低分子量有机酸对高岭石溶解作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用间歇法(batch methods),模拟研究土壤中几种低分子量有机
    酸(Low-molecular-weight organic acids,简称 LOAs) (柠檬酸,草酸,苹
    果酸)对红壤区主要粘土矿物-高岭石的溶解作用及盐基离子的活化作
    用,结果表明:
    1) LOAs 对高岭石的溶解能力随有机酸浓度的增加及酸度的升高而
     增强。且一般情况下,其对高岭石的溶解能力都大于质子(HAC)对
     高岭石的溶解能力。
    2) 在不调节酸度的情况下,有机酸对高岭石的溶解能力顺序为:草
     酸>柠檬酸>苹果酸;而在HAC/NH4AC 缓冲溶液体系中,有机酸对
     高岭石的溶解能力既与其浓度有关又与其酸度有关,当有机酸浓度
     为 1mM, pH3.5 时,草酸>柠檬酸>苹果酸;pH5.5 和 pH4.5 时,
     柠檬酸>草酸>苹果酸;而当有机酸浓度≥5mM 时,草酸>柠檬酸>苹
     果酸。
    3) 不调节酸度的苹果酸导致了高岭石 Si 的优先释放,而在
     HAC/NH4AC 缓冲溶液体系中,苹果酸却导致了 Al 的优先释放,
     然而,对于柠檬酸和草酸而言,无论是否调节其酸度,都导致了
     Al 的优先释放。对于柠檬酸和草酸而言,一般情况下,高岭石是
     在反应中期或后期才趋于同步溶解;而对于苹果酸而言,高岭石溶
     解同步性较为复杂。
    4) 有机酸能促进高岭石中 K+、Na+、Ca2+、Mg2+等盐基离子的释放,
     甚至在较低的浓度(100μM)。但其对高岭石盐基离子的释放影响较
     复杂。
    5) HAC 作用下,高岭石的反应级数(nH)和速率常数(kH)分别为 0.28
     和 1.12×10-12;当柠檬酸、草酸和苹果酸浓度为 1mM 时,反应级数
     (nH )分别为 0.09、0.27 和 0.18,速率常数(kH )分别为 4.03×10-13、
     L L
     2.62×10-12和 4.73×10-13;当其浓度为 5mM 时,其反应级数(nH )分
     L
     1
    
    
    低分子量有机酸对高岭石溶解作用的研究
     别为 0.16、0.37 和 0.16,速率常数(kH )分别为 1.38×10-12、2.32×10-11
     L
     和 4.97×10-13;其浓度为 10mM 时,反应级数(nH )分别为 0.18、0.34
     L
     和 0.16,速率常数(kH )分别为 2.17×10-12、2.60×10-11和 6.05×10-13。
     L
    6) 配体对高岭石的溶解能力既受反应液酸度影响又受有机酸类型的
     影响。柠檬酸作用下,当其浓度>1mM 时,反应液中酸度的增加有
     利于配体对高岭石溶解能力的提高,而当其浓度≤1mM 时,酸度
     的增加可能有抑制配体对高岭石的溶解能力。草酸作用下,酸度的
     增加也有利配体对高岭石的溶解能力的提高。但苹果酸作用下,当
     其浓度为 10mM 时,反应液中酸度的增加有利于配体对高岭石溶解
     能力的提高,而当其浓度为 1mM 和 5mM 时,酸度的增加却可能
     有抑制配体对高岭石的溶解能力。对于柠檬酸和草酸而言,在促进
     高岭石溶解的作用上,配体的贡献是主要的;而对于苹果酸而言,
     在促进高岭石溶解的作用上,配体的贡献是次要的。
    7) 配体促进溶解速率(RL)可以用配体浓度的指数形式来表示。对柠檬
     酸、草酸和苹果酸而言,pH5.5 时,分别为 RL=10-13.01[配体]0.23、
     RL=10-13.28[配体]0.70 和 RL=10-13.72[配体]0.38;pH4.5 时,分别为
     RL=10-13.00[配体]0.51、RL=10-13.03[配体]1.05 和 RL=10-14.07[配体]0.77;
     pH3.5 时,分别为 RL=10-12.99[配体]0.64、RL=10-12.72[配体]0.89 和
     RL=10-14.61[配体]1.69。
In order to know better the effect of low -molecular -weight
    organic acid (LOAs) in soils in the processes of red soil acidification, the experiment
    was conducted to evaluate the role of several kinds of LOAs ( citiric acid, oxalic acid
    and malic acid) on the dissolution and base cation activation of kaolinite with batch
    method. The result showed as follows:
    1) Solvability of kaolinite was enhanced with an increase in the concentration and
     acidity of LOAs. Moreover in general, the solvability of LOAs on kaolinite were
     biggerthan proton (HAC).
    2) When the acidity of LOAs wasn’t adjusted, LOAs promoted the kaolinite
     solvability in the order oxalic acid > citric acid > malic aicd; However in
     HAC/NH4AC buffer solution, the ability that LOAs promoted the kaolinite
     dissolution had relation to the concentration and acidity of LOAs, when the
     concentration of LOAs was 1mM, LOAs promoted the kaolinite solvability in the
     order oxalic acid > citric acid > malic aicd (pH3.5) and citric acid > oxalic acid >
     malic acid (pH4.5 and pH5.5 ); However, when the concentration of LOAs was as
     big as or bigger than 5mM, the order was oxalic acid >citric acid >malic aicd.
    3) When the acidity of malic acid wasn’t adjusted, Si was preferentially released
     compared to Al, but in HAC/NH4AC buffer solution, the malic acid resulted in the
     preferential release of Al; However in respect of citric acid and oxalic acid, no
     matter if the acidity was adjusted, Al was both preferentially released compared to
     Si. In general, in citric acid and oxalic acid solution, kaolinite nearly dissolved
     congruently in reactive metaphase or anaphase; In malic acid solution,
     stoichiometry of kaolinite dissolution is complex.
     117
    
