冷等离子体处理对酶解木质素表面化学结构和热特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
来源于生物质的燃料乙醇作为最直接最有效的石油基液体燃料替代品正越来越受到人们的重视。利用木质纤维原料制取生物燃料乙醇时,原料首先经过预处理,破坏原料中纤维素,半纤维素和木质素之间的结构,从而提高原料中纤维素对纤维素酶的可及度。经过预处理的物料在酶的催化下水解成单糖,单糖继而被酵母菌发酵成乙醇,在此过程中会产生大量废弃物,即主要成分为木质素的酶水解残渣。随着纤维素燃料乙醇工业的发展,酶解木质素必将成为一类丰富的可再生资源。本文采用冷等离子体对酶解木质素进行改性处理,以显著提高酶解木质素的反应活性,从而使之可直接作为胶粘剂用于制备不含游离甲醛的环保型木质纤维复合材料。文中系统研究了冷等离子体处理工艺对酶解木质素表面化学结构及热特性的影响,探索了冷等离子体强化酶解木质素胶合力的机理。研究结果对于推进我国纤维素燃料乙醇的工业化进程和推动我国人造板工业的科技进步具有重要的现实意义。
     研究结果表明:
     1、随着氧冷等离子体处理时间的延长,羧基含量显著增加,羰基含量略有增加,碳元素含量呈逐渐下降趋势,但是降低幅度不大;氢元素含量也逐渐降低;氧元素含量则是增加的,酶解木质素的自旋数也随着处理时间的延长而增加。
     2、随着氧冷等离子体处理功率的增大,羧基含量显著增加,羰基含量略有增加,碳元素含量逐渐下降,氢元素含量也逐渐下降,氧元素则呈上升趋势,酶解木质素的自旋数随着处理功率的增加而增加,但是增加幅度不大。
     3、经各种冷等离子体处理后,羧基含量显著增加,羰基含量都有略微的增加,碳元素含量都是降低的,氢元素含量也有显著下降,氧元素含量则都是增加的。经冷等离子体处理后,酶解木质素的自旋数都是增加的。
     4、酶解木质素的Tg值为168.2℃,而经氧冷等离子体处理后,酶解木质素的Tg值下降至161.5℃。经氧冷等离子体处理后的Tg值下降,因为木质素的结构发生了变化,其含氧官能团含量增加;木质素上含有很多苯丙烷单元和较大的支链,经氧冷等离子体处理后,这些主支链上会生成较多的羟基、羰基、羧基等含氧官能团,这些极性官能团含量的增加使酶解木质素的分子运动更活跃;也可能是酶解木质素大分子中的醚键发生断裂,从而降低了分子量,使玻璃态转化温度下降。
     5、添加了酶解木质素对纤维板的物理力学性能有较大的影响。氧冷等离子处理对酶解木质素的活化作用极大的改善了纤维板的性能。在光谱分析中表明,当氧冷等离子处理时,含氧官能团如—OH、—C—O—、—C=O、—COO能引入到酶解木质素的表面。这些基团和自由基都有助于粘结性能的改善。
Increasing environmental and energy concerns have been the driving force of bio-ethanolresearch. Both cellulose and hemicelluloses in lignocellulosic biomass can be converted tosimple sugars that can be subsequently fermented to ethanol. The conversion of even a smallportion of this renewable resource into ethanol could substantially reduce gasoline consumptionand our dependence on petroleum. Therefore, related research and development has beenfocused on producing ethanol from wood and agricultural residues. However, lignin, which isone of the major three components of lignocellulosic biomass, is a barrier to enzymaticsaccharification of cellulose in wood and agricultural biomass. In cellulosic ethanol processes,lignin is considered as a waste product. For example, nearly one ton of residues are generatedfor every ton of bio-ethanol produced from corn stover;30-35%of these residues areEnzymatic hydrolysis lignin (EHL). Value-added utilization of EHL not only can help offset thecost of bio-ethanol production and boost the economic viability of the bio-ethanol industry butalso provide a source of renewable materials.
