Al-Ti-C基中间合金的合成及其细化效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经过研究已发展出多种提高金属材料强度的有效途径,但随着材料强度的提高,韧度或塑性急剧下降,从而使材料强度和韧度或塑性相互倒置的关系成为十分突出的问题,形成妨碍学科进步和实际应用的一个巨大障碍和技术瓶颈。如何实现强度和韧度或塑性的同步提高,已成为国内外金属材料领域普遍关注的重大科学问题。
     在金属材料的研究中,纯净化、细晶化和均质化是改进传统材料和研制新型合金的三大工艺手段。铝镁及其合金组织的细化是现代铝镁加工业中广泛研究的重大课题,晶粒细化是晶界强化的重要机制,可显著提高铝镁材的力学性能和塑性变形能力,是改善铝镁材质量的重要途径。通过加入晶粒细化剂抑制柱状晶和羽状晶的生长,从而生成等轴晶组织,这种处理方法在铝镁加工业生产中被广泛应用。A1-Ti-C中间合金是一种高效的铝及其合金晶粒细化剂,具有Al-Ti-B中间合金晶粒细化剂无法比拟的技术优势,它的出现是铝及其合金晶粒细化技术的一项重大突破,引起世界各国的高度重视,对此开展研究具有重要的理论研究意义和工程应用价值。
     熔体引爆自蔓延合成法因其具有合成迅速、工艺简单、节省能源等优势成为制备中间合金的一项新技术。特别是在新一代铝镁及其合金晶粒细化剂Al-Ti-C-X中间合金的制备中更显示出独特的优越性,然而熔体引爆自蔓延合成法较好地解决了产物TiC、TiAl3、AlX等化合物含量低、细化相分布不均等问题。尽管自蔓延高温合成技术(SHS)制备各种复合材料、结构陶瓷、功能梯度材料的研究已取得很大进展,但是对熔体引爆自蔓延合成法制备Al-Ti-C-X中间合金晶粒细化剂的反应过程、组织转变及结构演化规律研究甚少,论文在省基金项目的支持下,进行以下几方面的研究。
     论文利用自蔓延高温合成技术的优势,将其和普通铸造法相结合,将各种粉状组成材料压制成预制块,将其压入到铝熔体中,利用熔体热量将预制块引爆发生高温自蔓延反应来合成Al-Ti-C中间合金晶粒细化剂。通过对预制块中[Ti]-C反应的热力学与动力学进行分析研究并采用普通光学显微镜、扫描电镜、X射线衍射仪、透射电镜等分析手段对Al-Ti-C中间合金晶粒细化剂进行分析研究和表征。研究发现:在本实验条件下,影响Al-Ti-C反应速度的主要因素有体系的温度、铝粉的含量、石墨粉原始粒度和石墨粉颗粒周围反应层的厚度,在高温区内,增加体系的温度,减小过量Al含量,减小石墨粉颗粒的尺寸,减小反应层厚度等,则对Al-Ti-C体系内高温区所发生的[Ti]-C反应是有利的。
     论文在对Al-Ti-C中间合金晶粒细化剂制备研究的基础上,然后以此合金为基础,通过加入适量稀土Y、La和元素P,采用熔体引爆自蔓延合成法制备出Al-Ti-C-X(X为Y、La、P)复合中间合金晶粒细化剂。而后将这种Al-Ti-C-X复合中间合金晶粒细化剂加入相应的铝镁合金中进行细化变质处理,以期获得细晶化与强韧化的高强度铝镁合金材料。论文研究了Al-Ti-C-X复合中间合金的合成、组织结构特点和遗传效应以及对铝镁合金组织和性能的影响及其作用规律,探讨了Al-Ti-C-X复合中间合金增强铝镁合金的微观本质。
     论文研究了润湿性对TiC合成的重要性,研究发现:为了改善碳与铝液的润湿性,必须采取措施对石墨的表面进行特殊浸泡预处理,并加入适量的特种活化剂,以改善铝液的界面张力,从而进一步改善碳和铝液之间的润湿性,为了满足不同合金细化变质的需要,也为了进一步改善石墨在铝液中的润湿性,促进TiC的生成,加入适量稀土Y、La和元素P,形成Al-Ti-C-X复合中间合金晶粒细化剂,在该中间合金中除了TiC相外,还有AlX相形成以满足不同合金变质细化的需要;研究还发现,在制备Al-Ti-C-Y中间合金中过程中,由于Y含量的不同,其相组成也不同,当中间合金中含0.5%Y时,是由细针状TiAl3+TiC颗粒+α-Al基体三相组所成;当中间合金中含1.0%Y时,中间合金是由小块状和棒状TiAl3+TiC颗粒+Al3Y+α-Al四相所组成;而当中间合金中含2.0%Y时,中间合金是由长条状TiAl3+Al3Y化合物+ TiC颗粒+α-Al基体四相所组成。在Al-Ti-C合金中加入La时,制备出的Al-Ti-C-La中间合金细化剂主要由TiAl3+TiC+(AlTiLa) +α-Al基体四相所组成;在Al-Ti-C合金中加入P时,制备出的Al-Ti-C-P中间合金细化剂主要由TiAl3+TiC+AlP+α-Al基体四相所组成。
     为了满足对铝镁合金细化和强化的需要,论文以外加方式将Al-Ti-C-X复合中间合金加入不同的铝镁合金中,由于Al3Y、AlP、TiAl3、TiC颗粒可作为有效的结晶核心质点,使被细化的铝镁合金得到细化,而AlX相既可作为铝镁合金的结晶核心存在,又可对铝镁合金中Al、Mg原子的扩散起到阻碍作用,从而改善结晶组织中离异共晶相的形貌和分布形式,双重作用的结果,使铝镁合金进一步得到细化和强化,使铝镁合金的性能潜力得到进一步充分挖掘。
     本文经过对AlX、TiC和由AlX、TiC颗粒增强的铝镁合金的制备研究,以及新生细化相结构演化规律研究,探明了细化相在铝镁合金结晶凝固过程中的遗传效应与细化变质作用行为。研究表明:弥散均匀分布在初生相内部的新生细化相可起到细化晶粒强化基体与晶界、降低元素在镁铝合金中的扩散速率、阻碍基体中位错运动和阻止晶界滑移的作用,使晶界相短网和趋于球化,有效细化和强化铝镁合金。
After decades of research efforts, several effective routes have been developed to enhance the strength of metallic materials. Correspondingly, the ductility or the plasticity dramatically deceases, thus resulting in the imbalance between the strength and the ductility (plasticity), which is a great obstacle for the advancement of material discipline and also a technical bottleneck for the practical applications. How to improve the strength and ductility (plasticity) simultaneously is a significant scientific issue widely concerned by domestic and international researchers in metallic material field.