    
    低分子量有机酸对高岭石溶解作用的研究
    4) LOAs could promote the release of K+, Na+, Ca2+, Mg2+ from kaolinite, even if the
     concentration of LOAs was very low (100μM). But the effect of the concentration
     of LOAs on the release of base cation from kaolinite was complex.
    5) The reaction order(nH) and rate constant(kH) of kaolinite dissolution in
     HAC/NH4AC buffer solution were 0.28 and 1.12×10-12 respectively; when the
     concentration of citric acid , oxalic acid and malic acid was 1mM. The reaction
     order(nH ) were 0.09, 0.27 and 0.18 respectively,the rate constant (kH ) were
     L L
     4.03×10-13, 2.62×10-12 and 4.73×10-13 respectively;when the concentration was
     5mM, The reaction order(nH ) were 0.16, 0.37 and 0.16 respectively,the rate
     L
     constant (kH ) were 1.38×10-12, 2.32×10-11 and 4.97×10-13 respectively; when
     L
     the concentration was 10mM, The reaction order(nH ) were 0.18, 0.34 and 0.16
     L
     respectively,the rate constant (kH ) were 2.17×10-12, 2.60×10-11 and 6.05×10-13
     L
     respectively.
    6) The ability of Ligand-promoted kaolinite dissolution was related to reactive
     solution acidity and the kind of LOAs. In citric acid solution, when the concentration
     of citric acid was bigger than 1mM, the enhance of solution acidity availed the
     increase of Ligand-promoted kaolinite dissolution,however when the
     concentration of citric acid was no more than 1mM, the enhance of solution
     acidity possibly restrained the ability of Ligand-promoted kaolinite dissolution. In
     oxalic acid solution, the enhance of solution acidity availed the increase of
     Ligand-promoted kaolinite dissolution. But In malic acid solution, when the
     concentration of malic acid was 10mM, the enhance of solution acidity availed the
     increase of Ligand-promoted kaolinite dissolution, however when the
     concentration of malic acid was 1mM and 5mM, the enhance of solution acidity
     possibly restrained the ability of Ligand-promoted kaolinite dissolution. Ho
引文
1.van Hees P.A.W, Vinogradoff, S.I, Edwards, A.C, Godbold, D.L,Jones, D.L, Low
     molecular weight organic acid adsorption in forest soils: effects on soil solution concentrations
     and biodegradation rates Soil Biology & Biochemistry 2003,35:1015–1026
    2.Kaurichev, I.S., Ivanova, T.N., Nozdrunova, Y.M., Low molecular organic acid content of
     water-soluble organic matter in soils. Sov. Soil Sci. 1963, 223–229 (English Translated)
    3.Carothers W. W. and Kharaka Y. K. Aliphatic acid anions in oil field waters— implications for
     the origin of natural gas. AAPG Bull 1978,62: 2441–2453.
    4.Hanor J. S. and Workman A. L. Distribution of dissolved fatty acids in some Louisiana oil field
     brines. Appl. Geochem. 1986,1: 37–46.
    5.Fisher J. B. Distribution and occurrence of aliphatic acid anions in deep subsurface waters.
     Geochim. Cosmochim. Acta 1987,51:2459–2468.
    6.MacGowan D. B. and Surdam R. C. Carboxylic acid anions in formation waters, San Joaquin
     Basin and Louisiana Gulf Coast,U.S.A.— Implications for clastic diagenesis. Appl. Geochem.
     1990, 5: 687–701.
    7.Lundegard P. D. and Kharaka Y. K. Distribution and occurrence of organic acids in subsurface
     waters. In Organic Acids in Geological Processes (eds. E. D. Pittman and M. B. Lewan), 1994,
     pp. 40–69.Springer.
    8.胡红青,贺纪正,李学垣. 多种有机酸共存对可变电荷土壤吸附磷的影响 植物营养与肥料
     学报 1999,5( 2) :122~ 128
    9.沈阿林,李学垣,吴受容.土壤中低分子量有机酸在物质循环中的作用(J).植物营养与肥料
     学报,1997,3(4):363-369.
    10.Bruckert S.Influence des composes organiques solubles surla pedogenese en milien acide
     Ⅱ.Experiences de laboratoire.Ann.Agron. 1970,21:725-757.
    11.Kodama H.Sconitzer M and Jaakkimainen M,Chlorite and biotite weathering by fulvic acid
     solutions in closed and open system ,Can.J.Soil Sci.1983,63:619-629.
    12.Stevenson .F.J..Organgic acid in soil. 1967,pp. 110-146.in A.D.MeLaren and
     G.H.Peterson(ed)Soil biochemistry,Vol.l.Mareel Dekker,New York.cv
    13.吴宏海,胡勇有,黎淑平. 有机酸与矿物间界面作用研究评述 岩石矿物学杂志,2001(20):
     399-404
    14.Wang ,T.S.C.T.K.Yang,and T..T.Chuang. Soil phenolic acids as plant growth inhibitors.Soil Sci.
     1967,103:239-246.
    15.Casalicchio .G.and N.Rossi, Investigations on composition of the soil lipid fraction .I D
     -etermination of some free oganic acids.Agrochimica 1970,14:505-515.
     102
    
    
    2004073800-9.doc
    16.Henderson.M.E.K. Release of aromatic compounds from birch and spruce sawdusts during
     decomposition by white-rot fungi..Nature(London ) 1955:175:634-635.
    17.Reddy.M.N.G.Ramagopal,and A.S.Rao. Phenollic acid in groundnut seed exudates. Plant Soil
     1977,46:655-658.
    18.Flaig,W. Organic compounds in soil.Soil Sci. 1971,111:19-33.
    19.Berthelin, J., Kogblevi, A. and Dommergues, Y., Microbial weathering of a brown forest soil:
     Influence of partial sterilization. Soil Biology and Biochemistry, 1974,6: 393-399.
    20.Graustein, W.C., Cromack, K.J. and Sollins, P., Calcium oxalate: Occurrence in soils and effect
     on nutrient and geochemical cycles. Science, 1977,198: 1252-1254.
    21.Dehay H, and M Carré, Composition of several radiacell excretions .C.R.Acad.Sci.Paris
     1957,244:230-233.
    22.Kovacs,M.F. Identification of aliphatic and aromatic acids in root and seed exudates of
     peas .cotton and barley .Plant Soil 1971,34:441-451.
    23.Jayman,T.C.Z. and S.Sivasubramanian, Release of bound iron and aluminum from soils by the
     root exudates of tea(Camellia sinensis).J.Sci.Food Agric. 1975,26:1895-1898.
    24.Smith, W.H.. Character and significance of forest tree root exudates. Ecology, 1976,57:
     324-331.
    25.Shen ALin ,Li,Xueyuan,Kanamori T Ono S and Arao T.Low-molecular-weight organic acids in
     two Japanese soils incubated wirh plant residues under different moisture conditions : Ⅰ
     Aliphatic acids ,Pedosphere,1997,7(1):79-86,
    26.Fox, T.R., and Comerford, N.B., Low-molecular-weight organic acids in selected forest soilsof
     the southeastern USA. Soil Sci. Soc. Am. J. 1990,54:1139–1144
    27.Van Hees, P.A.W., Andersson, A.-M., Lundstrom, U.S., Separation of organic low molecu- lar
     weight aluminium complexes in soil solution by liquid chromatography. Chemosphere
     1996,33:1951–1966.
    28.F?rstner,U,Metal transfer between solid and aqueous phases. 1981,pp.197-270.in U.
    29.Stevenson, F.J. Humus chemistry.John Wiley and Sons. 1982,New York
    30.Fox T.R.Comerford N,B.and Mc Fee W.W. Phosphorus and aluminum release from a spodic
     horizon mediated by organic acids Soil Sci Soc Am J,1990,54:1763-1767
    31.Ronatt JW and Katznelson H.A study of bacteria on the root surface and in the rhizosphere soil
     of cropped plants J.appl.Bacterial .1961.24:164-171.
    32.Inoue.K.and P.M.Huang. Influence of citric acid on the natural formation of imogolite.Nature
     (London) 1984,308:58-60.
    33.Drever J.I. and Vance, G.F. in: E.D. Pittman and M.D. Lewan (Eds.), Organic Acids in
     103
    
