生淀粉糖化酶产生菌的选育与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根霉2是本实验室保存的一株产生淀粉糖化酶活力较高的菌株,本实验将根霉2产的生淀粉糖化酶应用于生料发酵,研究了37℃木薯生料发酵生成酒精的工艺。通过单因素试验和响应面优化,得到其最优发酵条件为:pH 4.6、发酵时间68.9 h、加酶量173.00 U/g、料液比1:3.5、酵母接种量108/mL、尿素0.2%(w/v),在此条件下发酵,酒精度为9.95%(v/v),与预测值9.90%(v/v)相差不大。另外摇床发酵、添加糖化酶和添加α-淀粉酶对发酵没有明显的提高效果。初步研究了木薯浓醪发酵酒精,采用料液比为1:2.5,发酵时间60 h,酒精度达到最大12.89%(v/v)。
     以根霉2为出发菌株,筛选得到突变株UL16,其生淀粉糖化酶活力比出发菌株平均提高28.29%。同时研究了添加2-D-脱氧葡萄糖以筛选抗性突变株,得到突变株K7,酶活平均提高了25.44%。UL16和K7经传代试验,产酶稳定。
     对生淀粉糖化酶进行了硫酸铵初步分离纯化,并研究了生淀粉糖化酶的部分酶学性质。结果表明:最适反应温度为40℃;最适反应pH范围为4.0~4.8;50℃内较稳定,超过此温度酶活急剧下降;pH4.8~9.0范围内较稳定,酶活力都能保持80%以上;金属离子Hg2+、Ni2+、Ag+和Fe3+对酶活有抑制作用,K+、Fe2+和Na+对酶活基本没有影响,Li+、Co2+、Zn2+、Cu2+、Mg2+、Pb2+、Ca2+和Mn2+对酶活有激活作用,其中Mn2+对酶活提高幅度最大,达到88.42%。
Rhizopus sp.2 stored in our laborator is a strain that can produce raw starch-digesting glucoamylase at high level. In this experiment, raw starch-digesting glucoamylase produced by Rhizopus sp.2 was applied in ethanol fermentation, and the conditions of ethanol fermentation under 37℃using raw cassava srarch with was studied. By single factor experiment and response surface analysis optimization, the optimum fermentation conditions were:pH 4.6, fermentation time 68.9 h, enzyme 173.00 U/g, material/liquid 1:3.5, yeast inoculum size 108/mL, urea 0.2%(w/v). Fermenting under these conditions, the predictive value of alcohol concentration was 9.90%(v/v), and the actual alcohol concentration was 9.95%(v/v). Besides, shaker fermentation、adding glucoamylase and adding a-amylase had no significant improvement on the alcohol fermentation. High-gravity fermentation of cassava ethanol fermentation was preliminary studied,the material water ratio was 1:3.5,when fermentation time was 60 h, the maximum alcohol concentration reached 12.89%(v/v)
     Using Rhizopus sp.2 as the starting strain, mutant strain UL16 was obtained, and its raw starch-digesting glucoamylase activity increased by 28.29% average than that of the starting strain. At the same time, resistant mutant strain was screened by adding 2-D-deoxyglucose, mutant strain K7 was obtained, its enzyme activity rised in an average of 25.44%. The enzyme production of UL16 and K7 were very steady through passage experiments.
     Raw starch-digesting glucoamylase was initially purified by ammonium sulfate, and enzymology properties of raw starch-digesting glucoamylase was partly studied. The optimum temperature was 40℃. The optimum pH was in the range of 4.0~4.8. Enzyme was more stable under 50℃, and its activity declined sharply when over this temperature. The enzyme performed stably in range of pH 4.8 to 9.0 and the residual enzyme activity maintained more than 80%. Hg2+、Ni2+、Ag+ and Fe3+ showed inhibition to the enzyme activity, K+、Fe2+ and Na+ had no effect on the enzyme, Li+、Co2+、Zn2+、Cu2+、Mg2+、Pb2+、Ca2+ and Mn2+ could activate the enzyme activity, Mn2+ had great activation on the enzyme activity especially, which increased by 88.42%.