     For metallic materials, purifying, grain-refining and homogenizing are three techniques to improve traditional materials and develop new alloy systems. Grain refinement of aluminum, magnesium and their alloys is an important subject in the modern metal processing industry. Meanwhile, the grain refinement, a mechanism for grain-boundary strengthening, can elevate the mechanical properties and plastic deformation capabilities and is an effective way to modify the quality of aluminum and magnesium section bars. The addition of grain-refiners can restrict the formation of columnar and twin-columnar grains and promote the equiaxed grains, which is widely utilized in the industrial processes of light alloys. Al-Ti-C master alloy shows excellent grain-refining efficiency on aluminum and its alloy and superior technical predominance over Al-Ti-B master alloy. Its appearance is a great breakthrough in terms of the grain-refining technique for aluminum and its alloy, and great attentions have been paid by countries around the world. Therefore, researching on this subject is of great significance from theoretical and practical perspectives.
     Self-propagating high-temperature synthesis (SHS)-melting technique has become a new technology for the fabrication of master alloys in that it has the advantages of simple experimental setups and processes, low energy consumption, low cost in production and rapid reaction procedures. The SHS-melting technique shows its superiority during the synthesis of Al-Ti-C-X master alloy since it effectively solve the problems such as low content and inhomogeneous distribution of reaction products including TiC, TiAl3 and AlX compound. Great progress has been made in terms of the fabrication of various composite, structural ceramics and functionally gradient mateials by the SHS technology. However, very limited information is available regarding the reaction processes, microstructural transformation and evolution during the fabrication of Al-Ti-C-X grain-refining master alloy using SHS-melting technique. Supported by Foundations of Shanxi Province, research work is investigated in the following aspects.
     In this paper, Al-Ti-C grain-refining master alloys have been prepared by combining SHS (self-propagating high-temperature synthesis) technology and conventional casting technology. Various powders were mixed homogeneously and pressed to form the preforms, which were added into molten aluminum to ignite the SHS reaction, resulting in the formation of Al-Ti-C master alloys.
     The thermodynamics and kinetics of the reaction between [Ti] and the graphite in the perform was analyzed, Constituent phases and compositions in the master alloys were identified by optical microscopy, scanning electron microscopy, X-ray diffraction and transmission electron microscopy.
     Experimental results show that the main factors influencing the reaction velocity in Al-Ti-C system are the system temperature, aluminum content, original size of graphite particles, and the thickness of reaction layer surrounding the graphite particles. At high-temperature region, higher system temperature, lower content of excess aluminum powder, smaller the particle size of graphite, and thinner the reaction layer surrounding the graphite particles, are positive for the reaction between [Ti] and the graphite of Al-Ti-C system.
