的BTX收率明显增加。木质素热裂解主要是大分子聚合物解聚生成小分子含化氧合物;催化裂解过程主要分两步:一是通过热裂解过程形成大量中间含氧化合物,二是中间含氧化合物在催化剂上进一步经过脱羧基、脱羰基、脱水反应形成BTX或其他碳氢化合物。
     2.木质素催化转化制备乙苯研究
     以木质素为原料定向制备乙苯可为石化工业提供重要的基础产品。本论文通过木质素定向催化制苯与苯烷基化的有机耦合,探索研究了木质素定向催化转化制乙苯的反应过程。利用优选Re-Y/HZSM-5(25)复合催化剂,将木质素定向催化转化为苯,在优化的反应条件下获得了苯的选择性和产率分别为83.2C-mol%和22.7C-mol%;同时利用HZSM-5(25)催化剂和烷基化试剂乙醇进行烷基化反应制备乙苯,在烷基化温度350℃C、油醇比为1、载气(N2)流速为150ml/min的优化反应条件下,产物中乙苯的选择性达到62.5C-mol%;烷基化过程的副产物主要是二乙苯和甲苯。利用产物分析并结合催化剂表征,详细分析了木质素定向催化制苯与苯烷基化过程的反应通道。
     3.木质素催化转化制异丙苯初步研究
     利用苯和烷基化试剂(乙醇和异丙醇)作为木质素催化裂解模型化合物,初步研究了苯烷基化转化为异丙苯的反应过程。采用HZSM-5(50)催化剂和300℃C反应温度时,苯的转化率为27.5%,醇几乎完全转化,乙苯和异丙苯的选择性约为75.4C-mol%;提高反应温度显著增加了苯的转化率,同时也导致副产物(包括甲苯、二乙苯、正丙苯、丁苯)的大量形成;当烷基化温度低至280℃C时,有机产物中乙苯和异丙苯的总芳香选择性可达91.7C-mol%。初步探讨了苯烷基化转化为异丙苯的反应过程和机理。
Lignin constitutes one of major components of lignocellulosic biomass. It was revealed that lignin is a three dimensional amorphous polymer and lignin is the only nature renewable resource which can provide large quantities of aromatic compounds. In the recent years, there is considerable interest in the production of chemicals and bio-fuels from lignin through pyrolysis, catalytic pyrolysis, hydrogenationm reduction, gasification, biochemical conversion and so on. Benzene, Toluene, and xylenes (BTX) together with ethylbenzene and cumene are are important aromatic platform compounds. By now the production of these aromatic platforms are based on non-renewable resources such as oil or coal. Our research is foucs on how to use lignin to produce high value-added aromatic compounds.
     1. Production of BTX through catalytic depolymerization of lignin
     In present work, we investigated catalysts with different pore size and acidity. The transformation of lignin into benzene, toluene, and xylenes was studied over the HZSM-5, HY and MCM-22catalysts, and the HZSM-5catalyst showed the highest carbon yield of BTX. The reaction conditions strongly impacts the distribution of the products:The aromatic selectivities of BTX increased by rising the reaction temperature, but the BYX yield decreased when the reaction temperature reaches over600℃due to the second cracking of organics liquid. It was found that the BTX selectivity showed a positive dependence on the catalyst/lignin ratio, however, the BTX yield showed a slight decrease, which accounts for an increase in yield of gas products and a decrease in liquid yield.. The carbon yield of BTX reached about25.3C-mol%and the aromatic selectivities of BTX reached about79.8C-mol%over HZSM-5catalyst under T=550℃,f(N2)=300cm3min-1, and catalyst/lignin ratio of2. Catalyst plays an important role in the process of depolymerization and the ultimate organic liquid has a very low yield of BTX without the addition of catalyst The main components of lignin pyrolysis products are small molecular oxygen containing compounds. Formation of BTX through catalytic cracking of lignin proceeded through lignin depolymerizaton followed by the dehydration, decarboxylation and decarbonylation process.
     2. Directional synthesis of ethylbenzene through catalytic transformation of lignin
     This work explored the production of ethylbenzene from lignin through the directional catalytic depolymerization of lignin into the aromatic monomers followed by the selective alkylation of the aromatic monomers. For the first step, the aromatics selectivity of benzene derived from the catalytic depolymerizationof lignin over the composite catalyst of Re-Y/HZSM-5(25) at600℃. The lignin-derived oil contains83.2C-mol%benzene.For the alkylation of the aromatic monomers in the second step, the selectivity of ethylbenzene was about62.5C-mol%at T=35O℃, feed: EtOH=1:1(in mol ratio), WHSV=1.0.oover the HZSM-5(25) catalyst. The main by-products include di-ethylbenzene and toluene. Increase of benzene content in the reactants is useful to restrain the generation of diethylbenzene, and decrease the reaction temperature can effectively restrain the formation of toluene
     3. Exploration the production of cumene from lignin
     Use benzene, ethanol, isopropanol as model compounds to produce ethylbenzene and cumene. As the selective production of ethylene and propylene from bio-oil can be achieved, this study laid a foundation to future research——All raw materials derived from biomass. The aromatics selectivity of ethylbenzene and cumene reached about75.4C-mol%over HZSM-5(50) catalyst and the conversion of alcohols (ethanol and isopropano) in our test range near100%Rise the reaction temperature can largely enhance the conversion of benzene but can also increase the formation of by-products (toluene, diethylbenzene, propylbenzene). When alkylation temperature is280℃, the total aromatics selectivity of ethylbenzene and cumene can reach91.7C-mol%。This dissertation studies preliminarily the mechanism and reaction pathway of alkylation of benzene to cumene.
引文
1. 世界能源理事会,阎季惠译,新的可再生能源未来发展指南[M].北京:海洋出版社,1998,314.
    2. 贾敬敦,孙康泰,蒋大华,等.2014.我国生物质能源产业科技创新发展对策研究[J].中国农业科技导报.
    3. 马君,马兴元,刘琪.2012.生物质能源的利用与研究进展[J].安徽农业科学.40(4),2202—2206.
    4. 李景明,薛梅.中国生物质能利用现状与发展前景[J].2010.农业科技管理.29(2).
    5. 张齐生,马中青,周建斌.生物质气化技术的再认识[J].2013.南京林业大学学报.37(1).
    6. Zakzeski, J., Bruijnincx, P.C.A., Jongerius, AL., et al., The catalytic valorization of lignin for the production of renewable chemicals.2010. Chem. Rev.110,3552-3599.
    7. Calvo-Flores, F.G., Dobado, J.A., Lignin as Renewable Raw Material.2010. ChemSusChem 3,1227-1235.
    8. Sannigrahi, P., Pu, Y, Ragauskas, A., Cellulosic biorefineries-unleashing lignin opportunities.2010. Curr. Opin. Environ. Sustainability 2,383-393.
    9. Pandey, M.P and Kim, C.S, Lignin Depolymerization and Conversion:A Review of Thermochemical Methods.2011. Chemical Engineering&Technology 34,29-41.