    
    低分子量有机酸对高岭石溶解作用的研究
     Geological Processes, Springer-Berlin, 1994, p. 138-161.
    34.Welch S. A. and Ullman W. J. Feldspar dissolution in acidic and organic solutions:
     Compositional and pH dependence of dissolution rate. Geochim. Cosmochim. Acta 1996, 60:
     2939–2948.
    35.Fox.T.R. and Comerford,N.B Phosphatase activity and phosphatase hydrolysable organic
     phosphorus in two forested spodosols Soil Biology and Biochemistry 1992,24:579-583
    36.Fox TR. The influence of low-molecular weight organic acids on properties and processes in
     forest soil. In: Kelly JM,MeFee W, editors. Carbon Forms and Function in Forest Soils.
     Madison, WI: SSSA, 1995:43_62.
    37.Van Hees,P.A.W.,LundstrOm,U.S., and Giesler,R, Low molecular weight organic acids and
     their Al-complexes in soil solution-composition,distribution and seasonal variation in three
     podzolized soils .Geoderma, 2000,94:173-200.
    38.Dijkstra F,A, Geibe C .HolmstrOm,S .LundstrOm U.S and Breemen N.V The effectof organic
     acids on base cation leaching from the forest floor under six North American tree species
     European Journal of Soil Science , 2001,52:205-214
    39.Dinkelaker ,B,Romheld,V,and Marschner,H, Citric acid excretion and precipitation of calcium
     citrate in the rhizosphere of white lupin (Lupinus albus L.) Plant.Cell and Environment,
     1989,12: 285-292.12:
    40.Gardner ,W,K,Parbery,D.G.and Barber,D.A. The acquisition of phosphorus by Lupinus albus L.
     Ⅱ,The effect of varying phosphorus supply and soil type on some characteristics of the soil/root
     interface.Plant and Soil. 1982,68:33-41.
    41.Gardner ,W,K,Barber,D,A,and Parbery,D,G, The acquisition of phosphorus by Lupinus albus L.
     Ⅲ,The probable mechanism by which phosphorus movement in the soil/root interface is
     enhanced Plant and Soil 1983,.70:107-124.
    42.Ae ,N.Arihara,J.and Okada,K.et al. Phosphorus uptake by pigeon pea and its role in cropping
     system of the India subcontinent. Science , 1990,248:477-480.
    43.Ae,N.Arihara ,J,and Okada ,K. Phosphorus uptake mechanisms of pigeon pea grown in alfisois
     and vertisols ,In: Phosphorus nutrient of grain legumes in the semi-arid tropics .Eds.
     Johansen,C.Lee.K.K.and Sahraw at ,K.L. 1991,pp.91-98.ICRISAT.Patancheru,India.
    44.马敬. 磷胁迫下植物根系有机酸的分泌及其对土壤难溶性磷的活化(M).北京,中国农业大
     学,1994.
    45.胡红青,廖丽霞,王兴林.低分子量有机酸对红壤无机态磷转化及酸度的影响 应用生态学
     报  2002, 13( 7):867-870
    46.Desai,A,D.and T.S.Rao. Injurious effect of green manure on rice under ill-drained
     104
    
    
    2004073800-9.doc
     conditions.J.Indian Soc.Soil Sci. 1957,5:147-153.
    47.Sato,K,and I,Yamane, Effect of temperature on the decomposition of glucose in a flooded
     soil .J.Soil Sci.Manure 1967,37:547-551.
    48.Takijima.Y. The metabolism of organic acids in soils of paddy fields and their inhibitory effects
     on plant growth:3.Nippon Dojo-Hiryogaku.31:435;through Soil Sci,Plant Nutr,(Japan)
     1960,7:80,1961.
    49.Bruckert ,S and F. Jacquin, Interaction entre la mobilite de plusieurs acides organiques et de
     divers cations dans un sol a mull et dans un sol a mor .Soil Biol .Biochem , 1969,1:275-294
    50.Kwong.Ng Kee K,F, Influence of organic acids on nature and Surface reactivities of hydrolytic
     reactions products of aluminum .Ph.K.diss.Univ, of Saskatchewan,Saskatoon, Sk,Canada 1977,
     (Diss.Abstr ,Int,39/05B)
    51.Goh,T.B. The effect of citric and tannic acids on the hydrolytic products of aluminum and their
     reactions with montmorillonite and trace metals Ph.D.Diss ,University of Saskatchewan.
     Saskatoon,Canada (Canadian theses on microfilm no . 1983,470-60).
    52.Str?m ,L.Olsson.T.and Tyler,G. Difference between calcifuge and acidifuge plants in root
     exudation of low-molecular organic acids.Plant and Soil. 1994,167:239-245.
    53.Tyler.G.and .Str?m.L. Differing organic acid exudation pattern explains calcifuge and acidifuge
     behavior of plants .Annals of Botany. 1995,75:75-78.
    54.Shen, H ;Yan,X.L;Zhao,M;Zheng,S.L;Wang,X.R xudation of organic acids in common bean as
     related to mobilization of aluminum- and iron-bound phosphates Enironmental and
     Experimental Botany 2002, 48 : 1–9
    55.毋福海,陈炳辉,刘琥琥.几种有机酸对花岗岩风化壳中稀土元素的浸出作用的实验研究 稀
     土  2002 23(2):1-12
    56.Blum U,Wentworth TR,Klein K,Worsham AD,King LD,Gerig TM and Lyu SW.Phenolic acid
     content of soils from wheat-notill,wheat-conventional till and fallow-conventional till soybean
     cropping systems ,J.of Chem .Eeol,1991,17(6):1045-1067
    57.Slattery WJ and Morrison GR.Relationship between soil solution aluminum and low molecular
     weight organic acids in a conservation cropping system .Plant and Soil.1995,171:193-197.
    58.马敬,曹一平,李春俭等.磷胁迫下植物根系有机酸的分泌及其对土壤难溶性磷的活化.
     现代农业中的植物营养与施肥,中国农业科技出版社,1995,149-152.
    59.Hale M.G.and Moore L D.Factor safecting root exudation. Adv.In Agron,1979,31:93-124.
    60.Lipton.D.S.Blanchar.R.W.and Blevins,D.G. Citrate,malate and succinate oncentratinon in
     exudation from P-sufficient and P-stressed Medicago sativa L.seedlings .Plant Physiol.
     1987,85:315-317.
     105
    