     The work described here explored the feasibility of using enzymatic hydrolysis lignin(EHL) as a natural binder for biocomposites manufacture and proposed an effective approach toactivating EHL. The effects of plasma treatment on the surface chemical changes and thermalcharacteristic of EHL were evaluated and the modification mechanism of the plasma wasinvestigated.
     The results are showed as following:
     1. With prolonging oxygen plasma treatment time, carboxyl content increasedsignificantly and a slight increase in carbonyl content. At the same time, carboncontent showed a gradual downward trend, hydrogen content also decreased with thetreatment time reduction. The oxygen content gradually increased with prolonging theprocessing time. The spin concentration of the enzymatic hydrolysis lignin (EHL)increased with prolonging the processing time.
     2. With increasing oxygen plasma treatment power, carboxyl content increasedsignificantly and a slight increase in carbonyl content. After oxygen plasma treatment,the carbon content in the enzymatic hydrolysis lignin (EHL) decreased gradually withthe increase of processing power but the range is not big. The hydrogen contentdecreased gradually with the increase of processing power, but it is not evident. Theoxygen content increased gradually with the increase of processing power. The spinconcentration of the enzymatic hydrolysis lignin (EHL) increased with the extension of the processing power, but the range is not big.
     3. After plasma treatment of different gases, carboxyl content increased significantly.Among these gases, the carboxyl content increased the most after the oxygentreatment, followed by air, nitrogen and argon. Carbonyl content all has slightlyincreased. After different plasma treatment, the carbon content of enzymatichydrolysis lignin (EHL) decreased. Among them, carbon content decreased the mostafter oxygen plasma treatment, followed by argon, nitrogen and air. Hydrogen contentalso decreased the most after oxygen plasma treatment, followed by nitrogen and air.The oxygen content is all increased and it increased the most after oxygen plasmatreatment, followed by air, nitrogen and argon. The spin concentration of theenzymatic hydrolysis lignin (EHL) increased the most after oxygen plasma treatment,followed by air,nitrogen and argon.
     4. The Tg value of enzymatic hydrolysis lignin (EHL) decreased after oxygen plasmatreatment under the same heating rate. Because the structure of lignin changed and thecontent of oxygen functional groups increased. The lignin contained a lot ofphenylpropanoid units and larger branched-chain after oxygen plasma treatment.These branched chains would generate many oxygen-containing functional groupssuch as hydroxyl, carbonyl, and carboxyl. The extension of the content of polarfunctional groups made the molecular motion of enzymatic hydrolysis lignin moreactive. May be it is because the ether bond of hydrolysis lignin macromoleculesruptured which reduced the molecular weight and made the glass transitiontemperature dropped.
     5. Adding EHL has a beneficial effect on the physicomechanical properties of thefiberboards. Oxidative activation of EHL with oxygen plasma treatment improves theproperties of the fiberboards significantly. The spectroscopic analyses indicate thatoxygen-related functional groups such as–OH, C–O,–C=O,–COO had beenimplanted efficiently onto the surface of EHL in the course of oxygen plasmatreatment. These groups and the free radicals generated have probably contributedsynergistically to the bonding improvement.
引文
1.丁声俊.生物能源:开拓低碳经济之新路[J].国家行政学院学报.2010(03):28-32.
    2.丁声俊.我国发展生物燃料乙醇的长久大计[J].粮食与食品工业.2010(03):1-5.
    3.冯文生,李晓,康新凯.中国生物燃料乙醇产业发展现状、存在问题及政策建议[J].现代化工.2010(04):8-10+12.
    4.管天球.我国生物质能源产业发展存在的问题及其优化对策[J].湖南科技学院学报.2010(04):71-74.
    5.靳胜英,张礼安,张福琴.我国可用于生产燃料乙醇的秸秆资源分析[J].国际石油经济.2008(09):51-55+83.
    6.宋安东,任天宝,张百良.玉米秸秆生产燃料乙醇的经济性分析[J].农业工程学报.2010(06):283-286.