     Based on Al-Ti-C ternary grain-refining master alloy and the SHS-melting technique, Al-Ti-C-X (X=Y, La, P) multiple master alloys have been successively prepared through adding proper amount of Y, La and P, respectively. The Al-Ti-C-X multiple master alloys were introduced into aluminum, magnesium alloys so as to obtain materials with fine grain size and excellent comprehensive mechanical properties. The synthesis, phase constitutes and hereditary effect of Al-Ti-C-X multiple master alloys were investigated; the evolution and the origin of the microstructure and mechanical properties of aluminum, magnesium alloys after the addition of multiple master alloys were also studied.
     It is well-known that the wettability between carbon and liquid aluminum is crucial for the synthesis of TiC particles. Experimental results show that pre-immersion treatment of graphite particles and adding special activators, are indispensable to improve the wetting of the graphite with the aluminum melt. Meanwhile, the addition of Y, La or P could further promote the wettability and subsequent synthesis of TiC. In addition, the Al-X phases in the Al-Ti-C-X multiple master alloys show grain refining effect on various aluminum, magnesium alloys.
     Experimental results indicate that the phase constitutes of Al-Ti-C-Y master alloy differs as the Y content varies. When the Y content is 0.5%, the master alloy consists of needle-like TiAl3, TiC andα-Al matrix; while increasing the Y content to 1.0%, the master alloy comprises rod-like and blocky TiAl3, TiC, Al3Y andα-Al matrix; further increasing to 2.0%, the master alloy is mainly composed of large lath-shaped TiAl3, net-like Al3Y, TiC andα-Al matrix. The addition of La into Al-Ti-C alloy results in Al-Ti-C-La master alloy that comprises TiAl3, TiC, AlTiLa andα-Al matrix, while the addition of P into Al-Ti-C alloy results in Al-Ti-C-P master alloy that comprises TiAl3, TiC, AlP andα-Al matrix.
     In order to refine and strengthen aluminum, magnesium alloys, the Al-Ti-C-X multiple master alloy is introduced. Since the Al3Y、AlP、TiAl3 or TiC particle can either act as effective nucleating site or restrict the diffusion of solute atomic Al and Mg, the grain size of the matrix is reduced and morphology, distribution of divorced eutectic phase are modified, which is positive to the improvement of mechanical properties of aluminum, magnesium alloys.
     In this paper, based on the research in terms of the synthesis of AlX, TiC phase in Al-Ti-C-X multiple mater alloy, the development of aluminum, magnesium alloys reinforced by AlX, TiC phase, and microstructural evolution of the newborn refining phases, hereditary effect and grain-refining behavior of the refining phases during the solidification and crystallization process of aluminum, magnesium alloys have been explored.
     Experimental results show that the newborn refining phases, with dispersive distribution at the inner part of the primary phase, can refine the grain, strengthen the matrix and grain boundaries, lower the diffusion rate of solute element, hinder dislocation movement in the matrix, prevent the grain boundary sliding; reduce the size of the phase at the grain boundary, render its morphology to be spherical; finally, aluminum, magnesium alloys with fine grain size and excellent mechanical properties are achieved.
引文
[l]高泽生. LSM采用全面质量管理提高TiBAl丝质量[J].轻合金加工技术,1997,25(11):14-16.
    [2]高泽生.新一代Al-Ti-C晶粒细化剂的工业应用[ J ].轻合金加工技术,2000,28(11) :16-19.
    [3]边秀房,刘相法,马家骥.铸造金属遗传学[M].济南:山东科学技术出版社,1999.
    [4]徐恒钧,石巨岩,阮玉忠.材料科学基础[M].北京:北京工业大学出版社,2001:399-409.
    [5]冯汝田,王祝堂.推广Al-Ti-B晶粒细化剂提高铝材质量与经济效益[ J ].轻合金加工技术,1991,19(6):1-4.
    [6]G P. Jones,J. Pearson. Factors affecting the grain-refinement of aluminum using titanium and boron additves[ J ]. Metallurgical Transactions B, 1976,7B: 223-231.
    [7]刘相法,边秀房,周生存等. AlTi中间合金中TiAl3形态及对细化效果的影响[ J ].热加工工艺,1997,(1):9-11.
    [8] K Venkateswarul,S K Das,M Chakraborty,etc.. Influence of thermo-mechanicl treatment of Al-5Ti master alloy on its grain refining performance on aluminium. Materials Science and Engineering[ J ],2003, A351:237-243.
    [9]K Yaguchi,H Tezuka,Tsato etc.. Factors Affecting the Grain Refinement of Cast Al Alloys by Al-B Master Alloys[ J ]. Materials Science Forum, 2000,331(1):391-396.
    [10]于丽娜,刘相法,边秀房.钛化物在铝熔体中的沉淀现象[ J ].材料科学与工艺,2003,11(2):185-187.
    [11]张建新,钟建华.用于铝合金晶粒细化的中间合金研究现状与分析[ J ].铝加工,2002,25(1):24-26.