    10. Rencoret, J., et al., Lignin composition and structure in young versus adult eucalyptus globulus plants.2011. Plant Physiology 155,667-682
    11. Chakar, F. S.; Ragauskas, A. J. Review of current and future softwood kraft lignin process chemistry.2004. Ind. Crops Prod 20,131.-141.
    12. Rio, C.J., et.al., Structural Characterization of the Lignin from Jute (Corchoruscapsularis) Fibers.2009. J. Agric. Food Chem.57,10271-10281
    13. Lu F., Ralph J., J. Preliminary evidence for sinapyl acetate as a lignin monomer in kenaf. 2002. Chem. Soc. Chem. Commun.1,90-91.
    14. Morreel K., Ralph J., Lu F., Goeminne G.,et al. Phenolic Profiling of Caffeic Acid O-Methyltransferase-Deficient Poplar Reveals Novel Benzodioxane Oligolignols.2004. PLANT PHYSIOLOGY.136,4023—4036
    15. Ralph J., Lapierre C, Marita J M., et al. Elucidation of new structures in lignins of CAD-and COMT-deficient plants by NMR.2001. Phytochemistry.57,993-1003.
    16. Schmidt, J.A, Rye, C.S., Gurnagul, N. Lignin inhibits autoxidative degradation of cellulose[J].1995. Polym.Degrad. Stab.49:291-297.
    17.杨淑惠.植物纤维化学[M].第三版.北京:中国轻工业出版社,2001.
    18. Baumberger S., Dole P., Lapierre C.J., Using Transgenic Poplars to Elucidate the Relationship between the Structure and the Thermal Properties of Lignins.2002. Agric. Food Chem.50,2450-2453.
    19. Ralph J., Brunow G., Harris P J., et al., Recent Advances in Polyphenol Research.2008. BlackwelL 36-66
    20.. Nakashima J. Chen F, Jackson L..et.al. Multi-site genetic modification of monolignol biosynthesis in alfalfa (Medicago sativa):effects on lignin composition in specific cell types. 2008. New Phytol.179,738-750
    21. Ruel K, Berrio-Sierra J., Derikvand M M., etal Impact of CCR1 silencing on the assembly of lignified secondary walls in Arabidopsis thaliana.2009. New PhytoL 184,99-113
    22. Shi C., Koch G., Ouzunova M., et al. Comparison of maize brown-midrid isogenic lines by cellular UV-microspectrophotometry and comparative transcript profiling.2006. Plant Mol Biol. 62,697-714.
    23. Davison B H., Drescher S R., Tuskan G A., et.aL "Variation of S/G ratio and lignin content in a Populs family influences the release of xylose by dilute acid hydrolysis.2006. Biochem. Biotechnol.132,427-435
    24. R.J.A. Gosselink, A. Ab(a|")cherli H. Semke, et al. Analytical protocols for characterisation of sulphur-free lignin. Industrial Crops and Products,2004,19,271-281.
    25.谢宝东,邱学青,王卫星.木质素改性与木质素水煤浆添加剂[J].造纸科学与技术,2003,22(6),120-124.
    26. Costa Sousa, Chundawat S., Dale B.E., "Cradle-to-grave" assessment of existing lignocellulose pretreatment technologies.2009. Current Opinion in Biotechnology. 20,339-347.
    27. Jiang G Z., Daniel J. NowakowskL, et.al. A systematic study of the kinetics of lignin pyrorysis.2010. ThermochimicaActa.498,61-66.
    28. Koljonen K., Osterberg M., Kleen., et al. Precipitation of lignin and extractives on kraft pulp: effect on surface chemistry surface morphology and paper strength.2004. Cellulose. 11,209-224.
    29. Toledano A., Garcia I., Mondragon., et aL Lignin separation and fractionation by ultrafiltration.2010. Separation and Purification Technology,71,38-43.
    30. Hamelinck C N, van Hooijdonk G, Faaij APC. Ethanol from lignocellulosic biomass: Techno-economic performance in short-middle-and long-term.2005. Biomass Bioenerg.28, 384-410.
    31. Sanchez O J, Cardona C A. Trends in biotechnological production of fuel ethanol from different feedstocks.2008. Bioresource Technology.99,5270-5295.
    32.陈洪章.蒸汽爆碎技术原理及应用[M].北京:化学工业出版社,2007,25-30.
    33..余强,庄新姝,袁振宏,等.木质纤维素类生物质高温液态水预处理技术[J].化工进展,2010,29(11),2177-2182.
    34. Yu Q, Zhuang X,Yuan Z, et al. Step-change flow rate liquid hot water pretreatment of sweet sorghum bagasse for enhancement of total sugars recovery.2011. Applied Energy.88, 2472-2479.
    35. Ando H, Sakaki T, Kokusho T, et al. Decomposition behavior of plant biomass in hot-compressed water.2000. Ind. Eng. Chem. Res.39,3688-3693.
    36. Li W-z, Xu J, Wang J, et al. Studies of monosaccharide production through lignocellulosic waste hydrolysis using double acids.2008. Energy & Fuels.22,2015-2021.
    37. Cara C, Ruiz E, Oliva J M, et al. Conversion of olive tree biomass into fermentable sugars by dilute acid pretreatment and enzymatic saccharification.2008 Bioresource Technology.99, 1869-1876.
    38. Kim K H, Tucker M, Nguyen Q. Conversion of bark-rich biomass mixture into fermentable sugar by two-stage dilute acid-catalyzed hydrolysis.2005. Bioresource Technology.96, 1249-1255.
    39. Wyman C E, Dale B E, Elander R T, et al. Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover.2005. Bioresource Technology.96,2026-2032.
    40. Mosier N, Wyman C. Dale B, et al. Features of promising technologies for pretreatment of lignocellulosic biomass.2005. Bioresource Technology.96,673-686.
    41.余强,庄新姝,袁振宏,等.木质纤维素类生物质制取燃料及化学品的研究进展.2012.化工进展.31,784-791.
    42. Wallberg Ola., Linde Marie., Jonsson Ann-Sofi. Extraction of lignin and hemicelluloses from kraft black liquor.2006. Conference of the European-Membrane-Society.199,413-414.
    43. Bozell, J. J.; Holladay, J. E.; Johnson, D.; White, J. F. Top Value Added Candidates from Biomass, Volume Ⅱ:Results of Screening for Potential Candidates from Biorefinery Lignin; Pacific Northwest National Laboratory:Richland, WA,2007.
    44. Guerra A., Mendonca R., Ferraz A., et al. Structure characterization of lignin during Pinus taeda wood treatment with Ceriporipsis subvermispora.2004. Applied and Environmental Microbiolopdgy.70,4073-4078.
    45. Kevin M., Holtman Hou., et al., Quantitative 13C-NMR Characterization of Milled Wood Lignins Isolated by Different Milling Techniques.2006. Journal of Wood Chemistry and Technology.26,21-34.
    46. Sannigrahi P., Ragauskas A J., Miller S J., Lignin Structural Modifications Resulting from Ethanol Organosolv Treatment of Loblolly Pine.2010. Energy Fuels 24,683-689.