    7.王璀璨,王义强,陈介南.木质纤维生产燃料乙醇工艺的研究进展[J].生物技术通报.2010(02):51-57+62.
    8. Bellaby, P. Uncertainties and risks in transitions to sustainable energy, and the part 'trust' might play inmanaging them: a comparison with the current pension crisis[J].Energy Policy.2010.38(6):2624-2630.
    9. Koutinas, A.A.,N. Arifeen,I.K. Kookos. Development of novel wheat biorefining: Effect of glutenextraction from wheat on bioethanol production[J].Biochemical Engineering Journal.2009.43(2):113-121.
    10. Balat, M.,H. Balat,C. Oz. Progress in bioethanol processing[J].Progress in Energy and CombustionScience.2008.34(5):551-573.
    11. Gnansounou, E. Production and use of lignocellulosic bioethanol in Europe: Current situation andperspectives[J].Bioresource Technology.2010.101(13):4842-4850.
    12. Harun, R.,M.K. Danquah. Influence of acid pre-treatment on microalgal biomass for bioethanolproduction[J].Process Biochemistry.2011.46(1):304-309.
    13. Mabee, W.E.,J.N. Saddler. Bioethanol from lignocellulosics: Status and perspectives inCanada[J].Bioresource Technology.2010.101(13):4806-4813.
    14.蒋挺大.木质素(第二版)[M].化学工业出版社.2008.
    15.邱卫华,陈洪章.木质素的结构、功能及高值化利用[J].纤维素科学与技术.2006(01):52-59.
    16.秋增昌,王海毅.木质素的应用研究现状与进展[J].西南造纸.2004(03):29-33.
    17.秋增昌,王海毅,张美云.制浆废水中木质素的资源化利用[J].西南造纸.2005(01):26-28.
    18.王廷平,刘存海.木质素的结构及其应用[J].西南造纸.2006(05):13-14+17.
    19.陶用珍,管映亭.木质素的化学结构及其应用[J].纤维素科学与技术.2003(01):42-55.
    20. Ahmaruzzaman, M. Adsorption of phenolic compounds on low-cost adsorbents: A review[J].Advances inColloid and Interface Science.2008.143(1-2):48-67.
    21. Boudet, A.M.,S. Kajita,J. Grima-Pettenati. Lignins and lignocellulosics: a better control of synthesis fornew and improved uses[J].Trends in Plant Science.2003.8(12):576-581.
    22. Hiziroglu, S.,A.D. Cavdar,H. Kalaycioglu. Some of the properties of oriented strandboard manufacturedusing kraft lignin phenolic resin[J].Journal of Materials Processing Technology.2008.202(1-3):559-563.
    23. Gosselink, R.J.A.,E. de Jong,B. Guran. Co-ordination network for lignin-standardisation, production andapplications adapted to market requirements (EUROLIGNIN)[J].Industrial Crops and Products.2004.20(2):121-129.
    24. Hattalli, S.,A. Benaboura,F. Ham-Pichavant. Adding value to Alfa grass (Stipa tenacissima L.) soda ligninas phenolic resins-1. Lignin characterization[J].Polymer Degradation and Stability.2002.76(2):259-264.
    25. Alonso, M.V.,A. Oliet,J.M. Perez. Determination of curing kinetic parameters oflignin-phenol-formaldehyde resol resins by several dynamic differential scanning calorimetrymethods[J].Thermochimica Acta.2004.419(1-2):161-167.
    26. Vinardell, M.P.,V. Ugartondo,M. Mitjans. Potential applications of antioxidant lignins from differentsources[J].Industrial Crops and Products.2008.27(2):220-223.
    27.王洪艳,王辉,杜官本.冷等离子体处理对木材胶接性能的影响[J].中国胶粘剂.2010(02):13-16.
    28.崔会旺,杜官本.木材等离子体改性研究进展[J].世界林业研究.2008(01):51-55.
    29.杜官本,杨忠,邱坚.微波等离子体活化木材表面的ESR分析[J].林业科技开发.2002(03):28-31.