    [12]傅高升,孙锋山,王连登等.中间合金对铝合金细化处理的现状分析与初探[ J ].特种铸造及有色合金,2001,[2]:50-53 .
    [13]唐多光.铸造铝合金精炼变质的好材料一稀土合金[ J ].特种铸造及有色合金,1999,(5):42-44.
    [14]刘顺华,王桂芹,吴爱民等.稀土元素对工业纯铝导电性的影响[ J ].中国有色金属学报,2000,10(3):334-339.
    [15]郭芳洲,李祥鸿,陈本孝等.稀土对A1-Ti-B硼化物沉淀影响初探[ J ].轻合金加工技术,1993,21(5):6-9.
    [16]朱云,谢旭红.稀土铝钦硼细化剂的生产及应用[ J ].轻合金加工技术,1999,27(1):19-20.
    [17] A. Banerji, W. Reif. Grain Refinement of Aluminum by TiC[ J ]. Metallurgical Transactions A, 1985, (16A) :2065-2068.
    [18]A.Cibula. The mechanism of grain refinement of sand castings in aluminium alloys[ J ]. J Inst Metals,1949-1950,76:321-360.
    [19]D G. Mccartney. Grain refining of aluminium and its alloys using inoculants [J].International Material Reviews, 1989, 34(5):247-260.
    [20]A. Banerji , W.Reif. Development of A1-Ti-C grain refiners containing TiC[J]. Metallurgical Transactions A, 1986,17A:2127-2136.
    [21]R F. Carver,C W. Boone,F P.koch. Characterics of new generation grain refiners[J]. Light Metals,1990:845-850.
    [22]C D. Mayes,D G. Mecartney,G J.Tatlock. Obervations on the miscrostructure and performance of an AI-Ti-C grain-refining master alloy[J]. Materials Science and Engineering, 1994,188A: 283-290.
    [23]A J.Whitehead,S A.Danilak,D A.Granger. The Development of Commercial Al-3%Ti-0.15%C Grain Refining Master Alloy. The 126th TMS Annual meeting & Exhibition (1997).
    [24]A J.Whitehead,P S.Cooper,K W.McCarthy. An Evaluation of Cleanliness and Grain refinement of 5182 Aluminum Alloy DC Cast Ingot Using Al-3%Ti-0.15%C and A1-3%Ti-1%B Grain Refiners. The 128th TMS Annual meeting & Exhibition(1999).
    [25]A M.Detomi,A J.Messias,S.Majer,P S.Cooper. The Impact of TiCAlTM and TiBAlTM Grain Refiners on Casthouse Processing. The 30th TMS Annualmeeting & Exhibition (2001).
    [26]M A. Hadia,A A.Ghaney and Niazi A. Development and evaluation of Al-Ti-C Master alloys as grain refiner as aluminium . The 125th TMS Annual meeting (1996). [27 ]P Hoefs,A H Green,W Reif,P.Cvan Wiggen,W Schneider,D Brandner. Development of an Improved AlTiC Master Alloy for the Grain Refinement of Aluminum[J]. LightMetals,1997, 772-778.
    [28]H J Brinkman,F Zupazi,J Duszezyk,L Katgerman. Production of Al-Ti-C grain refiner alloys by reactive systhesis of elemental powders[J]. Journal of Materials Research,2000,15(12):2620-2635.
    [29]高泽生译.铝晶粒细化剂的最新进步(上) [J].轻金属,1985,(1):46-51 .
    [30]高泽生译.铝晶粒细化剂的最新进步(下) [J].轻金属,1985,(2):52-56 .
    [31]高泽生. Al-Ti-C晶粒细化用中间合金的最新进展[J].轻合金加工技术,1998,26(10):5-11.
    [32]高泽生.新一代Al-Ti-C晶粒细化剂的研究与开发[J].轻合金加工技术,1999,27(3):8-11.
    [33]高泽生. A356合金a(Al)的晶粒细化[J].特种铸造及有色合金,1999,(5):26-27.
    [34]余贵春,张柏清,马洪涛等.铝热反应制备Al-Ti-C中间合金的研究[J].金属热处理,2000,(5):1-3.
    [35]张柏清,马洪涛,李建国等. Al-Ti-C中间合金细化剂的组织及细化性能[J].金属学报,2000,36(4):341-346.
    [36]李建国,马洪涛,张柏清. AlTiC和A14B、A13Ti4B中间合金对纯铝和亚共晶铝硅合金的细化机理[J].轻合金加工技术,2000,28(12):6-12.
    [37]李建国,王亮. AlTiC中间合金细化剂研究的最新进展. 2003,31(3):7-11 .
    [38]张作贵,刘相法,边秀房等. A1-Ti-C中间合金中的化合物形态[J].中国有色金属学报,1999,9(4):736-739.
    [39]张作贵,刘相法,边秀房. Al-Ti-C系中TiC形成的热力学与动力学研究[J].金属学报,2000,36(10):1026-1029.