引文
[1]陈万里,赵明星.燃料乙醇产业发展综述[J].河南化工,2010,(13):24-26.
    [2]朱坚真,莫澎,叶盛权.中国酒精生产与经营[M].北京:化学工业出版社,2009:1.
    [3]王成军,黄少杰.国外燃料乙醇工业的发展现状及其对我国的启示[J].工业技术经济,2005,24(5):110-112.
    [4]Gavrila D M. The visual analysis of human movement:asurvey[J]. Computer Vision and Image Understanding,2005,73(1):82-98.
    [5]Leymarie F, Levine M. Tracking deformable objects in the planeusing an active contours mode[J]. IEEE Trans on PAMI,2005,15(6):617-634.
    [6]冯文生,李晓,康新凯,等.中国生物燃料乙醇产业发展现状、存在问题及政策建议[J].现代化工,2010,30(4):8-10,12.
    [7]孙智谋,侯霖,张俊波,等.非粮食乙醇产业化现状及展望[J].酿酒科技,2009(5):94-98.
    [8]谢铭,李肖.广西木薯生物燃料乙醇产业发展分析[J].江苏农业科学,2010,(3):471-474.
    [9]陈露,吕宇晶,郑丹.广西木薯产业发展的市场前景分析[J].今日南国(理论创新版),2009,(112),88-89.
    [10]文伟河.“年产20万t木薯燃料乙醇示范工程”技术成果通过鉴定[J].生物加工过程,2009,7(3):55-55.
    [11]梁于朝,李开锦.木薯酒精发酵研究进展[J].广西轻工业,2007,23(1):16-17.
    [12]李志平,庞宗文.生木薯淀粉直接发酵生产酒精的发酵条件研究[J].酿酒科技,2005,(12):57-59.
    [13]王金鹏.生料淀粉发酵生产酒精的研究[D].天津:天津大学,2004.
    [14]Roy I, Gupta M N. Hydrolysis of starch by a mixture of glucoamylase and pullulanase entrapped individually in calcium alginate beads[J]. Enzyme Microb Technol,2004,34: 26-32.
    [15]康明丽.淀粉酶及其作用方式[J].食品工程,2008,(3):11-14.
    [16]罗军侠.耐酸生淀粉糖化酶的初步研究[D].无锡:江南大学,2008.
    [17]张秀媛,袁永俊,何扩.糖化酶的研究概况[J].食品研究与开发,2006,27(9):163-166.
    [18]诸葛斌,姚慧源,姚卫蓉.生淀粉糖化酶的结构和作用机理[J].工业微生物,2001,31(1):49-51.
    [19]张强,张春贺,孙平,等,无蒸煮酿酒技术研究现状及进展[J].酿酒科技,2007,(12):91-94.
    [20]阮彩彪,何建,李文华,等.生料发酵技术应用概述[J].中国酿造,2010,(1):4-8.
    [21]刘军,朱文优.产生淀粉酶系菌株的筛选及其混株发酵粗酶研究[J].酿酒科技,2006,(12):51-53.
    [22]朱文优,王新惠.产生淀粉酶真菌的分离筛选及初步鉴定[J].酿酒科技,2009,(2):21-23.
    [23]潘明,周永进,张强,等.产生淀粉糖化酶菌株的分离以及酶性质的初步研究[J].四川理工大学学报(自然科学版),2006,19(6):66-68.
    [24]肖长清,戚天胜,赵海.生淀粉糖化酶产生菌Aspergillus niger(6#)的分离筛选及其产酶条件[J].应用与环境生物学报,2006,12(1):76-79.
