酶解木质素/植物纤维复合材料制备工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题来源于国家自然科学基金“冷等离子体自由基引发与诱导接枝协同强化酶解木质素胶合力的机理”(编号:31070504)。
     目前能源危机和环境污染已经成为影响人类可持续发展的重大障碍,随着纤维素燃料乙醇工业的发展,酶解木质素必将成为一类丰富的可再生资源。酶解木质素的增值利用可显著地降低纤维素燃料乙醇的生产成本,有效提升纤维素燃料乙醇工业的经济活力。
     本文利用酶解木质素制备不添加合成树脂胶和任何化学助剂的植物纤维复合材料。研究了酶解木质素/植物纤维复合材料的制备工艺,并针对木质素分子大,芳环上的取代基较多,位阻大,反应活性不足的问题,提出采用氧冷等离子体处理活化酶解木质素,分析了氧冷等离子体处理对酶解木质素/植物纤维复合材料物理力学性能的影响。
     研究结果表明:
     1、酶解木质素的添加量、热压温度、纤维含水率、热压时间对酶解木质素/植物纤维复合材料的物理力学性能都有影响。在本文试验范围内,较优的工艺参数为:酶解木质素的添加量10%、热压温度210℃、纤维含水率20%、热压时间90s/mm。
     2、利用响应面优化法研究了氧冷等离子体酶解木质素/植物纤维复合材料的制备工艺。在本文试验范围内,较优的工艺参数为:热压温度210℃、纤维含水率20%、热压时间90s/mm。
     3、酶解木质素经氧冷等离子体改性后,能显著提高酶解木质素/植物纤维复合材料的物理力学性能,其中板材内结合强度提高21.8%,吸水厚度膨胀率减小了41.3%,静曲强度提高8.1%。
     4、酶解木质素经氧冷等离子体改性后,表面含氧官能团显著增加,其中-OH增加20%、-C=O增加5%,-O-C=07%。同时,酶解木质素表面自由基浓度也有所增加。含氧官能团和自由基浓度的提高有利于植物纤维间结合强度的提高。
Nowadays, energy crisis and environmental pollution have become a significant barrier to human sustainable development. As cellulose ethanol industry is developing, enzymatic hydrolysis lignin (EHL) will become one of the renewable resources. Due to the molecular of the lignin is large and there are plenty of substituent groups of benzene ring, industrialized utilization of EHL has been limited. This paper discusses the properties of EHL that was obtained from the lignocellulosic ethanol production processes. It also describes the preparation technology and physical and mechanical properties of the bio-composite product.
     This thesis used EHL to manufacture plant fiber composite material without any synthetic resin and chemical auxiliaries and researched the manufacture technology of EHL/plant fiber composite material. And aiming at the problem of large lignin molecule and large number of substituent group, great steric hindrance and lack of activity of aromatic ring, we proposed the using of oxygen cold plasma to treat the active EHL, analyzed the influence of oxygen cold plasma treatment on the physical and mechanical property of EHL/composite material.
     The results of the research are showed as follows:
     1.The additives of EHL, hot-pressing temperature, moisture content of fiber and hot-pressing time can influence the physical and mechanical property of EHL/composite material. In this experiment scale, the better technology parameters are:10% additive amount of EHL,210℃hot-pressing temperature,20% moisture content of fiber and 90s/mm hot-pressing time.
     2.Response Surface Methodology(RSM)is used to research the manufacture technology of oxygen plasma EHL/composite material. In this experiment scale, the better technology parameters are:210℃hot-pressing temperature,20% moisture content of fiber and 90s/mm hot-pressing time.
     3.The oxygen plasma modified EHL can obviously increase the physical and mechanical property of EHL/composite material,21.8% increase of IB,41.3% decrease of TS,8.1% increase of MOR.
     4.The oxygen cold plasma modified EHL can obviously increase the oxygen containing functional groups on the surface, with 20%,5%,7% increase of -OH,-C=O,-O-C=O respectively. Meanwhile, the surface free radicals density of EHL was increased to a certain degree. The increase of oxygen containing functional groups and free radicals density can improve the bond strength of plant fiber.
引文
[1]丁声俊.生物能源:开拓低碳经济之新路.国家行政学院学报,2010,(3):28-32.
    [2]丁声俊.我国发展生物燃料乙醇的长久大计.粮食与食品工业.2010,(17):1-5.
    [3]冯文生,李晓,康新凯,杜风光.中国生物燃料乙醇产业发展现状、存在问题及政策建议.现代化工.2010,30(4).
    [4]管天球.我国生物质能源产业发展存在的问题及其优化对策.湖南科技学报学报.2010,31(4):71-74.
    [5]靳胜英,张礼安,张福琴.我国可用于生产燃料乙醇的秸秆资源分析.国际石油经济.2008(9):51-83.