    30.赵青,刘述章,童洪辉.等离子体技术及应用[M].国防工业出版社.2009.
    31.杜官本,杨忠,邱坚.微波等离子体处理西南桤木表面的ESR和XPS分析[J].林业科学.2004(02):148-151.
    32.杜官本,华毓坤,王真.微波等离子体环境下木材表面蚀刻[J].林业科学.1999(02).
    33.崔会旺,杜官本. MWP处理对云南松木材表面润湿性的影响[J].西北林学院学报.2008(04):163-166.
    34.杜官本,华毓坤,崔永杰.微波等离子体处理木材表面光电子能谱分析[J].林业科学.1999(05):104-109.
    35.杜官本,孙照斌,黄林荣.微波等离子体处理对柚木表面润湿性的影响[J].东北林业大学学报.2007(12):31-33.
    36.杜官本,孙照斌,黄林荣.微波等离子体处理对竹材表面接触角的影响[J].南京林业大学学报(自然科学版).2007(04):33-36.
    37.杨喜昆,杜官本,钱天才.木材表面改性的XPS分析[J].分析测试学报.2003(04):5-8.
    38.杨忠,杜官本,黄林荣.微波等离子体处理木材表面接枝甲基丙烯酸甲酯的XPS分析[J].林产化学与工业.2003(03):28-32.
    39.黄河浪,赵明,董丽君.低温冷等离子体对不同含水率杨木单板表面改性的初步研究[J].林产工业.2010(03):20-22.
    40. Aydin, I.,C. Demirkir. Activation of Spruce Wood Surfaces by Plasma Treatment After Long Terms ofNatural Surface Inactivation[J].Plasma Chem Plasma Process.2010.30:697-706.
    41. P.Rehn,W.Viol. Dielectric barrier discharge treatments at atmospheric pressure for wood surfacemodification[J].Originalarbeiten Originals.2003.61:145-150.
    42.欧阳吉庭,何巍,涂刚.低温等离子体处理木材表面研究[J].河北大学学报(自然科学版).2007(06):597-600.
    43. Bozaci, E.,K. Sever,A. Demir. Effect of the Atmospheric Plasma Treatment Parameters on Surface andMechanical Properties of Jute Fabric[J].Fibers and Polymers.2009.10(6):781-786.
    44.周晓燕,何翠芳,范竟成.冷等离子体处理对棉秆无胶纤维板性能影响[J].林业科技开发.2008.22(5):47-49.
    45. A.Wolkenhauer,H.Militz·W.Vio¨l. Increased PVA-Glue Adhesion on Particle Board and Fibre Board byPlasma Treatment[J].Originalarbeiten Originals.2008.66:143-145.
    46. Odraskova, M.,J. Rahel,A. Zahoranova. Plasma Activation of Wood Surface by Diffuse Coplanar SurfaceBarrier Discharge[J].Plasma Chem Plasma Process.2008.28:203-211.
    47. A.Wolkenhauer,G.Avramidis,E.Hauswald. Sanding vs.plasma treatment of aged wood:A comparison withrespect to surface energy[J].International Journal of Adhesion&Adhesives.2009.29:18-22.
    48. Mertens, N.,A. Wolkenhauer,M. Leck. UV laser ablation and plasma treatment of wooden surfaces-acomparing investigation[J].Laser Physics Letters.2006.3(8):380-384.
    49. Rehn, P.,A. Wolkenhauer,M. Bente. Wood surface modification in dielectric barrier discharges atatmospheric pressure[J].Surface&Coatings Technology.2003.174:515-518.
    50. Bente, M.,G. Avramidis,S. Forster. Wood surface modification in dielectric barrier discharges atatmospheric pressure for creating water repellent characteristics[J].Holz Als Roh-Und Werkstoff.2004.62(3):157-163.
    51.张齐声.中国竹材工业化利用[J].北京:中国林业出版社.1995.
    52.黄河浪,卢晓宁,薛丽丹.用氧等离子体处理改善竹地板胶合性能[J].浙江林学院学报.2006(05):486-490.