    [25]Omemu A M, Akpani, Bankole M O, et al. Hydrolysis of raw tuber starches by amylase of Aspergillus niger AM07 isolated from the soil[J]. African Journal of Biotech,2005, 4(1):19-25.
    [26]Rajoka M I, Yasmeen A. Induction and production studies of a novel glucoamylase of Aspergillus niger[J]. World J Microbiol Biotechn,2005,21:179-187.
    [27]Milan Polakovic, Jolanta Bryjak. Modelling of potato starch saccharification by an Aspergillus niger glucoamylase[J]. Biochemical Engineering Journal,2004,18:57-63.
    [28]Fabiana Carina Pavezzi, Heloiza Ferreira Alves-Prado, Henrique Ferreira, et al. Identification of genetic alterations in the glucoamylase Aspergillus awamori gene[J]. Journal of Biotechnology,2010,150:529.
    [29]Sangeeta Negi, Rintu Banerjee. Study of conformational changes in glucoamylase of Aspergillus awamori nakazawa in presence of denaturants through CD-spectroscopy [J]. Bioresource Technology,2010,101:7577-7580.
    [30]Yoshiki Tani, Akira Fuji, Hiroshi Nishise. Production of raw cassava starch-digestive glucoamylase by a 2-deoxyglucose-resistant mutant of Rhizopus sp. [J]. Journal of Fermentation Technology,1988,66:545-551.
    [31]庞宗文,梁静娟,陈桂光.生淀粉分解酶产生菌的分离筛选[J].中国酿造,1997,(3): 10-11.
    [32]Seinosuke Ueda, Badal Chandra Saha. Behaviour of Endomycopsis fibuligera glucoamylase towards raw starch [J]. Enzyme and Microbial Technology,1983,5: 196-198.
    [33]林海娟,冼亮,段成杰,等.降解生淀粉真菌的筛选、鉴定及其产生淀粉酶的性质研究[J].广西农业科学,2010,41(7):637-641.
    [34]肖长清.一株产生淀粉糖化酶的拟青霉[J].湖北第二师范学院学报,2008,25(2):43-45.
    [35]罗军侠,李江华,陆健,等.耐酸生淀粉糖化酶的菌种筛选、酶的性质及发酵条件[J].食品工业科技,2008,29(5):151-154.
    [36]Werasit Kanlayakrit, Keisuke Ishimatsu, Masahiro Nakao, et al. Characteristics of raw-starch-digesting glucoamylase from thermophilic Rhizomucor pusillus[J]. Journal of Fermentation Technology,1987,65:379-385.
    [37]Haifeng Li, Zhenming Chi, Xiaohui Duan, et al. Glucoamylase production by the marine yeast Aureobasidium pullulans N13d and hydrolysis of potato starch granules by the enzyme[J]. Process Biochemistry,2007,42:462-465.
    [38]谢惠玲,阮森林,刘亮伟,等.酸性生淀粉酶产生菌的筛选及酶学性质研究[J].食品工业科技,2008,29(10):85-87.
    [39]Nidhi Goyal, J. K. Gupta, S. K. Soni. A novel raw digesting thermostable a-amylase from Bacillus sp.1-3 and its use in the direct hydrolysis of raw potato starch[J]. Enzyme and Microbial Technology,2005,37:723-734.
    [40]Shinji Mitsuiki, Katsuya Mukae, Masashi Sakai, et al. Comparative characterization of raw starch hydrolyzing a-amylases from various Bacillus strains[J]. Enzyme and Microbial Technology,2005,37:410-416.
    [41]Natasa Bozic, Jordi Ruiz, Josep Lopez-Santin, et al. Production and properties of the highly efficient raw starch digesting a-amylase from a Bacillus licheniformis ATCC 9945a[J]. Biochemical Engineering Journal,2011,53:203-209.
    [42]Xu Dong Liu, Yan Xu. A novel raw starch digesting a-amylase from a newly isolated Bacillus sp. YX-1:Purification and characterization[J]. Bioresource Technology,2008, 99:4315-4320.