    [6]宋安东,任天宝,张百良.玉米秸秆生产燃料乙醇的经济性分析.农业工程学报.2010.26(6):283-286.
    [7]王璀璨,王义强,陈介南,李辉,张振华.木质纤维生产燃料乙醇工艺的研究进展.生物技术通报.2010(2):52-62.
    [8]Bellaby, P. Uncertainties and risks in transitions to sustainable energy, and the part 'trust' might play in managing them:a comparison with the current pension crisis. Energy Policy.2010,38:2624-2630.
    [9]Arifeen, N., Kookos, I. K., Wang, R., Koutinas, A. A., Webb, C. Development of novel wheat biorefining:Effect of gluten extraction from wheat on bioethanol production. Biochemical Engineering Journal.2009,43:113-121
    [10]Balat, M., Balat, H., Oz, C. Progress in bioethanol processing. Progress in Energy and Combustion Science.2008,34:551-573.
    [11]Gnansounou, E. Production and use of lignocellulosic bioethanol in Europe:Current situation and perspectives. Bioresource Technology.2010,101:4842-4850.
    [12]Harun, R., Danquah, M. K. Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochemistry.2010,15.
    [13]Mabee, W. E., Saddler, J. N. Bioethanol from lignocellulosics:Status and perspectives in Canada. Bioresource Technology.2010,101:4806-4813.
    [14]蒋挺大.木质素(第二版).化学工业出版社.2008.
    [15]邱卫华,陈洪章.木质素的结构、功能及高值化利用.纤维素科学与技术.2006,14(1):52-59.
    [16]秋增昌,王海毅.木质素的应用研究现状与进展.South West Pulp And Paper.2004,33 (3):29-33.
    [17]秋增昌,王海毅,张美云.制浆废水中木质素的资源化利用.西南造纸2005,34(1):26-28.
    [18]陶用珍,管映亭.木质素的化学结构及其应用.纡维素科学与技术.2003,11(1):42-54.
    [19]王廷平,刘存海.木质素的结构及其应用.South West Pulp And Paper.2006,35 (5):13-15.
    [20]Ahmaruzzaman, M. Adsorption of phenolic compounds on low-cost adsorbents:A review. Advances in Colloid and Interface Science.2008,143:48-67.
    [21]Boudet, A. M., Kajita, S., Grima-Pettenati, J., Goffner, D. Lignins and lignocellulosics:a better control of synthesis for new and improved uses. Trends in Plant Science.2003,8:576-581.
    [22]Cavdar, A. D., Kalaycioglu, H., Hiziroglu, S. Some of the properties of oriented strandboard manufactured using kraft lignin phenolic resin. Journal of Materials Processing Technology.2008,202:559-563.
    [23]Gosselink, R. J. A., Jong, E. d., Guran, B., Abacherli, A. Co-ordination network for lignin—standardisation, production and applications adapted to market requirements(EUROLIGNIN). Industrial Crops and Products.2004,20:121-129.
    [24]Hattalli, S., Benaboura, A., Ham-Pichavant, F., Nourmamode, A., Castellan, A. Adding value to Alfa grass (Stipa tenacissima L.) soda lignin as phenolic resins 1. Lignin characterization Polymer Degradation and Stability.2002,76:259-264.
    [25]M. V. Alonso, M. Oliet, Perez, J. M., Rodriguez, F., Echeverria, J. Determination of curing kinetic parameters of lignin-phenol-formaldehyde resol resins by several dynamic differential scanning calorimetry methods. Thermochimica Acta.2004, 419:161-167.
    [26]M. P. Vinardell, Ugartondo, V., Mitjans, M. Potential applications of antioxidant lignins from different sources. Industrial Crops and Products.2008,27:220-223.
    [27]Tsaver G, et al. Zb Ref Symp.1995,12:113-122.
    [28]Serantes M. Pokroky Vyrobe Pouziti Lepidiel Dveeepriem.1995,12:133-140.
    [29]刘学苏,李广学.木质素的应用进展.广州化工.2005,35(4):9-11.
    [30]谌凡更,李静.碱木素硫化反应以及木素酚醛树脂固化性能的研究.纤维素科学与技术.2000,8(2):1.
    [31]吴玉英,张力平,赵永虎,等.流沙和半流沙区化学固沙的研究(Ⅰ):固沙剂的合成及固沙效果.北京林业大学学报.1998,20(5):42-46.
    [32]Chen R, Wu Q X. Journal of Applied Polymer Science.1994,52(3):437-443.
    [33]Feldman D, Banu D, EL-Raghi S.J Macro Sci Pure and Appl Chem.1994, A 31(5):555-571.
    [34]Glasser W G, Hsu O H H, US P,4017474.1977.
    [35]Feldman D, Lucasse M, Manley R S J. J Appl Polym Sci.1988,35(1):247-257.