    [40]王振卿,刘相法,边秀房. Al-Ti-C中间合金的相组成及其细化特性[J].铸造,2001,50(6): 316-320.
    [41]Liu X F,Wang Z Q,Zhang Z G etc. The relationship between microstructures and refining performances of Al-Ti-C master alloys[J]. Materials Science and Engineering A, 2002,332(1-2):70-74.
    [42]姜文辉,韩行霖. Al-Ti-C中间合金晶粒细化剂的合成及其细化晶粒作用[J].中国有色金属学报,1998,8(2):268-271.
    [43]潘卫东,任英磊,姜文辉等. Al-Ti-C中间合金细化工业纯铝的研究[J].沈阳工业大学学报,1998,(20):64-66.
    [44]谭敦强,黎文献,余馄等.新一代铝合金晶粒细化剂Al-Ti-C[J].铸造,2000,49(7):388-392.
    [45]谭敦强,黎文献,马正青等.石墨表面状态及加入方式对制备A1-Ti-C晶粒细化剂的影响[J].铸造,2002,51(1):32-34.
    [46]谭敦强,黎文献.温度对制备Al-Ti -C晶粒细化剂的影响[J].特种铸造及有色合金,2002,(5):4-7.
    [47]谭敦强,黎文献.石墨与Al-Ti合金反应生成TiC粒子的机理[J].铸造,2002,51(5):280-282.
    [48]严有为,刘生发,范晓明等.自蔓延高温合成Al-Ti-C晶粒细化剂及其晶粒细化效果[J].中国有色金属学报,2002,12(5):977-981.
    [49]Yan Y W,Fu Z Y,Yuan R Z. Grain ref fining performance of SHS A1-50Ti-C master alloys for commercially pure aluminum[J]. Journal of wuhan University of Technology Materials Science Edition, 2002,17(3):13-16.
    [50]王振洋.Al-Ti-C中间合金的燃烧合成[D].兰州:兰州理工大学, 2003.
    [51]李英龙,温景林,陈彦博等. SHS技术制备的Al-3Ti-0.15C晶粒细化剂[J].中国有色金属学报,2004,14(2): 179-183.
    [52] Tong X C, Fang H S. Al-TiC Composites in-situ processed by ingot metallurgy and rapid solidification technology[J]. Metallurgical Transaction A, 1998, 29A(3): 875-892.
    [53] Premkunar M K, Chu M U. Synthesis of TiC particulates and their segregation during solidification in-situ processed A1-Ti-C composites[J]. Metallurgical Transaction A, 1993, 24A: 858-862.
    [54] Jarors A, Fredriksson H, Froyen L. On the thermodynamics and kinetics of carbides in the aluminum-rich corner of the Al-Ti-C phase diagram[J]. Materials Science and Engineering, 1991, 135 A:119-123.
    [55] Fine M E, Conly J G. Discussion of“on the free energy of formation of TiC and A14C3”[J] . Metallurgical Transaction A, 1990, 21A: 2609-2610.
    [56] Frage N, Frumin N, Levin L, etc. High-temperature Phase Equilibria in the Al-rich corner of the Al-Ti-C system[J]. Metallurgical Transaction A, 1998, 29A (4):1341-1345.
    [57]高泽生译. Al-Ti-(B)中间合金中的化合物颗粒与晶粒细化的机理(上) [J].轻金属,1986,(7):51-55.
    [58]高泽生译. Al-Ti-(B)中间合金中的化合物颗粒与晶粒细化的机理(下) [J].轻金属,1986,(8):57-60.
    [59]张永刚.金属间化合物结构材料[M].北京:国防工业出版社, 2001.
    [60] A. Banerji,W. Reif,Q. Feng. Investigation of TiC Nucleants in the newly Development Al-Ti-C Grain Refiner[J]. Metallographic,1994,29(7):1958-1965.
    [61]于亚鑫,邱竹贤,张明杰等.铝一硼及铝一钛一硼中间合金的研制(上) [J].轻金属,1988,(4):31-33.
    [62]于亚鑫,邱竹贤,张明杰等.铝一硼及铝一钛一硼中间合金的研制(下) [J].轻金属,1988,(5):30-33.
    [63]Mark Easton, David StJohn. Grain Refinement of Aluminum Alloys: PartI.The Nucleant and sloute Paradigms -A Review of the literature[J]. Metallurgical and Materials Transactions A, 1999,30A(7):1016-1617.
    [64]M N Gruzowski,G K Sigworth, D A Senter. Role of Boron in the Refinement of Aluminum with Titanium[J] . Metallurgical Transaction A,1987,18A(4):603-619.
    [65] Pat. [P]. U S No.2,837426, 1958.
    [66]傅正义,袁润章.自蔓延高温合成材料技术[J].武汉工业大学学报,1991, 13(3):26-33.