    
    低分子量有机酸对高岭石溶解作用的研究
    61.Suhayda,C.G,and Haug, A. Organic acids reduce aluminum toxicity in maize root
     membranes(J). Physiol. Plantarum. 1986,68:168-195
    62.Maiyasaka, S. C. buta, J.G. Howell, R.K., and Foy. C.D. Mechanism of aluminum tolerance in
     snapbeans(J). Plant Physiol. 1991, 96:737-743
    63.Ma,J F., Zheng S. J., Matsumoto H., and S. Hiradate, S. Detorxify aluminum with
     buckwheat(J). Nature, 1997, 390,569-570
    64. Li X. F, Ma .J. F and Hideaki M. Aluminum-induced secretion of both citrate and malate in
     rye(J) Plant and Soil 2002,242: 235-243,
    65.张福锁,曹一平. 根际动态过程与植物营养 (J).土壤学报 , 1992, 29( 8) :239- 250.
    66.Jones D.L.Organic acids in the rhizosphere: acritical review (J) .Plant and Soil,1998 ,205:25-
     44.
    67.Baber DA and Gunn KB.The effect of mechanical forces on the exudation of organic
     substances by the roots of cereal plants grown under sterile conditions ,New
     Phytol .1974.73:30-45.
    68.Boeuf-Tremblay V.Plantureux S and Guckert A.Influence of mechanical impedance on root
     exudation of maize seedlings at two development stages .Plant and Soil,1995,172:279-287.
    69.Sprengel, C. Kastners Arch. Ges. Naturlehre, 1826,8:145.
    70.Julien, A.A.Am. Assoc. Adv. Sci. Proc., 1879,28:311.
    71.Clark, F.W.The Data of Geochemistry, 2nd edn., US,Government. Printing Office,
     Washington, DC, 1911,782 pp.
    72.Fetzer, W.G. Econ. Geol., 41 (1946) 47.
    73.Krauskopf, K.B.Introduction to Geochemisty, McGraw-Hill, New York, 1967, 617 pp.
    74.Graham, E.R.Soil Sci., 52 (1941) 291.
    75.Baker, W.E.Geochim. Cosmochim. Acta, 37 (1972) 269.
    76.Huang P.M.and Schnitzer M. (Eds.), Interactions of Soil Minerals with Natural Organics and
     Microbes, Soil Science Society of America, Madison, WI., 1986, 606 pp.
    77.Blake , R.E.and Walter. L.M. Effect of organic acids on the dissolution of orthoclase at 80℃
     and pH6 Chemical Geology 1996,132:91-102
    78.Huang W. L. and Keller W. D. Dissolution of rock-forming silicate minerals in organic acids:
     Simulated first-stage weathering of fresh mineral surfaces. Am. Mineral. 1970,55:2076–2094.
    79.Surdam R. C., Boese S. W., and Crossey L. J. The chemistry of secondary porosity. InClastic
     Diagenesis. (eds. D. A. McDonald and R. C. Surdam); AAPG Mem. 1984, 37: 127–149.
    80.Surdam R. C., Crossey L. J., Hagen E. S., and Heasler H. P. Organic–inorganic interactions and
     sandstone diagenesis. AAPG Bull. 1989 73: 1–23.
     106
    
    
    2004073800-9.doc
    81.Amrhein, C. and Suarez, D.L., The use of a surface complexation model to describe the
     kinetics of ligand-promoted dissolution of anorthite. Geochim. Cosmochim. Acta, 1988,
     52:2785-2793.
    82.Bevan J. and Savage D. The effect of organic acids on the dissolution of K–feldspar under
     conditions relevant to burial diagenesis.Mineral. Mag. 1989,53:415–425.
    83.Manning D. A. C., Rae E. I. C., and Small J. S. An exploratory study of acetate decomposition
     and dissolution and Pb-rich potassium feldspar at 150°C, 50 MPa (500 bar). Mineral. Mag.
     1991,55:183–195.
    84.David A .Manning C. and Andrew P.G. The role of organic Matter in ore transport
     processs.In:organic Geochemistry.Ed.by Michael H.E. and Stephen A.M. New York:Pleenum
     Press.1933,547~563
    85.Huang W. L. and Longo J. M. The effect of organics on feldspar dissolution and the
     development of secondary porosity. Chem. Geol 1992,.98: 271–292.
    86.Welch S. A. and Ullman W. J. The effect of organic acids on plagioclase dissolution rates and
     stoichiometry. Geochim. Cosmochim.Acta 1993, 57:2725–2736.
    87.Franklin S. P., Hajash A. Jr., Dewers T. A., and Tieh T. T. The role of carboxylic acids in albite
     and quartz dissolution: An experimental study under diagenetic conditions. Geochim.
     Cosmochim.Acta 1994,58:4259–4279.
    88.Blum, A.E. and Stillings, L.L., Feldspar dissolution kinetics.In: A.E. White and S.L. Brantley
     (Editors), Chemical Weathering Rates of Silicate Minerals. Mineral. Soc. Am., Rev. Mineral.,
     1995,Vol. 31, Ch. 4.
    89.Stillings L. L., Drever J. I., Brantley S. L., Sun Y., and Oxburgh R. Rates of feldspar
     dissolution at pH 3–7 with 0–8 mM oxalic acid. Chem. Geol. 1996,132: 79–89.
    90.Berner, R.A. and Holdren, G.R., Jr., Mechanism of feldspar weathering - II.Observations of
     feldspars from soils. Geochimica et Cosmochimica Acta, 1979,43:1173-1186.
    91.Stephens J.C, Response of soil mineral weathering to elevated carbon dioxide PhD Thesis ,
     2002 California Institute of Technology Pasadena,California.
    92.Zinder, B. Furrer .G.and Stumm, W. The coordination chemistry of weathering: II. Dissolution
     of Fe(III) oxides,Geochim.Cosmochim. Acta, 1986, 50 :1861-1869.
    93.Bennett, P.C. Melcer, M.E.. Siegel D.I and Hassett, J.P. The dissolution of quartz in dilute
     aqueous solutions of organic acids at 25°C Geoehim. Cosmochim. Acta, 1988,52:1521-1530.
    94.Stumm W. and Wieland E. Dissolution of oxide and silicate minerals: rates depends on surface
     speciation. In Aquatic ChemicalKinetics (ed. W. Stumm), 1990,pp. 337–400, Wiley.
    95.Welch S. A. and Ullman W. J. Dissolution of feldspars in oxalic acid solutions. In Proceedings
     107
    