    [36]Feldman D, Banu D, Natansohn A, et al.J Appl Polym Sci.1991,42:1537-1550.
    [37]Kharade A Y, Kale D D. J Appl Polym Sci.1999,72(10):1321-1326.
    [38]刘全校,崔永岩,杨淑蕙,李树才.木素型聚氨酯合成的研究.塑料科技.2001,2:79-81.
    [39]刘全校,李建华等.木质素-聚醚型聚氨酯的合成与性能.中国塑料.2002.16,(3):37-39.
    [40]黎先发,罗学刚.木质素/PE复合薄膜的制备及性能研究J.塑料工业.2004,32(8):60-62.
    [41]Alexy P, Kosikovd B, Podstranska G. The effect of blending lignin with polyethylene and polypropylene on physical propertiesJ. Polymer.2000,41(13)::4901-4908.
    [42]Kharade A Y, Kale D D.Rheological Behavior of Lignin Filled PolyolefinsJ. Journal of Polymer Materials.1997,14(3):257-269.
    [43]范宏,方征平.木粉填充聚乙烯复合材料的研究J.合成树脂及塑料.2000,17(3):17-18.
    [44]Rozman H D, Tan K W, Kumar R N, et al. The effect of lignin as a compatibilizer on the physical properties of coconut fiber-polypropylene compositesJ. European Polymer Journal.2000,36(7):1483-1494.
    [45]GregorovdA, Kosikova B. The study of lignin influence on properties of polypropylene compositesJ. Wood Research.2005,50(2):41-48.
    [46]Bledzki A K, Faruk 0, Huque M. Physico-mechanical studies of wood fiber reinforced compositesJ. Polymer-plastics technology and engineering.2002,41 (3):435-451.
    [47]李思良,曾湘云,刘易凡.木粉填充PP的力学性能J.塑料.1998,27(3):30-32.
    [48]刘文鹏,姚姗姗,陈晓丽等.影响聚丙烯基木塑复合材料力学性能因素J.现代塑料加工应用.2006,18(2):19-22.
    [49]Mishra S B, Mishra A K, Kaushik N K, et al. Study of performance properties of lignin-based polyblends with polyvinyl chlorideJ. Journal of Materials Processing Technology.2007,183(2-3):273-276.
    [50]王迪珍,杨军.PVC/NBR/木质素热塑性弹性体的制备与性能J.特种橡胶制品.2000,21(5):1-4.
    [51]杨军,王迪珍,张仲伦等.羟甲基化木质素用量对PVC/NBR热塑性弹性体性能的影响J. 合成橡胶工业.2001,24(6):358-360.
    [52]王迪珍, 卜忠东,杨兆禧.木质素树脂/线型酚醛树脂模压材料的研究J.高分子材料科学与工程.1996,12(3):104-108.
    [53]Piccolo R S J, Santos F, Frollini E. Sugar cane bagasse lignin in resol-type resin:Alternative application for lignin-phenol-formaldehyde resinsJ. Journal of Macromolecular Science.1997,34(1):153-164.
    [54]Feldman D, Lacasse M. Mechanical characteristics of sealants based on polyurethane-lignin polyblendsJ. Journal of Adhesion Science and Technology.1994,8(9):957-969.
    [55]焦艳华,徐志刚,乔卫红,等.改性木质素磺酸盐表面活性剂合成及性能研究J.大连理工大学学报.2004,Vol.44, No.1:45-47.
    [56]程贤甦,许金仙,陈云平.高沸醇木质素的衍生物在橡胶改性中的应用(一)J.橡胶科技市场.2005,(17):4-7.
    [57]林明穗,崔国星,张启卫,等.甘蔗渣木质素改性酚醛树脂胶粘剂研究J.湖南文理学院学报(自然科学版).2009,Vol.21, No.1:47-50.
    [58]卫民,严立楠,蒋剑春.改性木质素泡沫树脂的合成研究J.生物质化学工程.2006,Vol.40, No.4:1-3.
    [59]贾陆军,王海滨,霍冀川,等.丙烯酸/马来酸酐接枝改性木质素磺酸钙减水剂的研究. 中国化 学会第26届学术年会环境化学分会场论文集C:137.
    [60]王晓红,郝臣.木质素磺酸盐与丙烯酸接枝改性J.江苏大学学报(自然科学版).2007,Vol.28, No.6:528-531.
    [61]谢燕,曾祥钦.改性磺化木质素LSA阻垢分散性能及机理研究J.贵州工业大学学报(自然科学版).2003,Vol.32, No.1:38-40.
    [62]王丹,宋湛谦,商士斌.改性木质素磺酸盐固沙剂的性能及应用研究J.林产化学与工业.2005,Vo1.25,增刊:59-62.
    [63]李爱阳,宋楚华,蔡玲.改性木质素磺酸盐对水中Cr6+的吸附J.过程工程学报.2008,Vol.8, No.5:877-880.