    53.黄河浪,薛丽丹,卢晓宁.低温等离子体处理对竹片表面胶合性能的影响[J].南京林业大学学报(自然科学版).2006(06):23-26.
    54.梅长彤,周绪斌,朱坤安.等离子体处理对稻秸/聚乙烯复合材料界面的改性[J].南京林业大学学报(自然科学版).2009(06):1-5.
    55.刘杨,吕新颖,陶岩.木粉/聚乙烯复合材料的等离子体表面处理——等离子体处理时间对复合材料表面特性的影响[J].高分子学报.2010(06):782-787.
    56. Yuan, X.,K. Jayaraman,D. Bhattacharyya. Effects of plasma treatment in enhancing the performance ofwoodfibre-polypropylene composites[J].Composites.2004.35:1363-1374.
    57. Liu, Y.,Y. Tao,X. Lv. Study on the surface properties of wood/polyethylene composites treated underplasma[J].Applied Surface Science.2010.257:1112-1118.
    58. A.Jamali,P.D.Evans. Etching of wood surfaces by glow discharge plasma[J].ORIGINAL.2010. Wood SciTechnol.
    59. Sahin, H.T. Rf-O-2Plasma Surface Modification of Kraft Lignin Derived from Wood Pulping[J].WoodResearch.2009.54(1):103-112.
    60. S.Sabharwal, H.,F. Denes,L. Nielsen. Free-Radical Formation in Jute from Argon PlasmaTreatment[J].American Chemical Society.1993.41:2202-2207.
    61. Pascu, M.,C. Vasile,M. Gheorghiu. Modification of polymer blend properties by argon plasma/electronbeam treatment:surface properties[J].Materials Chemistry and Physics.2003.80:548-554.
    62. S.Zanini,C.Riccardi,C.Canevali. Modifications of lignocellulosic fibers by Ar plasma treatments incomparison with biological treatments[J].Surface&Coatings Technology.2005.200:556-560.
    63. G.Toriz,J.Ramos,R.A.Young. Lignin–Polypropylene Composites.II.Plasma Modification of Kraft Ligninand Particulate Polypropylene[J].Journal of Applied Polymer Science.2003.91:1920-1926.
    64. Sahin, H.T. RF-O2PLASMA SURFACE MODIFICATION OF KRAFT LIGNIN DERIVED FROMWOOD PULPING[J].WOOD RESEARCH.2009.54(1):103-112.
    65.刘晓玲,程贤甦.酶解木质素的分离与结构研究[J].纤维素科学与技术.2007(03):41-46+51.
    66.刘贵生.木素官能团分析[M].东北林业大学出版社.1996.
    67. Okuda, N.,K. Hori,M. Sato. Chemical changes of kenaf core binderless boards during hot pressing (I):influence of the pressing temperature condition[J].Wood Science and Technology.2006.52:244-248.
    68.许根慧,姜恩永,盛京.等离子体技术与应用[M].化学工业出版社.2006.
    69. Dorris, G.M.,D.G. Gray. The surface analysis of paper and wood fibers by ESCA (Electron spectroscopyfor chemical analysis). I. Application to cellulose and lignin[J].Cell. Chem. Technol.1978.12:9-23.
    70. Dorris, G.M.,D.G. Gray. The surface analysis of paper and wood fibers by ESCA II. Surface compositionof mechanical pulps[J].Cell. Chem. Technol.1978.12:721-734.
    71. Moutinho, I.M.T.,A.M. Kleen,M.M.L. Figueiredo. Effect of surface sizing on the surface chemistry ofpaper containing eucalyptus pulp[J].Holzforschung.2009.63:282–289.
    72.戴瑾瑾.等离子体技术在纺织加工中的应用[J].纺织学报.1996.17(6):384-390.
    73. H.Hatakeyama,T.Hatakeyama. Lignin Structure, Properties, and Application[M].11-15.
    74.何翠芳.棉杆蒸爆处理制备无胶纤维板工艺及胶合机理的研究[J].2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700