    47. Doherty W O S., Mousavioun Payam., Fellows C M.,Value-adding to cellulosic ethanol: Lignin polymers.2011. Industrial Crops and Products.33,259-276.
    48. Vila C., Santos V, Paraj O J., Recovery of lignin and furfural from acetic acid-water-HCI pulping liquors.2003. Bioresource Technology.90,339-344.
    49. Roberts. Process for extracting lignin from lignocellulosic material using an aqueous organic solvent and an acid neutralizing agent [P]. United States Patent,4,746,401(1988-05-24)
    50. Buranov A U., Ross K A, Giuseppe Mazza., Isolation and characterization of lignins extracted from flax shives using pressurized aqueous ethanol.2010. Bioresource Technology. 101:7446-7455.
    51. Jorge Rencoret, Gisela Marques., Ana Gutierrez., Isolation and structural characterization of the milled-wood lignin from Paulownia fortune wood.2009. Industrial Crops and Products. 30,137-143.
    52. Xu F., Sun J X., Sun R C., Comparative study of organosolv lignins from wheat straw.2006. Industrial Crops and Products.23,180-193.
    53.刘玉.三倍体毛白杨EMCC蒸煮和TCF漂白及其术素结构变化的研究[D].广州:华南理工大学博士学位论文,2005.
    54. Gallezot, P., Catalytic routes from renewables to fine chemicals.2007. Catal. Today,121, 76-91
    55. Zhao Y, Deng L., Liao B.,et al., Aromatics Production via Catalytic Pyrolysis of Pyrolytic Lignins from Bio-Oil. 2010. Energy Fuels.24,5735-5740.
    56. Kleinert M., Barth T., Phenols from Lignin.2008. Energy Fuels 31,736-745
    57. Deng, H.B., Lin, L., Liu, S.J.,2010. Catalysis of Cu-doped Co-based perovskite-type oxide in wet oxidation of lignin to produce aromatic aldehydes. Energy Fuels 24,4797-4802
    58. Jackson, M.A., Compton, D L., Boateng, A A.,2009. Screening heterogeneous catalysts for the pyrolysis of lignin. J. Anal. Appl. Pyrolysis 85,226-230
    59. Kleinert, M., Gasson, J.R., Barth, T,2009. Optimizing solvolysis conditions for integrated depolymerisation and hydrodeoxygenation of lignin to produce liquid biofuel. J. Anal. Appl. Pyrolysis 85,108-117
    60. Mullen, C.A., Boateng, A.A.,2010. Catalytic pyrolysis-GC/MS of lignin from several sources. Fuel Process Technol. 91,1446-1458
    61. Nowakowski, D.J., Bridgwater, AV, Elliott, D.C., Meier, D., Wild, P.,2010. Lignin fast pyrolysis:Results from an international collaboration. J. Anal. AppL Pyrolysis 88,53-72.
    62.林鹿,何北海,孙润仓,胡若飞,化学进展,2007,第19卷,第78期1206-1216
    63. Nemoto. et.al., Functionalization of lignin:Synthesis of lignophenol-graft-poly-(2ethyl-2-oxazoline) and its application to polymer blends with commodity polymers.2012. Journal of Applied Polyer Science 123,2636-2642
    64. El Mansoiori, N.E.,Q.Yuan,and F. Huang,Synthesis and characterization of kraft lignin-based epoxy resins, BioResources,2011.6(3),2492-2503.
    65. Guo, D.L.,et al.,Catalytic effects ofNaOH and Na 2C03 additives on alkali lignin pyrolysis and gasification. Applied Energy,2012.95,22-30.
    66. Ma, Z.,E. Troussard,and J.A.Van Bokhoven,Controlling the selectivity to chemicals from lignin via catalytic fast pyrolysis. Applied Catalysis A:General,2012.423-424:p.130-136.
    67. Beis,S.H.,et al?,Fast pyrolysis oflignins. BioResources,2010.5(3),1408-1424.
    68. Jiang, G,DJ. Nowakowski,and A. V Bridgwater, Effect of the temperature on the composition of lignin pyrolysis products. Energy and Fuels,2010.24(8),4470-4475.
    69. Shen, D.K?,et al?,The pyrolytic degradation of wood-derived lignin from pulping process. Bioresource Technology,2010.101(15),6136-6146.
    70. Cheng, Y-T.,et al.,Production of Renewable Aromatic Compounds by Catalytic Fast Pyrolysis of Lignocellulosic Biomass with Bifunctional Ga/ZSM'5 Catalysts. Angewandte Chemie-Intemational Edition,2012.51(6),387-1390.
    71. Valle,B.,et al., Selective Production of Aromatics by Crude Bio-oil Valorization with a Nickel-Modified HZSM-5 Zeolite Catalyst. Energy & Fuels,2010.24,2060-2070.
    72. Gogotov,A.R,N.A. Kybalchenko, and A.D. Sergeev, Preparation of aromatic hydroxy-aldehyde(s) such as vanillin and syringaldehyde by oxidation of lignin-containing material in presence of oxidised white alkali from cellulose acetate production. As Sibe Irkut Organic Chem.
    73. Kozlov,LA., et al.,Method of synthesis of aromatic aldehydes involves synthesizing aromatic aldehydes by alkaline nitrobenzene oxidation of lignin from leafy wood species in presence of violuric acid as organic addition. As Sibe Chem & Chem Techn Inst
    74. Kozlov, I.A.,et al., Method of synthesis of aromatic aldehydes by oxidation of lignins in the presence pf an oxidizing mixture, As Sibe Chem & Chem Techn Inst
    75. Das, L.,P. Kolar,and R. Sharma-Shivappa, Heterogeneous catalytic oxidation of lignin into value-added chemicals. Biofuels,2012.3(2),155-166.
    76. Araujo, J.D.P., C.A, Grande, and A.E. Rodrigues,Vanillin production from lignin oxidation in a batch reactor. Chemical Engineering Research and Design,2010.88(8),1024-1032.
    77. Zhang, J., H. Deng, and L. Lin, Wet Aerobic Oxidation of Lignin into Aromatic Aldehydes Catalysed by a Perovskite-type Oxide:LaFe(1-x)Cu(x)0(3) (x=0,0,1,0.2). Molecules,2009.14(8),2747-2757.
    78. Cotoruelo,L.M.,et al.,Adsorption of oxygen-containing aromatics used in petrochemical, pharmaceutical and food industries by means of lignin based active carbons. Adsorption,2011. 17(3),539-550.
    79. Yan,N.,et aL,Hydrodeoxygenation of lignin-derivedphenols into alkanes by using nanoparticle catalysts combined with Brensted acidic ionic liquids. Angewandte Chemie-International Edition,2010.49(32),5549-5553.
    80. Lee, C.R.,et aL,Catalytic roles of metals and supports on hydrodeoxygenation of lignin monomer guaiacoL Catalysis Communications,2012.17,54-58.
    81. Long J X., Zhang Q., Wang T J., et al., An efficient and economical process for lignin depolymerization in biomass-derived solvent tetrahydrofuran.2013. Bioresouce Technology. 154,10-17.