    [64]李爱阳,彭晖冰,唐有根.改性木质素磺酸盐絮凝处理含镍废水的研究J.环境科学与技术.2008Vol.31, No.11:106-108.
    [65]李爱阳,李大森,蔡玲,等.丙烯酰胺改性木质素磺酸盐处理含铜废水的研究J.黄金.2008,Vol.29, No.8:51-54.
    [66]李爱阳,蔡玲,宋楚华,等.含有机物废水的改性木质素磺酸盐絮凝处理研究J.环境与健康杂志.2008,Vol.25, No.11:963-966.
    [67]尹忠,杨林.碱木质素的磺化及在泥浆中的应用J. 西南石油学院学报.1996,18(2):111-116.
    [68]田 震,邱学青,欧阳新平,等.碱木质素磺化改性为水泥减水剂的工艺研究J.造纸科学与技术.2001,20(1):27-30.
    [69]张 敏,苏水杰,韦汉道.碱木质素改性及其产物表面活性的研究J. 纤维素科学与技术.1999,7(4):34-39.
    [70]尉小明,刘庆旺,殷国强.木质素磺酸盐(LSS)氧化改性研究J.钻采工艺.2000,23(6):63-65.
    [71]乐学义,卢其明,肖雄师,等.造纸黑液木质素稀硝酸氧化及其螯合锌肥的初步研究J. 华南农业大学学报.1999,20(2):125-126.
    [72]A R Goncalves, P Benar. Hydroxymethylation and oxidation of organosol lignins and utilization of the productsJ. Bioresource Technology,2001, (79):103-111.
    [73]谌凡更,李忠正.麦草碱木质素与环氧乙烷共聚的研究J. 纤维素科学与技术.1998,6(1):48-54.
    [74]谌凡更,欧义芳,李忠正.木质素磺酸钙与环氧丙烷共聚的研究J.纤维素科学与技术.1998,6(3):53-58.
    [75]CMa, i AMajcherczyk, AHuttermann. Chemo-enzymatic synthesis and characterization of graft copolymers from lignin and acrylic compoundsJ. Enzyme and Microbial Technology.2000, (27):167-175.
    [76]刘千钧,詹怀宇,刘明华.木质素磺酸镁接枝丙烯酰胺的影响因素J.化学研究与应用.2003,15(5):737-739.
    [77]张致发,邓国华,叶跃华,等.木质素磺酸盐和丙烯酸电化学接枝共聚反应的研究J. 纤维素科学与技术.1998,6(1):55-62.
    [78]李建法,宋湛谦.木质素磺酸盐及其接枝产物作沙土稳定剂的研究J.林产化学与工业.2002,22(1): 18-21.
    [79]王晨,李书平,邵志勇.木质素改性皮革复鞣剂的制备与应用研究J.皮革化工.2003,20(3):12-14.
    [80]谢益民,伍红,刘群华,等.含硫酸盐木质素的聚氨酯的合成及其特性的研究J.中国造纸学报.1999,14(增刊):91-96.
    [81]谌凡更,欧义芳,李忠正.木质素胺的合成及表面活性的研究J.林产化学与工业.1998,18(3):29-34.
    [82]王晓红,陈文瑾,曾祥钦.木质素的胺化改性J.贵州工业大学学报(自然科学版).2000,29(3):65-69.
    [83]B Ko ikovd, M Duri, V Demianova. Conversion of lignin biopolymer into surface-active derivatives J. European Polymer Journal.2000(36):1209-1212.
    [84]杨军,王迪珍,张仲伦,等.羟甲基化木质素用量对PVC/NBR热塑性弹性体性能的影响J.合成橡胶工业.2001,24(6):358-360.
    [85]Klarho fer, L., Vio 1, W., Maus-Friedrichs, W. Electron spectroscopy on plasma treated lignin and celluloseJ. Holzforschung 64,331-336 (2010).
    [86]S.Sabharwal, H., Denes, F., Nielsen, L., A. Young, R. Free-Radical Formation in Jute from Argon Plasma TreatmentJ. American Chemical Society.1993,41:2202-2207.
    [87]Sahin, H. T. RF-02 PLASMA SURFACE MODIFICATION OF KRAFT LIGNIN DERIVED FROM WOOD PULPINGJ. WOOD RESEARCH.2009,54 (1):103-112.
    [88]邓长江,刘学恕,张宏书,张朝泰,钟洽.蔗渣碱木素低温等离子体处理研究J.纤维素科学与技术.1995,3(3):40-49.
    [89]刘晓玲,程贤甦.酶解木质素的分离与结构研究J.纤维素科学与技术.2007,15(30):41-51.
    [90]H. Hatakeyama, T. Hatakerakyma. Lignin Structure, Properties, and Application M.:11-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700