    [67]傅正义,袁润章. TiB2的SHS合成过程理论分析[J].硅酸盐学报,1993, 21(6):541-547.
    [68]Merzhanov A G. Self-Propagating High-Temperature Synthesis and Powder Metallurgy:Unity of goals and Competition of Principles. Advances in Powder Metallurgy & Particulate Materials-1992. Metal Powder Industries Federation Princetion,N J, 9, 341-365(1992).
    [69]邹正光.TiC/Fe复合材料的自蔓延高温合成工艺及应用[M].北京:冶金工业出版社, 2002.
    [70] G T Gampbell,D G Kenyon. The latest technology for master alloy production[J]. Light Metals,1991:1095-1103.
    [1]徐恒钧主编.材料科学基础[M].北京:北京工业大学出版社,2001.
    [2]崔忠忻主编.金属学与热处理[M].北京:机械工业出版社,1989.
    [3]左演声主编.材料现代分析方法[M].北京:北京工业大学出版社,2001.
    [4]王从曾主编.材料性能学.北京[M]:北京工业大学出版社,2001.
    [1]李英龙,温景林,陈彦搏等. SHS技术制备的Al-3Ti-0.15C晶粒细化剂[J].中国有色金属学报,2004,14(2):179-183.
    [2]严有为,傅爱群,魏伯康等.基于SHS技术制备Al-Ti-C晶粒细化剂的研究[J].铸造,2004,53(12):980-983.
    [3]王洪涛,夏天东,赵文军等.自蔓延高温合成法(SHS)制备Al-Ti-C中间合金的研究[J].稀有金属材料与工程,2005,34(12):2009-2012.
    [4]边秀房,刘相法,马家骥.铸造金属遗传学[M].济南:山东科学技术出版社,1999.
    [5]黄永攀,李道火,王锐等.改善铸造法制造MMCp中铝基体与增强颗粒间润湿性的方法[J].铸造技术,2004,25(1):17-18.
    [6]谭敦强,黎文献,马正青等.石墨表面状态及加入方式对制备A1-Ti-C晶粒细化剂的影响[J].铸造,2002,51(1):32-34.
    [7]王明. C与Al-Ti合金的浸润与反应[J].北京工商大学学报,2002,20(3):43-45.
    [8]谭敦强,黎文献.温度对制备Al-Ti-C晶粒细化剂的影响[J].特种铸造及有色合金,2002,(5):4-7
    [9]刘佑铭,许伯藩,王蕾等.镁在原位形成TiC/Al复合材料中的热动力学行为[J].金属热处理,2002,27(5):1-3.
    [10] McCartney D G. Grain refining of aluminium and its alloys using inoculants[J]. International Materials Reviews, 1989,34(5):247-260.
    [11] Kennedy A,Weston D, Jones M. Reaction in Al-Ti-C Powders and its relation to the formation and stability of TiC in Al at high temperatures[J]. Scripts Materialia,2000,42(12):1187-1192.
    [12]柳延辉,刘相法,王振卿等.变形处理对Al-Ti-C中间合金的影响[J].热加工工艺, 2002,(5):7-9.
    [13]张作贵,刘相法,边秀房. Al-Ti-C系中TiC形成的热力学与动力学研究[J].金属学报,2000,36(10):1026-1029.
    [14]王自东,李庆春.钛与碳在金属铝液中反应动力学模型[J].北京科技大学学报,1996,18(2):123-126.
    [1]姚若浩.稀土Al-Ti-C晶粒细化剂的研究开发[J].轻合金加工技术, 2004, 32(4):18-20.
    [2]胡宪正,梁超,于金等.稀土对AlTiC细化剂组织及细化效果的影响[J].中国稀土学报, 2004, 22(2):247-250.
    [3]兰晓峰,郭朋,张继军.稀土对Al-Ti-B-RE中间合金细化性能的影响[J].铸造技术,2005,26(9):774-778.
    [4] Xu Chunxiang,Liang Liping,Lu Binfeng, etc. Effect of La on Microstruture and Grain-Refining Performance of Al-Ti-C Grain Refiner[J]. Journal of Rare Earths,2006,249:596-601.
    [5] Zhang Er-lin, Zeng Song-yan, Yang Bo, etc. A study on the kinetic process of reaction synthesis of TiC: Part I. Experimental research and theoretical model [J]. Metallurgical and Materials Transactions A, 1999, 30A (4): 1147-1151.
    [6] Nie J F, Muddle B C. Microstructural design of high-strength aluminum alloys[J]. Journal of Phase Equilibria, 1998, 19(6): 543-551.
    [7] Liu Shuhong, Du Yong, Xu Honghui, etc.Experimental investigation of the Al-Y phase diagram [J]. Journal of Alloys and Compounds, 2006, 414 (1-2): 60-65.