    
    低分子量有机酸对高岭石溶解作用的研究
     of the 7th Water Rock Interaction Meeting, Park City, Utah, USA, 13- 19 July 1992 (eds.Y. K.
     Kharaka and A. S. Maest), 1992,pp. 127-130. Balkema.
    96.Ochs, M. Chem. Geol., (1996) in press.
    97.Dibble W.E.and Tiller, W.A. Dibble W.E.and Tiller, W.A. Non-equilibrium water/rock
     interactions––I. Model for interface-controlled reactions Geochim. Cosmochim.Acta, 1981,45:
     79-92.
    98.Schnoor, J.L. in Stumm W. (Ed.), Aquatic Chemical Kinetics, Wiley, New York, 1990, p.
     475.
    99.Brantley S. L. and Stillings L. L. Feldspar dissolution at 25°C and low pH. Am.J. Sci. 1996,296:
     101–127.
    100.Guy C.and Schott, J. Multisite surface reaction versus transport control during the hydrolysis
     of a complex oxide Chem. Geol., 1989,78 :181-204.
    101.Murphy W. M. and Helgelson H. C. Thermodynamic and kinetic constraints on reaction rates
     among minerals and aqueous solutions III. Activated complexes and the pH dependence of the
     rates of feldspar, pyroxene, wollastonite, and olivine hydrolysis.Geochim. Cosmochim. Acta
     1987,51:3137–3153.
    102.Wollast R. and Chou L. Rate control of weathering of silicate minerals at room temperature
     and pressure. In Physical and Chemical Weathering in Geochemical Cycles (eds. A. Lerman
     and M.Meybeck), NATO ASI series Vol. 1988,251, pp. 11–32. Kluwer Academic.
    103.Blum A. Feldspars in weathering. In Feldspars and TheirReactions (ed. I. Parsons), NATO
     ASI Series C: Math. Phys. Sci.,1994,421:595–630.
    104.Hellmann R. The albite–water system: Part II. The time-evolution of the stoichiometry of
     dissolution as a function of pH at 100,200, and 300°C. Geochim. Cosmochim. Acta 1995,
     59:1669–1697.
    105.Oelkers E. H. and Schott J. Experimental study of anorthite dissolution and the relative
     mechanism of feldspar hydrolysis.Geochim. Cosmochim. Acta 1995,59: 5039–5053.
    106.Blum A. and Lasaga A. C. The role of surface speciation in the dissolution of albite. Geochim.
     Cosmochim. Acta 1991,55: 2193–2201.
    107Kummert R.and Stumm, W..The surface complexation of organic acids on hydrous ?-AlO, J
     Colloid Interface Sci., 1980,75:373-385.
    108.Furrer G. and Stumm W. The coordination chemistry of weathering:I. Dissolution kinetics of
     d-Al2O3and BeO. Geochim. Cosmochim.Acta 1986,50: 1847–1860.
    109.Bennett P. C., and Casey W. Chemistry and mechanisms of low-temperature dissolution of
     silicates by organic acids. In Organic Acids in Geological Processes (eds. E. D. Pittman and M.
     108
    
    
    2004073800-9.doc
     D.Lewan), 1994,pp. 162–200. Springer.
    110.Fein J. B. and Hestrin J. E. Experimental studies of oxalate complexation at 80°C: Gibbsite,
     amorphous silica, and quartz solubilities in oxalate-bearing fluids. Geochim. Cosmochim. Acta
     1994,58:4817–4829.
    111.Fein J. B. and Brady P. V. Mineral surface controls on the diagenetic transport of oxalate and
     aluminum. Chem. Geol. 1995,121:11–18.
    112.Fein J. B., Gore N., Marshall D., Yassa L., Loch A., and Brantley S. L. The effect of aqueous
     complexation and gibbsite surface sites on the decarboxylation rate of malonate. Geochim.
     Cosmochim. Acta 1995,59:5071–5080.
    113.Bennett P. C. Quartz dissolution in organic-rich aqueous systems. Geochim.Cosmochim. Acta
     1991,55:1781–1797.
    114.Castet S., Dandurand J. L., Schott J., and Gout R. Boehmite solubility and aqueous aluminum
     speciation in hydrothermal solutions (90 –350°C). Experimental study and modeling. Geochim.
     Cosmochim.Acta 1992,57:4869–4897.
    115.Palmer D. A. and Bell J. S. Aluminum speciation and equilibria in aqueous solution: IV. A
     potentiometric study of aluminum acetate complexation in acidic NaCl brines at 150°C.
     Geochim. Cosmochim.Acta 1994, 58, 651–659.
    116.Wood S. A., Tait C. D., Vlassopoulos D., and Janecky D. R. Solubility and spectroscopic
     studies of the interaction of palladium with simple carboxylic acids and fulvic acid at low
     temperature.Geochim. Cosmochim. Acta 1994,58: 625–637.
    117.Knauss K. G. and Copenhaver S. A. The effect of malonate on the dissolution kinetics of
     albite, quartz, and microcline as a function of pH at 70°C. Appl. Geochem. 1995,10:17–33.
    118.Mast, M.A. and Drever, J.I., The effect of oxalate on the dissolution rates of oligoclase and
     tremolite. Geochim. Cosmochim.Acta, 1987,51: 2559-2568.
    119.Poulson, S.R. Drever J.I.and Stillings, L.L. in S.H.Bottrell (Ed.), 4th Int. Syrup. Geochemistry
     of the Earth'sSurlime, 22 28 July, 1996, University of Leeds, UK, 1996,in press.
    120.Blake R. E. and Walter L. M. Kinetics of feldspar and quartz dissolution at 70–80°C and
     near-neutral pH:Effects of organic acids and NaCl (J).Geochim. Cosmochim. Acta. 1999, 63:
     2043–2059
    121.Manley E.P. and Evans, L.J.Dissolution of feldspars by Low-molecular-weight aliphatic and
     aromatic acids.Soil Sci., 1986,141:106-112.
    122.Drever .J.I. The effect of land plants on weathering rates of sililicate minerals , Geochim.
     Cosmochim,Acta,1994,58:2325-2332
    123.Drever .J.I .and Stillings.L.L.The role of organic acids in mineral weathering Colloids and
     109
    