    82. Yoshikawa T., Shinohara S., Yagi T., et al., Production of phenols from lignin-derived slurry liquid using iron oxide catalyst.2013. Applied Catalysis B-Environmental.146,289-297.
    83. Fu D B., Farag S., Chaouki J., et aL, Extraction of phenols from lignin microwave-pyrolysis oil using a switchable hydrophilicity solvent.2013 Bioresouce Technology.154,101-108.
    84. Lin J., Koda K., Kubo S., et al., Improvement of Mechanical Properties of Softwood Lignin-Based Carbon Fibers.2014. Journal of wood chemistry and Technology 34,111-121.
    85. Ahn Y, Kang Y, Park B., et al., Influence of Lignin on Rheological Behaviors and Electrospinning of Polysaccharide Solution.2014 Journal of Applied Polymer Science.131
    86.83. Azarpira A., Ralph J., Lu F C., Catalytic Alkaline Oxidation of Lignin and its Model Compounds:a Pathway to Aromatic Biochemicals.2014. Bioenergy Reserch 7,78-86.
    87. Herreros J M., Jones A., Sukjit, E., et al., Blending lignin-derived oxygenate in enhanced multi-component diesel fuel for improved emissions 2014. Applied Energy.116,58-65.
    88. Kim S S., Lee H W., Ryoo R., et al., Conversion of Kraft Lignin Over Hierarchical MFI Zeolite.2014. Journal of Nanoscience and Nanotechnology.14,2414-2418.
    89. Zhang X H, Wang T J., Ma LL., et al., Production of cyclohexane from lignin degradation compounds over Ni/ZrO2-SiO2 catalysts.2013. Applied Energy.112,533-538.
    90. Sequeiros A, Serrano L., Briones,R., et al., Lignin liquefaction under microwave heating. 2013 Journal of Applied Polymer Science.130,3292-3298.
    91. Chenna N K, Jaaskelainen A S., Vuorinen T., Rapid and Selective Catalytic Oxidation of Hexenuronic Acid and Lignin in Cellulosic Fibers.2013. Industrial & Engineering Chemistry Research.52,17744-17749.
    92. Parsell T H., Owen, B C., Klein I., Cleavage and hydrodeoxygenation (HDO) of C-O bonds relevant to lignin conversion using Pd/Zn synergistic catalysis.2013 Chemical Science.4, 806-813.
    93. Azadi P., Inderwildi O R., Farnood R., et al, Liquid fuels, hydrogen and chemicals from lignin:A critical review.2013 Renewable & Sustainable Energy Reviews.21,506-523.
    94. Alexy P., Kosikova B., Podstranska G The effect of blending lignin with polyethylene and polypropylene on physical properties.2000. Polymer.41:4901-4908.
    95. Tatiana D., Galina T., Vilhelmina J/, et al. Characterization of the radical scavenging activity of Lignins-natural antioxidants.2004. Bioresource Technology.95:309-317.
    96. Liu G Y, Qiu X Q., Xing D S., et al. Phenolation modification of wheat straw soda lignin and its utilization in lignin-based phenolic formaldehyde resins. International Symposium on Emerging Technologies of Pulping and Papermaking,3rd,Guangzhou,2006.
    97.李凤起,朱书全.木质素表面活性剂及木质素磺酸盐的化学改性方法[J].精细石油化工,2001(2),15-17.
    98. Park Y, Doherty W O S, Halley P J., Developing lignin-based resin coatings and composites. 2008. Ind. Crops Prod.27,163-167.
    99. Perez J M., Oliet M., Alonso M V, Rodriguez F., Cure kinetics of lignin-novolac resins studied by isoconversional methods.2009. Thermochim. Acta,487,39-42
    100. Tudorachi N., Cascaval N C., Rusu M., Biodegradable polymer blends based on polyethylene and natural polymers:degradation in soil.2000. Polym Eng 20,287-304.
    101. Wild P D., Van Der L R., Kloekhorst A., et al. Lignin valorisation for chemicals and (transportation) fuels via (catalytic) pyrolysis and hydrodeoxygenation[J].2009. Environmental Progress & Sustainable Energy,28,461-469.
    102. Caballero J A., Font R., Marcilla A., Study of the primary pyrolysis of kraft lignin at high heating rates:Yields and kinetics.1996. Journal of Analytical and Applied Pyrolysis.36(2), 159-178.
    103.武书彬,向冰莲,刘江燕.工业碱木素热裂解特性研究[J].北京林业大学学报,2008,30(5),143-147.
    104. Ma Z Q., Troussard E., Van Bokhoven J A., Controlling the selectivity to chemicals from lignin via catalytic fast pyrolysis 2012. Applied Catalysis a-General.
    105. Li X Y, Su L, Wang Y J, et al. Catalytic fast pyrolysis of kraft lignin with HZSM-5 zeolite for producing aromatic hydrocarbons.2012. Frontiers of Environmental Science & Engineering. 6(3),295-303.
    106. Horacek J., Homola F., Kubickova L, et al. Lignin to liquids over sulfided catalysts[J].2012. Catalysis Today.179(1),191-198.
    107. Finch K B H., Richards R M., Richel A., et al. Catalytic hydroprocessing of lignin under thermal and ultrasound conditions.2012. Catalysis Today.196(1),3-10.
    108. Sharma R. K.; Bakhshi N. N., Upgrading of wood-derived bio-oil over HZSM-5.1991. Bioresour. Technol. 35,57-66.
    109. Adjaye J D., Bakhshi N N., Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio-oil. Part Ⅰ:Conversion over various catalysts.1995. Fuel Process. Technol. 45, 161-183.
    110.路瑶,魏贤勇,宗志敏,等木质素的结构研究与应用.2013化学进展.25.
    111. Fang Z., Sato T,Smith J R L., et al. Reaction chemistry and phase behavior of lignin in high temperature and supercritical water.2008. Bioresource Technology.99,3424-3430.
    112. Huber G W., Corma A., Synergies between bio-and oil refineries for the production of fuels from biomass.2007. Angew. Chem., Int Ed.46,7184-7201.
    113. Huber, G. W.; Iborra, S.; Corma, A. Synthesis of Transportation Fuels from Biomass: Chemistry,. Catalysts and Engineering.2006. Chem. ReV 106,4044-4098.
    114. Corma A., Iborra, S.,Velty A., Chemical Routes for the Transformation of Biomass into Chemicals.2007. Chem. ReV 107,2411-2502.
    115. Xu Y,et al., High efficient conversion of CO2-rich bio-syngas to CO-rich Bio-syngas using biomass char:a useful approach for production of bio-methanol from bio-oil 2011. Bioresource Technology.102,6239-6245
    116. Mohan D., Pittman C U., and Steele P H., Pyrolysis of wood/biomass for bio-oil:A critical review.2006. Energy & Fuels.20(3),848-889.
    117. Gayubo,A.G.,et aL.,Olefin Production by Catalytic Transformation of Crude Bio-Oil in a Two-Step Process.2010. Ind. Eng. Chem. Res.49(1),123-131.
    118. Johnson D K., Chornet E., Zmierczak W., Conversion of lignin into a hydrocarbon product for blending with gasoline.2002 ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY 223, U583-U584.