    [8]邹宏辉,曾小勤,翟春泉等.动态析出对Mg-5Zn-2Al(-2Y)合金蠕变行为的影响[J].金属学报,2006,42(1): 41-48.
    [9]胡宪正,梁超,于金等.稀土对AlTiC细化剂组织及细化效果的影响[J].中国稀土学报,2004,22(2): 534-537.
    [10] Kennedy A R, Weston D P, Jones M I ,etc. Reaction in Al-Ti-C powders and its relation to the formation and stability of TiC in Al at high temperatures [J]. Scripta Materialia, 2000, 42 (12): 1187-1192.
    [11]胡宪正,于金,谈荣生等. TiCP/Al基复合材料中TiC颗粒的合成反应研究[J].铸造,2003,52 (4): 243-245.
    [12]周晓霞,张仁元,刘银峁.稀土元素在铝合金中的作用和应用[J].新技术新工艺,2003,(4): 43-45.
    [13] Segal V M, Reznikov V I, Drobyshevskii A E. Plastic Metal Working by Simple Shear[J]. Metally, 1981, (1): 115-123.
    [14] Segal V M. Materials processing by simple shear [J]. Materials Science and Engineering A, 1995, A197 (2): 157-164.
    [15]刘相法,边秀房,乔进国等. Al-P中间合金对共晶和过共晶Al-Si合金的变质机制[J],金属学报,2004,(5): 471-476.
    [16]齐广慧,刘相法边秀房等.“绿色”高效Al-Si合金变质剂―Al-P中间合金[J],材料科学与工艺, 2001, 9(6): 211-214.
    [1]冯庆玲,王艇明. AI-Ti-C中间合金中TiC粒子的失效问题[J].清华大学学报(自然科版),1994,34(5):106-111.
    [2] Bramfitt B L. Effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron [J], Metall. Trans., 1970, 1 (7): 1987-1995.
    [3]袁广银,刘满平,王渠东等. Mg-Al-Zn-Si合金的显微组织细化[J].金属学报, 2002 , 38 (10) : 1105-1108.
    [4]王洪涛.自蔓延高温合成Al-Ti-C中间合金结构与性能的研究[D].甘肃省兰州市:兰州理工大学, 2004.
    [5]姚若浩.稀土Al-Ti-C晶粒细化剂的研究开发[J].轻合金加工技术,2004,32(4): 18-20.
    [6]胡宪正,梁超,于金等,稀土对AlTiC细化剂组织及细化效果的影响[J].中国稀土学报,2004,22(2):247-250.
    [7]陆文华,李隆盛,黄良余.铸造合金及其熔炼[M].北京:机械工业出版社,1997:262-279.
    [8]齐广慧,刘相法边秀房等.“绿色”高效Al-Si合金变质剂―Al-P中间合金[J].材料科学与工艺,2001, 9(6): 211-214.
    [9]张金山,许春香,韩富银.新型高效过共晶铝硅合金变质剂[J].铸造设备研究, 2002,(1): 22-23.
    [10]张金山,许春香,韩富银.复合变质对过共晶高硅铝合金组织和性能的影响[J].中国有色金属学报[J], 2002, 12(S1): 107-110.
    [11]武玉英,刘相法,刘相俊等.低熔点Cu-P基中间合金及其变质效果[J].特种铸造及有色合金, 2004, 20(4):331-333.
    [12]刘相法,乔进国,宋西贵等. Al-P中间合金在Al-Si活塞合金中的应用[J].特种铸造及有色合金,2002,6:43-45.
    [13]有色金属及其热处理编写组编,有色金属及其热处理[M],北京:国防工业出版社, 1981.
    [14]铸造有色合金及其熔炼联合编写组编,铸造有色合金及其熔炼[M].北京:国防工业出版社,1980.
    [15]柳秉毅.改善铝硅铸造合金组织与性能研究的若干进展[J].南京工程学院学报(自然科学版),2004,2(1):1-7.
    [16]韩延峰,刘相法,王振卿等.TiC对新型Al-P中间合金变质效果的促进作用[J].内燃机配件,2002,2:7-10.
    [17]赵永治,高泽生.过共晶A1-Si合金连续铸造中初晶硅细化的新方法[J].轻合金加工技术,1995,23(10):5-8.
    [18]王德满,赵海英,孙兆霞等.一种新型过共晶Al-Si合金变质剂,1997,7: 50-53.
    [19]高泽生.铝-钛系晶粒细化剂与第三元素[J].轻合金加工技术,1994,22(10): 29-38.
    [20]张士佼,边秀房,孟庆格.压铸条件下过共晶铝硅合金P变质的必要性[J].特种铸造及有色合金,2005,25(11):679-680.
    [21]廖乃镘,张先菊,李伟等. Al-Ti-C添加剂对亚共晶铝硅合金组织和性能的影响[J].铸造技术,2005,26(3):196-198.