    
    低分子量有机酸对高岭石溶解作用的研究
     Surfaces A:Physicochemical and Engineering Aspects 1997,120:167-181
    124.Carroll-Webb S.A. and Walther, J.V. A surface complex reaction model for the
     pH-dependence of corundum and kaolinite dissolution rates Geochim.Cosmochim. Acta, 1988,
     52: 2609-2623.
    125.Helgeson,H,C,Murphy,W,M,and Aagaard,P.Thermodynamic and kinetic constraints on
     reaction rates among minerals and aqueous solution.I.Rate constants,effective surface area,and
     the hydrolysis of feldspar.Geochim.Cosmochim.Acta.1984.48:2405-2432.
    126.Tole,M.P.Lasaga,A.C.and Pantano,C ,et al.The kinetics of dissolution of nepheline(NaAlSiO4),
     Geochim,Cosmochim,Acta,1986,50:379-392.
    127.Lasaga,A.C.Chemical kinetics of water-rock interactions,J.Ceophys.Res.1984,89:4009-4025
    128.Schott,J.Berner,R.A.and Sj?berg.E.L.Mechanism of pyroxene and amphibole weathering,
     I,Experimental studies of iron-free minerals.Geochim.Cosmochim.Acta ,1981,45:2123-2135.
    129.Rimstidt,J.D.and Barnes,H.L.The kinetics of silica-water reactions,Geochim,Cosmochim.Acta,
     1980,44:1683-1699a.
    130.Knauss,K.G.and Wolery,T.J.The dissolution kinetics of quartz as a function of pH and time at
     70℃Geochim.Cosmochim.Acta.1988,52:43-53
    131.Knauss.K.G.and Wolery.T.J.Dependence of albite dissolution kinetics on pH and time at 25℃
     and 70℃,Geochim.Cosmochim.Acta,1986,50:2481-2497
    132.Bruno,J,Casas.I.and Puigdomenech,I.The kinetics of dissolution of UO2 under reducing
     condition and the influence of an oxidized suface layer(UO2+x):Application of a continuons
     flow-through reactor, Geochim,Cosmochim.Acta,1991,55:647-658
    133.Zutic .V.and Stumm, W. Effect of organic acids and fluoride on the dissolution kinetics of
     hydrous alumina. A model study using the rotating disc electrode,Geochim. Cosmochim. Acta,
     1984,48: 1493-1503.
    134.Chin P.-K.F. and Mills, G.L. Kinetics and mechanisms of kaolinite dissolution: effects of
     organic ligands Chem. Geol., 1991,90: 307-317.
    135.Aglietti, E. F. Porto López J. M. and Pereira E. Kinetic aspects of kaolinite acid dissolution :
     II. Mineral after mechanochemical treatment, Reactivity of Solids, 1986,2: 35-44
    136.Wieland E ,and Stumm W,Dissolution kinetics of kaolinite in acidic aqueous solution at 25℃,
     Geoehim ,Cosmochim Acta.1992,56:3339-3355
    137.Ganor J.and Lasaga. A.C. Mineral. Mag., 58A (1994) 315.
    138.Huang W.H. and Keller, W.D.Nature: Physical Science, 1972,239:149.
    139.Eick M. J., Grossl P. R., Golden D. C., Sparks D. L., and Ming D. W. Dissolution of a lunar
     glass simulant as affected by pH and organic anions. Geoderma 1996a,74:139–160.
     110
    
    
    2004073800-9.doc
    140.Kwong .and Huang,P.M, The relative influence of low-molecular-weight complexing organic
     acids on the hydrolysis and precipitation of aluminum.Soil Sci. 1979a,128:337-342.
    141.徐仁扣,季国亮,将 新 .低分子有机酸对高岭石中铝释放的影响 土壤学报,2002,39(3):
     334-340
    142.Casey W.H.Westrich H.R.and Holdren G.R Dissolution rates of palgioclase at pH=2 and
     3.Am,Mineral. .1991,76:211-217.
    143.Huang W. H. and Kiang W. C. Laboratory dissolution of plagioclase in water and organic
     acids at room temperature. Amer.Mineral. 1972,57:1849 - 1859.
    144.Stillings L. L. and Brantley S. L. Feldspar dissolution at 25°C and pH 3: Reaction
     stoichiometry and the effect of cations. Geochim.Cosmochim. Acta 1995,59:1483–1496.
    145.Techer I. Apports des analogues naturels vitreux a la validation des codes de prediction du
     comportement a long terme des verres nucleaires , (1999) Thesis Universitéde Montpellier
     II,206p.
    146.Goldich,S.S. A study in rock weathing.J.Geol. 1938,46:17-58.
    147.Oelkers.Eric.H and Gislason Sigurdur.R. The mechanism ,rates and consequences of basaltic
     glass dissoluteion:I.An experimental study of the dissoluteion rates of basaltic glass as a
     function of aqueous Al,Si and oxalic acid concentration at 25℃ and pH=3 and 11, Geochim.
     Cosmochim.Acta 2001,65:3671-3681
    148.Dove P. M. and Crerar D. A. Kinetics of quartz dissolution in electrlyte solutions using a
     hydrothermal mixed flow reactor.Geochim. Cosmochim. Acta 1990,54:955–969.
    149.Nesbitt H. W., Macrae N. D., and Shoytk W. Congruent and incongruent dissolution of
     labradorite in dilute, acidic, salt solutions.J. Geol 1991,99: 429–442.
    150.Burch T. E., Nagy K. L., and Lasaga A. C. Free energy dependence of albite dissolution
     kinetics at 80°C and pH 8.8. Chem.Geol. 1993, 105:137–162.
    151.Chou L. and Wollast R. Steady-state kinetics and dissolution mechanisms of albite.Am. J. Sci.
     1985,285: 963–993.
    152.Welch ,S.A and Ullman,W.J The temperature dependence of bytownite feldspar dissolution in
     neutral aqueous solutions of inorganic and organic ligands at low temperature(5–35℃)
     Chemical Geology 2000,167:337–354
    153.Strandh H., Pettersson L. G. M., Sjo¨berg L., and Wahlgren U. Quantum chemical studies of
     the effects on silicate mineral dissolution rates by adsorption of alkali metals. Geochim.
     Cosmochim.Acta 1997,61:2577–2587.
    154.Eick M. J., Grossl P. R., Golden D. C., Sparks D. L., and Ming D. W. Dissolution kinetics of
     a lunar glass simulant at 25°C: The effect of pH and organic acids. Geochim. Cosmochim. Acta
     111
    