    119. Pan H, Todd F., Shupe., et al. Characterization of liquefied wood residues from different liquefaction conditions.2007. Polymer Science,105,3739-3746.
    120. Saisu M., Sato T, Watanabe M., et al. Conversion of lignin with supercritical water-phenol mixtures.2003. Energy Fuels.17,922-928.
    121. Li H.,Yuan X Z., Zeng G M., et al. Progress in enviromentzl science and technology:Sub-and supercritical liquefaction of rice straw in the presence of ethanol-water and 2-propanol-water mixture.2007. Energy.17,1341-1345.
    122. Edwin D., Marieke K., Didier P., et al.Lignin deplymerization in hydrogen-onor solvents. 1999. HolZofrsehung.53 (6),611-616.
    123. Sharypov VI., Marin N., Beregovtsova N G., et al., Co-pyrolysis of wood biomass and synthetic polymer mixtures. Part l:influence ofexperimental conditions on the evolution of solids, liquids and gases.2002. Journal of Analytical Applied Pyrolysis.64,15-28.
    124. Baker F S., Griffith W L., Compere A L., Low-Cost Carbon Fibers from Renewable Resources, Automotive light weight materials.2005 FY, 187-196.
    125. Eckert R C., Abdullah Z., United States Patent US 0318043.
    126. Baker F S., Utilization of Sustainable Resources for Materials for Production of Carbon Fiber Structural and Energy Efficiency Application. Nordic Wood Biorefinery Conference, March 22-24,2011. Tockholm, Sweden.
    127. Kadla J F., Kubo S.,Venditti R A, et al., Lignin-based carbon fibers for composite fiber applications.2002. Carbon.40,2913-2920
    128. Maradur S P., Kim C H., Kim S Y, et al., Preparation of carbon fibers from a lignin copolymer with polyacrylonitrile.2012. Synthetic Metals.162,453-459.
    129. Hayashi J., Kazehaya A., Muroyama K., Watkinson A P., Preparation of activated carbon from lignin by chemical activation.2000. Carbon. 38,1873-878.
    130. Sun Y, Zhang J P, Yang G, Li Z H. Chem Biochem Eng.2006,20:429-435
    131. Guo Y, Rockstraw D A., Physicochemical properties of cabon prepared from shell by phosphoric acid cativation.2007. Bioresource Technology.98,1513-1521.
    132. Carrott S P J M., Carrott R M M L., Lignin-from natural adsorbent to activated carbon:A review.2007. Bioresource Technolog.98:2301-2312.
    133. Mussatto S I., Fernandes M., Rocha G J M.,et al., Production, characterization and application of activated carbon from brewer's spent grain lignin.2010.2450-2457
    134. Sun Y, Wei J., Wang Y S., Yang G., Zhang J P., Production of activated carbon by K2CO3 activation treatment of cornstalk lignin and its performance in removing phenol and subsequent bioregeneration.2010. Environ.Technol.2010.31:53-61
    135. Tazrouti N., Amrani M., Chromium (VI) adsorption onto activated kraft lignin produced. 2009. BioResources.4,740-755
    136. Fierro V,Torne Fermndez V, Montane D, et al. Study of the decomposition of kraft lignin impregnated with orthophosphoric acid.2005. Thermochimica Acta.433,142-148.
    137. Gonzales-Serrano E., Cordero T., Rodriguez-Mirasol J., et al. Removal of water pollutants with activated carbons prepared from H3PO4 activation of lignin from kraft black liquors. 2004. Water Research.38:3043-3050.
    1. Zakzeski, J., Bruijnincx, P.C.A., Jongerius, AL., et al., The catalytic valorization of lignin for the production of renewable chemicals.2010.Chem. Rev.110,3552-3599.
    2. Cheng Y T., et al.Production of Renewable Aromatic Compounds by Catalytic Fast Pyrolysis of Lignocellulosic Biomass with Bifunctional Ga/ZSM'5 Catalysts. Angewandte Chemie-Intemational Edition,2012.51(6),1387-1390.
    3. Jacco van Haveren., Elinor L. S., Johan S B., Chemicals from biomass.2008. Biofuels, Bioprod. Bioref.2,41-57.
    4. Binitha N N., Sugunan S., Shape Selective Toluene Methylafion Over Chromia Pillared Montmorillonites.2008. Catal Commun.9,2376-2380
    5. 戴厚良.芳烃生产技术展望.2013.石油炼制与化工.44.
    6. Shinichi, Catalytic Reforming Process:Aromatics Production Process.2000. Petrotechnology 23,321-327
    7. Simanzhenkov V., Oballa M C., Kim G, Technology for producing petrochemical feedstock from heavy aromatic oil fraction.2010. Ind. Eng. Chem Res.49,953-963.
    8. Robert Barthos., Tamas B., et al. Aromatization of methanol and methylation of benzene over Mo2C/ZSM-5 catalysts.2007. Journal of Catalysis.247,368-378.
    9. 韩凤山,林克芝.世界芳烃生产技术的发展趋势.2006.当代石油石化.14
    10.孔德金,杨为民.芳烃生产技术进展.2011.化工进展.16.
    11. Canning K., New catalysts, processes boost BTX production.2002. Chemical Processing.65, 22.
    12. Pfleger B F., By-passing the refinery for production of high-value BTX derivatives.2013. Biotechnology Journal.8,1375-1376
    13.陈庆龄,杨为民,滕加伟.中国石化煤化工技术最新进展.2013.催化学报.34,217-224.
    14. Corma A, From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis.1997. Chem. Rev.97,2373-2419.
    15. Sannigrahi P., Pu Y, Ragauskas A, Cellulosic biorefineries-unleashing lignin opportunities. 2010. Curr. Opin. Environ. Sustainability 2,383-393.
    16. Kleinert M., Gasson J.R., Barth T., Optimizing solvolysis conditions for integrated depolymerisation and hydrodeoxygenation of lignin to produce liquid biofuel.2009. J. Anal. Appl. Pyrolysis 85,108-117.
    17. Xu W.Y., Miller S.J., Agrawal P.K., Jones C.W., Depolymerization and hydrodeoxygenation of switchgrass lignin with formic acid.2012 ChemSusChem 5,667-675.
    18. Yan N., Zhao C., Dyson PJ., Wang C., Liu L.T., Kou Y., Selective degradation of wood lignin over noble-metal catalysts in a two-step process.2008. ChemSusChem 1,626-629.
    19. Sena-Martins G, Almeida-Vara E., Duarte J.C., Eco-friendly new products from enzymatically modified industrial lignins.2008. Ind. Crop. Prod.27,189-195.
    20. Chaouch M., Diouf P N., Laghdir A., et al., Bio-oil from Whole-Tree Feedstock in Resol-Type Phenolic Resins.2014. Journal of Applied Polymer Science.131.
    21. Joffres B., Laurenti D., Charon N., et al., Thermochemical Conversion of Lignin for Fuels and Chemicals:A Review.2013. Oil&Gas Science and Technology-Revue d'IFP Energies Nouvelles.68,753-763.