    [43]李风铃,张璐,刘连成,等.生淀粉糖化酶产生菌Cellulosimicrobium sp. SDE的分离鉴定及酶学性质研究[J].工业微生物,2008,38(5):45-49.
    [44]曾丽娟,杨健,陈英,等.生淀粉酶生产菌株Paenibacillus sp,的筛选和酶的纯化及酶学性质[J].生物加工过程,2010,8(4):62-66.
    [45]孙子羽,迟乃玉,王宇,等.低温生淀粉糖化酶菌株RS01分离及其酶学性质[J].微生物学通报,2010,37(6):798-802.
    [46]Shion J R, Hung H C, Jeang C L. Improving the themostability of raw starch digesting amylase from a Cytophaga sp. by site directed mutagenesis[J]. Appl Environ Microbiol, 2003,69:2383-2385.
    [47]Jeang C L, Chen L S, Shiou R J, et al. Cloning of gene encoding raw starch digesting amylase from Cytophaga sp. and its expression in E. coli[J]. Appl Environ Microbiol, 2002,68:3651-3654.
    [48]T. A. Quigley, C. T. Kelly, E. M. Doyle, et al. Patterns of raw starch digestion by the glucoamylase of Cladosporium gossypiicola ATCC 38026[J]. Process Biochemistry, 1998,33:677-681.
    [49]韩丽丽,刘敏.诱变方法在微生物育种中的应用[J].酿酒,2008,35(3):16-18.
    [50]陈佩华,李朝季.生淀粉降解酶菌株的选育和酒精发酵试验[J].微生物学通报,1991,18(5):268-270.
    [51]刘仲敏,曹友声,何伯安.生淀粉糖化酶产生菌1-16的选育研究[J].河南科学,1995,13(2):164-167.
    [52]李俊刚,方善康.生淀粉糖化菌的选育及发酵条件[J].绵阳师专学报(自然科学版),1997,15(2):43-48.
    [53]郭爱莲,郭廷巍,孙先锋,等.紫外激光等选育生淀粉糖化酶高产菌株及其应用[J].光子学报,1999,28(9):780-784.
    [54]诸葛斌,姚惠源,诸葛健.生淀粉糖化酶高产菌的选育[J].微生物学通报,2001,28(6):60-64.
    [55]丁立孝,顾军.无蒸煮生淀粉糖化酶霉菌的选育[J].食品科学,2002,23(2):78-80.
    [56]潘明,周永进,张强.产生淀粉糖化酶菌株的诱变选育[J].酿酒科技,2006,(10):37-39.
    [57]苏小军,熊兴耀,谭兴和,等.产生淀粉酶菌株的诱变选育及酶学性质研究[J].食品与机械,2009,(2):11-14,33.
    [58]罗时,谭兴和,苏小军,等.马铃薯生淀粉糖化酶高产菌株的筛选与诱变研究[J].中国酿造,2009,(2):19-22.
    [59]黄光文,董清平,沈玉平.甘薯生淀粉糖化酶菌株的分离与诱变育种[J].酿酒科技,2010,(10):26-28.
    [60]夏艳秋,朱强,丁秀芹,等.酒用生淀粉糖化酶产生菌的选育及酶学性质研究[J].食品科学,2010,31(1):189-193.
    [61]朱文优,周守叙.米曲霉高产生淀粉酶菌株的诱变选育[J].中国酿造,2010,(6):57-59.
    [62]孙子羽,迟乃玉,李兵,等.生淀粉糖化酶高产菌株诱变选育[J].大连大学学报,2010,(6):75-77.
    [63]郭德军,柳增善.黑曲霉GA I基因的克隆及在P. pastoris中的表达分泌[J].黑龙江八一农垦大学学报,2005,17(4):69-72.