    
    低分子量有机酸对高岭石溶解作用的研究
     1996b,60:157–170.
    155.罗孝俊,杨卫东.有机酸对长石溶解度影响的热力学研究 矿  物  学  报 2001,21(2):
     183~188
    156.Brady, P.V. and Carroll, S.A., Direct effects of CO2 and temperature on silicate weathering:
     Possible implications for climate control. Geochimica et Cosmochimica Acta, 1994,58(8):
     1853-1856.
    157.Gwiazda, R.H. and Broecker, W.S., The separate and combined effects of temperature, soil
     pCO2, and organic acidity on silicate weathering in the soil environment: formulation of a
     model and results. Global Biogeochemical Cycles, 1994,8(2): 141-155.
    158.White, A.F. and Blum, A.E., Effects of climate on chemical weathering in watersheds.
     Geochimica et Cosmochimica Acta, 1995,59(9): 1729-1747.
    159.Holdren.Jr.,G.R.and Speyer,P.M, Reaction rate-surface area relationships during the early
     stages of weathering:ⅡData on eight additional feldspars .Geochim.Cosmochim.Acta
     1987,51:2311-2318
    160.Casey W. H., Westrich H. R., and Arnold G. W. Surface chemistry of labradorite feldspar
     reacted with aqueous solutions at pH = 2,3, and 12. Geochim. Cosmochim. Acta 1988,
     52:2795-2807.
    161.Holdren.Jr.,G.R.and Speyer,P.M, pH dependent changes in the rates and stoichiometry of
     dissolution of an alkali feldspar at room tempeature.AM,J,Sci., 1985,285:994-1206.
    162.Devidal J. L., Schott J., and Dandurand J.-L. An experimental study of kaolinite dissolution
     and precipitation kinetics as function of chemical affinity and solution composition at 150°C, 40
     bars, and pH 2, 6.8 and 7.8. Geochim. Cosmochim. Acta 1997,61:5165–5186.
    163.Oliva P. et al The effect of organic matter on chemical weathering:Study of a small tropical
     watershed: Nsimi-Zoe′te′le′site, Cameroon Geochimica et Cosmochimica Acta, Vol. 63, No.
     23/24, 1999, pp. 4013–4035
    164.Carroll S. A. and Walther J. V. Kaolinite dissolution at 25,60, and 80°C. Amer. J. Sci.
     1990,290: 797–810.
    165.Huertas J. F., Chou L., and Wollast R. Mechanism of kaolinite dissolution at room
     temperature and pressure. Part II: Kinetic study.Geochim. Cosmochim. Acta
     1999.63:3261–3275.
    166.Hocking P. J. Organic acids exuded from roots in phosphorus uptake and aluminum tolerance
     of plants in acid soils, Adavanced in agronomy 2001
    167.李庆逵. 1983. 中国红壤,科学出版社
    168.于天仁. 中国土壤的酸度特点和酸化问题 土壤通报,1988,18(2):49-51
     112
    
    
    2004073800-9.doc
    169.Dai ZH.; Wang XJ.; Zhao DW.; Liu YX.. Changes in pH, CEC and exchangeable acidity of
     some forest soils in southern China during the last 32-35 years(J).Water, Air, and Soil Pollution.
     1998,108(3-4): 377-390
    170.张桃林,鲁如坤. 季国亮 中国红壤退化机制与防治. 北京:中国农业出版社,1999
    171.赵其国,张桃林. 我国东部红壤地区土壤退化的时空、变化、机理及调控 科学出社 2002
    172.戎秋涛,杨春茂,徐文彬. 土壤酸化研究进展 地球科学进展,1996,11(4):396-401
    173.曾希柏,红壤酸化及其防治 土壤通报,2001,31(3):111-113
    174.Barman,A,K,Varadachari,C and Ghosh,K, Weathering of silicate minerals by organic
     acids.I,Nature of cation solubilisation Geoderma, 1992,53:45-63
    175.徐仁扣 有机酸对酸性土壤中铝的溶出和铝离子形态分布的影响,土壤 1998,4:214-217
    176.曾清如,周细红,廖柏寒, 等.LOAs 对茶园土壤中 Al、F、P、Cu、 Zn、Fe、Mn 的活
     化效应. 茶叶科学(J),2001,21(1):48-52
    177.陆文龙,曹一平,张福锁.根分泌的有机酸对土壤磷和微量元素的活化作用 应用生态学报 
     1999,10( 3):379~382
    178.Chen Yong liang et al , Effect of root derived organic acids on the activation of nutrients in the
     rhizosphere soil. Journal of Forestry research, 2002,13(2):115-118
    179.王建林 植物对铝毒胁迫的适应机制,见张福锁主编,植物营养-生态生理学和遗传学,
     中国科学技术出版社,1993,248-290
    180.López-Bucio J, Nieto-Jacobo M.F,Ramírez-Rodríguez V,Herrera-Estrella L Organic acid
     metabolism in plants: from adaptive physiology to transgenic varieties for cultivation in
     extreme soils Review: Plant Science 2000,160:1–13
    181.May H M,Kinniburgh D G ,Hel mke P A, Jackson M L,Aqueous dissolution,solubilities and
     thermodynamic stabilities of common aluminolilicate clay minerals:kaolinite and smectites
     Geochim Cosmochim ,Acta,1986,50:1667-1667
    182.Ritchie G S P.Role of dissolution and precipitation of minerals in controlling soluble
     aluminum in acidic soils Advances in Agronomy 1994,53:47-84
    183.Lindsay W L and Walthall P M The solubility of aluminum in soils in Sposito G ed The
     Environmental Chemistry of Aluminum(Second edition ) CRC Press,inc 1996,333-463
    184.Ganor J., Mogollon J. L., and Lasaga A. C. The effect of pH on kaolinite dissolution rates and
     on activation energy. Geochim. Cosmochim.Acta 1995,59: 1037–1052.
    185.Metz V. and Ganor J. Stirring Effect on Kaolinite Dissolution Rate. Geochim. Cosmochim.
     Acta 2001:65(20), 3475–3490.
    186.Jordi, C. Volker, M.and Jiwchar, G. The effect of pH and temperature on kaolinite dissolution
     rate under acidic conditions Geochimica et Cosmochimica Acta, 2002,Vol. 66, No. 22, pp.
     113
    