    22. Furimsky E., Hydroprocessing challenges in biofuels production.2013. Catalysis Today. 217,13-56
    23. Zilkova N., Bejblovd M., Gil B., et aL, The role of the zeolite channel architecture and acidity on the activity and selectivity in aromatic transformations:The effect of zeolite cages in SSZ-35 zeolite.2009. J. Catal. 266,79-91.
    24. Giannakopoulou K., Lukas M., Vasiliev A., et al. Low pressure catalytic co-conversion of biogenic waste (rapeseed cake) and vegetable oil. 2010. Bioresource Technology.101, 3209-3219
    25. Oliveira P., Borges. P., Pinto, R., et al., Light olefin transformation over ZSM-5 zeolites with different acid strengths-Akinetic model. 2010. Applied Catalysis A:General 384,177-185.
    26. Wang P., Zhan S., Yu H., et al., The effects of temperature and catalysts on the pyrolysis of industrial wastes (herb residue).2010. Bioresource Technology.101,3236-3241
    27. Rinaldi R and Sch(u|")th F., Design of solid catalyst for the conversion of biomass.2009. Energy Environ Sci.2,610-626.
    28. Davda R R, Shabaker J W., Huber G W., et al., A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts.2005. Applied Catalysis B-Environmental. 56,171-186.
    29. Mihalcik D J., Mullen, C A., Boateng, A A., Screening acidic zeolites for catalytic fast pyrolysis of biomass and its components.2011. Journal of Analytical and Applied Pyrolysis. 92,224-232
    30. Huang W.W., Gong F.Y, Fan M.H., et al., Production of light olefins by catalytic conversion of lignocellulosic biomass with HZSM-5 zeolite impregnated with 6wt.% lanthanum.2012. Bioresource Technology.121,248-255.
    31. Agblevor F. A., Beis S., Mante O., et.al. Fractional Catalytic Pyrolysis of Hybrid Poplar Wood.2010. Industrial&Engineering Chemistry Research.49,3533-3538.
    32. Carlson T. R., Vispute T. R., and Huber G W., Green gasoline by catalytic fast pyrolysis of solid biomass.2008. ChemSusChem.1,397-400
    33. Mullen C A., Boateng A A., Accumulation of Inorganic Impurities on HZSM-5 Zeolites during Catalytic Fast Pyrolysis of Switchgrass.2013. Industrial&Engineering Chemistry Research.52,17156-17161.
    34. Li J., Li X Y, Zhou G Q., et al., Catalytic fast pyrolysis of biomass with mesoporous ZSM-5 zeolites prepared by desilication with NaOH solutions.2013. Applied Catalysis A:General. 470,115-122.
    35. Jae J., Tompsett G A., G. W. Huber.,et al., Investigation into the shape selectivity of zeolite catalysts for biomass 2011. J Catal.279,257-268.
    36. Lee H W., Lee L G., Park S H., et al., Application of Mesoporous Al-MCM-48 Material to the Conversion of Lignin.2014. Journal of Nanoscience and Nanotechnology.14,2990-2995.
    37. Kellkar S., Saffron C M., Li Z L., et al.,Aromatics from biomass pyrolysis vapour using a bifunctional mesoporous catalyst.2014. Green Chemistry.16,803-812.
    38. Wang K G., Kim K H., Brown R C., Catalytic pyrolysis of individual components of lignocellulosic biomass.2014. Green Chemistry.16,727-735
    39. Razaei P S., Shafaghat H., Daud WMAW., Production of green aromatics and olefins by catalytic cracking of oxygenate compounds derived from biomass pyrolysis:A review.2014. Applied Catalysis A-General.469,490-511.
    40. Ma Z Q., Troussard E.,Van Bokhoven J A., Controlling the selectivity to chemicals from lignin via catalytic fast pyrolysis.2012. Applied Catalysis A-General.423,130-136.
    41. Li J., Li X Y, Zhou G Q., et al., Catalytic fast pyrolysis of biomass with mesoporous ZSM-5 zeolites prepared by desilication with NaOH solutions.2013. Applied Catalysis A:General. 470,115-122.
    42. Jae J., Coolman R., Huber G W., et al.,Catalytic fast pyrolysis of lignocellulosic biomass in a process development unit with continual catalyst addition and removal.2014. Chemical Engineering Science.108,33-46.
    43. Putun E., Uzun B B., Putun A. E., Rapid Pyrolysis of Olive Residue.2. Effect of Catalytic Upgrading of Pyrolysis Vapors in a Two-Stage Fixed-Bed Reactor.2009. Energy Fuels. 23,2248-2258.
    44. Huber G W., Lborra S., Corma A., Synthesis of transportation fuels from biomass:Chemistry, catalysts, and engineering.2006. Chemical Reviews.106,4044-4098.
    45. Corma A., Lborra Sara Velly A., Chemical routes for the transformation of biomass into chemicals.2007. Chemical Reviews.107,2411-2502.
    46. Yu YQ., Li X Y, Su L., et al., The role of shape selectivity in catalytic fast pyrolysis of lignin with zeolite catalysts.2012. Applied Catalysis A:General. 447,115-123
    47. Li X Y, Su L., Wang Y J., et al., Catalytic fast pyrolysis of Kraft lignin with HZSM-5 zeolite for producing aromatic hydrocarbons.2012. Frontiers of Environmental Science & Engineering.6,296-303.
    48. Beis S H, Mukkamala S., Hill N., et al. Fast pylosis of lignin.2010. Bioresources. Technology.5,1408-1424.
    49. Ben H X., Ragauskas A J., NMR Characterization of Pyrolysis Oils from Kraft Lignin.2011. Energy&Fuel. 25,2322-2332.
    50. Morgan T J., Kandiyoti R., Pyrolysis of Coals and Biomass:Analysis of Thermal Breakdown and Its Products.2011. Chemical Reviews.114,1547-1607.
    51. Mu W., Ben H X., Ragauskas A J., Lignin Pyrolysis Components and Upgrading-Technology Review.2013. Bioenergy Research,6,1183-1204.
    52. Ben H X., Ragauskas A J., Influence of Si/Al Ratio of ZSM-5 Zeolite on the Properties of Lignin Pyrolysis Products.2013. ACS Sustainable Chemistry&Engineering.1,316-324.
    53. Jackson, M.A, Compton, D L., Boateng, A.A.,2009. Screening heterogeneous catalysts for the pyrolysis of lignin. J. Anal. Appl. Pyrolysis 85,226-230.
    1. Tukur N.M, Al-Khattaf S., Comparative study between ethylbenzene disproportionation reaction and its ethylation reaction with ethanol over ZSM-5.2009. Catal. Lett.131,225-233.
    2. Li YX., Xue B., He X. Y.,2009. Catalytic synthesis of ethylbenzene by alky lation of benzene with diethyl carbonate over HZSM-5. Catalysis Communications 10,702-707.
    3. Perego C, Ingallina P.,2002 Recent advances in the industrial alkylation of aromatics:new catalysts and new processes. Catal. Today 73,3-22.