    [64]Nathalie Juge, Jane N(?)hr, Marie-Francoise Le Gal-Coeffet, et al. The activity of barley a-amylase on starch granules is enhanced by fusion of a starch binding domain from Aspergillus niger glucoamylase[J]. Biochimica et Biophysica Acta (BBA)-Proteins & Proteomics,2006,1764:275-284.
    [65]Ryosuke Yamada, Yohei Bito, Takashi Adachi, et al. Efficient production of ethanol from raw starch by a mated diploid Saccharomyces cerevisiae with integrated a-amylase and glucoamylase genes[J]. Enzyme and Microbial Technology,2009,44:344-349.
    [66]Lorena Latorre-Garcia, Ana Cristina Adam, Paloma Manzanares, et al. Improving the amylolytic activity of Saccharomyces cerevisiae glucoamylase by the addition of a starch binding domain[J]. Journal of Biotechnology,2005,118:167-176.
    [67]Hisayori Shigechi, Ken Uyama, Yasuya Fujita, et al. Efficient ethanol production from starch through development of novel flocculent yeast strains displaying glucoamylase and co-displaying or secreting a-amylase[J]. Journal of Molecular Catalysis B: Enzymatic,2002,17:179-187.
    [68]Elif Sarikaya Demirkan, Bunzo Mikami, Motoyasu Adachi, et al. a-Amylase from B. amyloliquefaciens:purification, characterization, raw starch degradation and expression in E. coli[J]. Process Biochemistry,2005,40:2629-2636.
    [69]夏帆,张华山,顾亚婧,等.化学融合法构建淀粉生料发酵菌株[J].中国酿造,2008,(10):49-51.
    [70]Ikram-Ul Haq, Sikander Ali, Javed Iqbal. Direct production of citric acid from raw starch by Aspergillus niger[J]. Process Biochemistry,2003,38:921-924.
    [71]张国春.生料酿造酱油工艺[J].中国调味品,2006,(10):43-44,56.
    [72]杨辉.生料发酵法生产白酒工艺条件的优化[J].酿酒,2004,31(4):89-91.
    [73]曾令琴,葛毅强,周传云,等.利用根霉和假丝酵母联合发酵生产甜酒的研究[J].酿酒,2005,32(4):36-38.
    [74]黄晓康,郑欢庆.生料发酵生产黄酒的工艺研究[J].酿酒科技,2008,(9):81-84.
    [75]卢晓霞,张太日,闫俊,等.玉米生料发酵生产燃料乙醇工艺研究[J].中国酿造,2009,(2):128-132,
    [76]刘振,周兴国,曾爱武,等.稻谷生料发酵生产乙醇研究[J].化学工程,2006,34(3):49-52.
    [77]庞宗文,梁静娟,苏海霞,等.根霉和米曲霉的淀粉酶系对生木薯粉酒精发酵的影响[J].食品工业科技,2009,30(1):189-191,198.
    [78]曾舟华,徐振强,曾昆.薯渣生料发酵制乙醇的节能工艺研究[J].安徽农业科学,2010,38(29):16509-16510.
    [79]刘军,王娟娟,杨勇.混种麸曲生料酿醋研究[J].中国酿造,2007,(6):49-51.
    [80]敬勤勤,刘学文.生料液态发酵酿醋工艺的研究[J].中国调味品,2009,34(4):72-75.
    [81]胡海宾,黄环宇,刘旭文,等.生料固态发酵制醋新工艺的研究[J].食品研究与开发,2008,29(2):85-88.
    [82]何勇锦,谢必峰.生料发酵制备新型蛋白饲料工艺研究[J].饲料博览,2009,(10):33-38.
    [83]胡咏梅,艾镇,丁一敏,等.蔗渣饲料生料发酵工艺的研究[J].饲料工业,2006,27(17):27-29.
    [84]王亚林,严建芳,吴灵英,等.稻草饲料生料发酵工艺的研究[J].武汉工业学院学报,2002,(1):42-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700