    
    低分子量有机酸对高岭石溶解作用的研究
     3913–3926,
    187.Nagy, K.L., Blum, A.E. and Lasaga, A.C., Dissolution and precipitation kinetics of kaolinite
     at 80°C and pH 3: The dependence on solution saturation state. Amer. J. Sci., 1991,291:
     649-686.
    188.Vance G.F. Stevenson F.J.and Sikora F.J.Environmental chemistry of aluminum organic
     complexes In:Sposito G ed The Environmetal Chemistry of Aluminum(Second edition) CRC
     Press,Inc,1996,170~176
    189.Fein, J.B., Experimental study of aluminum-, calcium-,and magnesium-acetate complexing at
     80°C. Geochim. Cosmochim.Acta, 1991a,55: 955-964.
    190.Benezeth, P., Castet, S., Dandurand, J.L., Gout, R. and Schott, J., Experimental study of
     aluminum-acetate complexing between 60 and 200°C. Geochim. Cosmochim. Acta, 1994,58:
     4561 -4571.
    191.Ward D.B.and Brady P.V. Effect of Al and organic acids on the surface chemistry of
     kaolinite.Clays Clay Miner.1998,(46):453-465.
    192.Hradil,D and Hostomsky,J.Effect of composition and physical propertyes of natural kaolinitic
     clays on their strong acid weathering rates.Catena. 2002,(49);171-181.
    193. 陈 传 平 等 . 水 溶 液 中 硅 质 絮 状 沉 淀 物 的 实 验 研 究. 石 油 与 天 然 气 地 质 ,
     1994,15(4):316-321.
    194.Drever,J.I. The Geochemistry of Natural Waters Prentice-Hall,Englewood Cliffs,NJ. 1988.
    195.Hem,J.D.,Aluminum species in water,In:R.A.Baker(Editor).Trace Inorganics in
     Water.Am.Chem. Soc.Symp.Serics73.Am,Chem.Soc.Washington.DC.1968,pp.98-114.
    196.张生,李统锦,王联魁. 地球化学动力学反应器原理和速率方程测定[J].地质地球化学,
     1997,25(1):53-59.
    197.张生. 金属矿物的反应动力学与地球化学意义[J] 。地学前缘,1999,6(2):351-360.
    198.Casey, W.H. and Bunker, B. Leaching of mineral and glass surfaces during dissolution. In:
     Mineral–Water Interface Geochemistry. Hochella, M.F., White, A.F. Eds. , Rev. Mineral. 23
     Mineralogical Society of America, 1990, pp. 397–426.
    199.Eggleston, C.M., Hochella, M.F. Jr.and Parks, G.A.,. Sample preparation and aging effects on
     the dissolution rate and surface composition of diopside. Geochim. Cosmochim. Acta 1989,53:
     797–804.
    200.Lagache M. New data on the kinetics of the dissolution of alkali feldspar at 200℃ with CO2
     charged water Geochim Cosmochim Acta,1976,40:157-161
    201.Petrovic R,Berner R A. and Goldhaber M B. Rate control in dissolution of alkali
     feldspars-study of residual feldspar grains by X-ray photoelectron spectroscopy. Geochim
     114
    
    
    2004073800-9.doc
     Cosmochim Acta ,1976,40:537-548.
    202.Grandstaff D E. Changes in surface area and morphology and the mechanism of forsterite
     dissolution Geochim Cosmochim Acta,1978,42:1899-1902.
    203.Rimstidt J.D and Dove P.M.,Mineral/solution reaction rates in a mixed flow
     reactor:Wollastonite hydrolysis Geochim. Cosmochim.Acta,1986,50:2509-2516.
    204.Mckibben M A. and Barnes H L. Oxidation of pyrite in low temperature acidic solutions: rate
     laws and surface textures. Geochim Cosmochim Acta,1986,50:1509-1520.
    205.Rimstidt J D and Newcomb W D,Measurment and analysis of rate data:The rate of reaction of
     ferric iron with pyrite.Geochim Cosmochim Acta,1993,57:1919-1934.
    206.Wogelius R.A.and Walther J.V. Olivine dissolution at 25℃:Effects of pH,CO2 and organic
     acids .Geochim.Cosmochim.Acta. 1991, 55: 943-954.
    207.于天仁,季国亮,丁昌璞编著. 可变电荷土壤的电化学. 北京:科学出版社,1996
    208.Schroth B. K and Sposito G. Surface charge properties of kaolinite Clays and Clay Minerals.
     1997, 45: 85-91
    209.Zhang, X. N., Zhang, G. Y. Zhao, A. Z. and Yu, T. R., 1989, Geoderma, 44: 275-286.
    210.Cama J, Ganor J, Ayora C. and Lasaga C. A. Smectite dissolution kinetics at 80℃ and pH8.8.
     Geochim.Cosmochim.Acta, 2001, (64): 2701-2717
    211.Marion G M. Aluminum and silica solubility in Soils. Soil Soi, 1976, 121: 76-82.
    212.Sparks D L. Environmental soil chemistry .San Diego: Academic Press, 1995. 159-185
    213.Kwong, K .F. and Huang. P. M. Influence of citric acid on the crystallization of aluminum
     hydroxides .Clays Clay Miner. 1975, 23: 164-165
    214.Kwong,K.F.and Huang.P.M. Comparison of the influence of tannic acid and selected
     low-molecular-weight-organic acids on precipitation products of aluminum.Geoderma 1981, 26:
     179-193.
    215.Violante.A.and P.M.Huang. Nature and properties of pseudoboehmites formed in the presence
     of organic and inorganic ligands.Soil Sci.Soc.Am.J. 1984, 48: 1193-1201.
    216.Violante.A.and P.M.Huang. Influence of inorganic and organic ligands on the formation of
     aluminum hydroxides and oxyhydroxides .Clays Clay Miner, 1985, 33: 181-192.
    217.Motekaitis R.J.and Martell A.E. Complexes of aluminum(Ⅲ)with hydroxy carboxylic
     acids .Inorg.Chem.1984, (23): 18-23.
    218.华中师范学院,东北师范大学,陕西师范大学编.分析化学.北京:高等教育出版社,
     1981.616-618
    219.刘加德 季国亮.铝与土壤之间的表面化学反应及其后果 热带亚热带土壤科学 1997,
     6(4):284-290,295
     115
    
    
    低分子量有机酸对高岭石溶解作用的研究
    220.Song S.K and Huang P.M. Dynamics of potassium release from potassium bearing minerals as
     influenced by oxalic and citric acids. Soil Science Society of America Journal, 1988, 52:
     383-390.
    221.Kononova M M, Aleksandrova I V and Titova N A. Decomposition of silicates by organic
     substances in the soil.Soviet Soil Sci.1964, 1005-1014
    222.Stumm W,Furrer G,Wieland E and Zinder B,The effects of complex-forming ligands on the
     dissolution of oxides and aluminosilicates. In Drever J I.ed.The Chemistry of Weathering. D.
     ReideI publishing Co., Boston, 1985: 55-74
    223.Steefel C.I.and van Cappellen Ph. A new kinetic approach to modeling wate-rock
     interaction:The role if nucleation, precursors and ostwald ripeng.Geochim.Cosmochim.Acta
     1990, 54: 2657-2677.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700