    4. 程志林,赵训志,邢淑建.乙苯生产技术及催化剂研究进展.2007.工业催化.
    5. 薛祖源.乙苯/苯乙烯生产工艺技术进展.2008.上海化工(07)
    6. E.E.路德维希,《化工装置的工艺设计》,第三册,第九章,化学工业出版社,1979
    7. Le Q N.Production of ethylbenzene. US:5118894.1992
    8. 张永强,杨克勇,杜泽学,闵恩泽.乙苯合成的研究进展[J].石油化工.2001(10)
    9. J·T.梅里尔,J.R.巴特勒.多相烷基化法[P].中国专利:CN1357523,
    10.孙新德,郭志军,李宏冰等.乙苯合成催化剂及工艺研究进展.2005.天然气化工
    11.杨立英,王志良等,2001,化学世界,10,545-549
    12. Hydrocarbon Processing,2001,80(3),96-98,132-03
    13. Ebrahimi, A.N., Sharak, AZ., Mousavi., S.A, Aghazadeh, F., Soltani, A.,2011. Modification and optimization of benzene alkylation process for production of ethylbenzene. Chemical Engineering and Processing 50,31-36.
    14. Gao, J.H., Zhang, L.D., Hu, J.X, Li, W.H., Wang, J.G.,2009. Effect of zinc salt on the synthesis of ZSM-5 for alkylation of benzene with ethanol. Catalysis Communications 10, 1615-1619.
    15. Hariharan S., Palanichamy M., Crystal Dimension of ZSM-5 Influences on Para Selective Disproportionation of Ethylbenzene.2014. Journal of Nanoscience and Nanotechnology.
    16. Cejka J.,Vondrova A., Wichterlova B., et al., The effect of extra-framwork aluminum in dealuminated ZSM-5 Zeolites on the transformation of aromatic-hydrocarbons.1995. Collection of Czechoslovak Chemical Communications.60,412-420.
    17. Csicsery S M., Catalysis by shape selective zeolites-Science and Technology.1986. Pure and Applide Chemistry.58,841-856.
    18. Bejblova M., Prochazkova D., Cejka J., Acylation Reactions over Zeolites and Mesoporous Catalysts.2009. ChemSusChem.2,486-499.
    19. Odedairo T., Al-Khattaf S., Comparative study of zeolite catalyzed alkylation of benzene with alcohols of different chain length:H-ZSM-5 versus mordenite.2013. Catalysis Today.204,73-84.
    20. Binitha N.N., Sugunan, S., reparation, characterization and catalytic activity of titania pillared montmorillonite clays. Microporous and Mesoporous Materials.2006.93,82-89.
    21. Chandawar K H., Kulkarni S B., Ratnasamy P., Alkylation of benzene with ethanol over ZSM5 zeolites.1982. Applied Catalysis.4,287-295.
    22. Yuan J J., Gevert B S., Alkylation of benzene with ethanol over ZSM-5 catalyst with different SiO2/A12O3 ratios.2004., Indian Journal of Chemical Technology.11,337-345.
    23. Vijayaraghavan V R., Raj K J A., Ethylation of benzene with ethanol over substituted large pore aluminophosphate-based molecular sieves.2004., Journal of Molecular Catalysis A-Chemical.,207,41-50.
    24. Odedairo T., Al-Khattaf S., Kinetic analysis of benzene ethylation over ZSM-5 based catalyst in a fluidized-bed reactor.2010. Chemical Engineering Journal.157,204-215.
    25. Hansen N., Krishna R., Baen van JM., et al., Reactor simulation of benzene ethylation and ethane dehydrogenation catalyzed by ZSM-5:Amultiscale approach.2010. Chemical Engineering Science.65,2472-2480.
    26. Bhat Y S., Das J., Halgeri A B., Effect of extrusion and silylation of ZSM-5 on para selectivity of diethylbenzenes.1995. Applied Catalysis A-General.122,161-168.
    27. Ding C H., Wang X S., Guo X W., et al., Characterization and catalytic alkylation of hydrothermally dealuminated nanoscale ZSM-5 zeolite catalyst.2008. Catalysis Communications. 9,487-493.
    28. Li Y X., Xue B., Yang Y T.,Synthesis of ethylbenzene by alkylation of benzene with diethyl oxalate over HZSM-5.2009. Fuel Processing Technology.90,1220-1225.
    29. Janardhan H L., Shanbhag G V, Halgeri A B., Shape-selective catalysis by phosphate modified ZSM-5:Generation of new acid sites with pore narrowing.2014. Applied Catalysis A-General.471,12-18.
    30. Corma, A., Llopis, F.J., Martinez, C., Sastre, G,Valencia, S., The benefit of multipore zeolites:Catalytic behaviour of zeolites with intersecting channels of different sizes for alkylation reactions.2009. Journal of Catalysis 268,9-17.
    31. Corma A., Matinez-Soria V., Schnoeveld E., Alkylation of benzene with short-chain olefins over MCM-22 zeolite:Catalytic behaviour and kinetic mechanism.2000. Journal of Catalysis. 192,163-173.
    32. Cejka J., Wichterlova B., Acid-catalyzed synthesis of mono-and dialkyl benzenes over zeolites:active sites, zeolite topology, and reaction mechanisms.2002.Catal. Rev.44,375-421.
    33. Portilla M.T., Llopis F.J., Martinez C.,Valencia S., Corma A., Structure-reactivity relationship for aromatics transallkylation and isomerization process with TNU-9, MCM-22 and ZSM-5 zeolites, and their industrial implications.2011. Applied Catalysis A:General.393, 257-268.
    34. Zilkova N., Bejblova M., Gil B.,et al., The role of the zeolite channel architecture and acidity on the activity and selectivity in aromatic transformations:The effect of zeolite cages in SSZ-35 zeolite.2009. J. Catal. 266,79-91.
    35. Degnan T F., Smith C M,Venkat C R., Alkylation of aromatics with ethylene and propylene: recent developments in commercial processes.2001. Applied Catalysis A:General. 221,283-294.
    36. Quyang X Y, Hwang S J., Runnebaum R C., Single-Step Delamination of a MWW Borosilicate Layered Zeolite Precursor under Mild Conditions without Surfactant and Sonication. 2014. Journal of American Chemical Society.136,1449-1461.
    37. Odedairo T., Al-Khattaf S., Kinetic Investigation of Benzene Ethylation with Ethanol over US YZeolite in a Riser Simulator.2010. Industrial & Engineering Chemistry Research.49, 1642-1651.
    38. Odedairo T., Al-Khattaf S., Ethylation of benzene:Effect of zeolite acidity and structure. 2010. Applied Catalys is A-General.385,31-45.
    39. Du Y C., Wang H., Chen S., Study on alkylation of benzene with ethylene overbeta-zeolite catalyst to ethylbenzene by in situ IR.2002. Journal of Molecular Catalysis A-Chemical. 179, 253-261.
    40. Chen J C.,Venkat C R., BECK J S., et al., A comparative evaluation of MCM-22, beta, and USYfor liquid phase ethylbenzene synthesis via benzene ethylation.1998. Abstracts of Papers of the American Chemical Society.216, U283.
    41. Vermeiren W., Gilson J P., Impact of Zeolites on the Petroleum and Petrochemical Industry. 2009.52,1131-1161.
    42.陈福存,朱向学,谢素娟等.催化干气制乙苯技术工艺进展.2009.催化学报.30.
    43. Moiser N., Wyman C., Dale, B., et al., Features of p romising technologies for pretreatment of lignocellulosic biomass.2005. Bioresource Technology.96:673-686
    44.冯文生,李晓,康新凯,等.中国生物燃料乙醇产业发展现状、存在问题及政策建议现代化工.2010.30,8-12
    45.巩飞艳2012.生物质催化转化制备烯烃_苯和直接还原铁的研究[D]:[博士].合肥:中国科学技术大学.
    46.张跃,侯廷建,严生虎等.HZSM-5型分子筛催化乙醇溶液脱水制备乙烯的工艺.南京工业大学学报.29.
    1. Luyben W L., Design and Control of the Cumene Process.2010. Industrial & Engineering Chemistry Research.49,719-734.
    2. 高辉,史建公,曹刚等.异丙苯合成工艺进展[J].2003.化学工业与工程技术.24.
    3. 张佩君.合成异丙苯生产现状及技术进展[J].2005.石化技术.12,62.
    4. Laredo G C., Quintana-Solorzano R, Castillo J J., Benzene reduction in gasoline by alkylation with propylene over MCM-22 zeolite with a different Bronsted/Lewis acidity ratios. 2013. Applied Catalysis A-General.454,37-54.
    5. Bellussi G, Pazzuconi G, Perego C., et al., Liquid-Phase alkylation of benzene with light olefins catalyzed by beta-zeolites.1995. Journal of Catalysis.157,227-234.
    6. Gera V, Panahi M., Skogestad S., et al., Economic Plantwide Control of the Cumene Process. 2013. Industrial & Engineering Chemistry Research.52,830-846.
    7. Van Laak A N C., Sagala S L., Zecevic J., et al., Mesoporous mordenites obtained by sequential acid and alkaline treatments-Catalysts for cumene production with enhanced accessibility.2010. Journal of Catalysis.276,170-180.
    8. Ban S.,Van L A., De J PE., Adsorption selectivity of benzene/propene mixtures for various zeolites.2007 Journal of Physical Chemistry C. 111,17241-17248
    9. Abasow S I., Babayeva F A., Zarbakuyev R R., Low-temperature catalytic alkylation of benzene by propane.2003. Applied Catalysis A-General.251,261-274.
    10. Babaeva F A., Abasov S I., Rustamov M I., Conversions of Mixtures of Propane and Benzene on Pt, Re/Al2O3+H-Zeolite Systems.2010. Petroleum Chemistry.50,42-46.
    11. Lei Z G, Dai C N., Wang Y L., et al., Process Optimization on Alkylation of Benzene with Propylene.2009. Energy&Fuels.23,3159-3166.
    12. Huang X Q., Sun X D., Zhu S K., et al., Benzene alkylation with propane over Mo modified HZSM-5.2007. Catalysis Letters.119,332-338.
    13. Geatti A., Lenarda M., Storaro L., et al., Solid acid catalysts from clays:Cumene synthesis by benzene alkylation with propene catalyzed by cation exchanged aluminum pillared clays.1997. Journal of Molecular Catalysis A-Chemical.121,111-118.
    14. Han M., Lin S X., Roduner E., Study on the alkylation of benzene with propylene over H beta zeolite. Applied Catalysis A-General.243,175-184
    15. Jansang B., Nanok T., Limtrakul J., Structures and reaction mechanisms of cumene formation via benzene alkylation with propylene in a newly synthesized ITQ-24 zeolite:An embedded ONIOM study.2009. Journal of Physical Chemistry B.110,12626-12631.
    16. Siffert S., Gaillard L., Su B L., Alkylation of benzene by propene on a series of Beta zeolites: toward a better understanding of the mechanisms. Journal of Molecular Catalysis A-Chemical. 153,267-279.
    17.张吉瑞,曹刚.CN 1125641,1994.
    18.周斌.丙烯和苯液相烷基化反应中分子筛性能的研究[J].2003.石油化工.31,883.
    19.王晓溪,耿晓棉,关志强等.MP-01新型异丙苯催化剂中试研究.2005.石化技术.12,1-4.
    20.杜泽学,凌云阂恩泽.负载杂多酸催化剂上苯与二异丙苯烷基转移反应[J].2003.石油学报.19,22.
    21.22.Gayubo A G.,Valle B., Aguayo A T., et al., Olefin production by catalytic transformation of crude bio-oil in a two-step process.2010. Industrial & Engineering Chemistry Research.49, 123-131.
    22. Yuan Y N., Bi.P.Y., Fan M H., et al., Directional synthesis of liquid higher olefins through catalytic transformation of bio-oil.2014. Journal of Chemical Technology And Biotechnology. 89239-248.
    23. Alonso D M., Bond J Q., Dumesic J A., Catalytic conversion of biomass to biofuels.2010. Green Chemistry.12:1493-1513.
    24.巩飞艳2012.生物质催化转化制备烯烃--苯和直接还原铁的研究[D]:[博士].合肥:中国科学技术大学.
    25. Mohan D., Pittman C U., Steele P H., Pyrolysis of wood/biomass for bio-oil:A critical review. 2006. Energy Fuels.20:848-889.
    26. Huber G W., Lborra S., Corma A., Synthesis of transportation fuels from biomass:Chemistry, catalysts, and engineering.2006. Chemical Reviews.106:4044-4098.
    27. Huber G W., Corma A., Synergies between bio-and oil refineries for the production of fuels from biomass.2007. Angewandte Chemie-International Edition.46:7184-7201.
    28. Gayubo A G., Aguayo A T., Atutxa A., et al., Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 zeolite. H, Aldehydes, ketones, and acids.2004. Industrial&Engineering Chemistry Research.43:2619-2626.
    29. Czernik S., Bridgwater A V, Overview of applications of biomass fast pyrolysis oil.2004. Energy&Fuels.18:590-598.
    30. Aho A., Kumar N., Etanen K., Salmi T., et al., Catalytic pyrolysis of woody biomass in a fluidized bed reactor:Influence of the zeolite structure.2008. Fuel.872493-2501.
    31. Corma A, Huber G W., Sauvanaud L., et al., Processing biomass-derived oxygenates in the oil refinery:Catalytic cracking (FCC) reaction pathways and role of catalyst.2007.247:307-327.
    32. Gong F Y, Yang Z., Hong C G, et aL, Selective conversion of bio-oil to light olefins: Controlling catalytic cracking for maximum olefins.2011. Bioresource Technology. 102:9247-9254.
    33. Fan M H., Jiang P W., Bi P Y, Directional synthesis of ethylbenzene through catalytic transformation of lignin.2013. Bioresource Technology.143:59-67.
    34.林衍华,顾星,卢永刚等.丙烯与苯液相烷基化合成异丙苯中副产物正丙苯生成的研究.2005.化学反应工程与工艺.21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700