    [22]刘相法,费振义,乔进国等. Al-Si合金中Si相的团粒化研究[J].铸造,2003,52 (8):538-541.
    [23]乔进国,刘相法,刘相俊等.Al-P中间合金的变质特性及变质机理探讨[J].内燃机配件,2003,5:18-22.
    [24]刘相法,乔进国,刘玉先等.Al-P中间合金对共晶和过共晶Al-Si合金的变质机制[J].金属学报,2004,40(5):471-476.
    [25]刘相法,乔进国,王振卿等.Al-8Ti-2C对Al-P中间合金变质效果的促进作用[J].稀有金属材料与工程,2004,33(9):924-927. [26 ] C. R. Ho. Heterogeneous Nucleation of Solidification of Hypereutectic Al-Si and Al-Si-P[J]. Acta Metal Mater, 1995,43:3231-3246.
    [27]李隆盛.铸造合金及熔炼[M].北京:机械工业出版社, 1989.
    [28]赵玉涛.过共晶Al-23%Si合金中硅相生长的研究[J].铸造技术,1996(6):43-46.
    [1] StJohn D H, Qian M , Easton M A, etc. Grain refinement of magnesium alloys [J]. Metallurgical and Materials Transactions A, 2005, 36(7) : 1669-1679.
    [2] Ji S, Qian M, Fan Z. Semisolid Processing Characteristics of AM Series Mg Alloys by Rheo-Diecasting[J]. Metallurgical and Materials TransactionsA, 2006, 37A (3) : 779-787.
    [3] Easton M, StJohn D H. Grain refinement of aluminum alloys: Part I. The nucleant and solute paradigms—a review of the literature [J]. Metallurgical and Materials Transactions A, 1999, 30 (6) : 1613-1623.
    [4]刘子利,潘青林,陈照峰等. Al-Ti和Al-Ti-C中间合金对消失模铸造AZ91镁合金显微组织的影响[J].机械科学与技术,2005,24(11): 1282-1284.
    [5] Zhao Peng, Wang Qudong, Zhai Chunquan,etc. Effects of strontium and titanium on the microstructure, tensile properties and creep behavior of AM50 alloys [J]. Materials Science and Engineering A, 2007, 444(1-2): 318-326.
    [6] Lu L, Dahle A K, StJohn D H. Grain refinement efficiency and mechanism of aluminium carbide in Mg-Al alloy[J]. Scripta Materialia, 2005, 53(5), 517-522.
    [7] Liu Yanhui, Liu Xiangfa, Bian Xiufang. Grain refinement of Mg-Al alloys with Al4C3-SiC /Al master alloy [J]. Materials Letters, 2004, 58(7-8), 1282-1287.
    [8] Wang Yingxin, Zeng Xiaoqin, Ding Wenjiang. Effect of Al-4Ti-5B master alloy on the grain refinement of AZ31 magnesium alloy [J]. Scripta Materialia, 2006, 54(2), 269-273.
    [9] Lu L, Dahle A K, StJohn D H. Heterogeneous nucleation of Mg-Al alloys [J]. Scripta Materialia, 2006, 54(12), 2197-2201.
    [10] Motegi T. Grain-refining mechanisms of superheat-treatment of and carbon addition to Mg-Al-Zn alloys [J]. Materials Science and Engineering A, 2005, 413-414, 408-411.
    [11] Qian M, Cao P. Discussions on grain refinement of magnesium alloys by carbon inoculation[J]. Scripta Materialia, 2005, 52 (5), 415-419.
    [12]袁广银,刘满平,王渠东等. Mg-Al-Zn-Si合金的显微组织细化[J].金属学报,2002,38(10) : 1105-1108.
    [13]王自东,曾松岩,李庆春等.原位接触反应法制取TiC颗粒增强Al复合材料的研究[J].金属学报,1994,30(7) : 314-318.
    [14] Calm R W,丁道云译.非铁合金的结构与性能[M].北京:科学出版社,1999.
    [15]刘正,张奎,曾小勤.镁基轻质合金理论基础及应用[M].北京:机械工业出版社,2002.
    [16]刘生发. Mg-9A1基合金组织细化技术及性能研究[D].武汉:武汉理工大学,2004.
    [17] Luo A, Pekguleryuz M O. Solidification Processing and Microstructure of Cast Magnesium MMCs [J]. Transactions of the American Foundrymen's Society, 1995, (102) : 313-320.
    [1]杨德庄.位错与金属强化机制[M].哈尔滨:哈尔滨工业大学出版社,1999.
    [2] Banerji A, Reif W, Fenq Q. Metallographic investigation of TiC nucleats in the newly developed Al-Ti-C grain refiner[J]. Journal of Materials Science, 1994,29(1):1958-1965.
    [3]许春香,张金山. AlTiC中间合金组织遗传性的研究[J].材料科学与工艺,2001,9(2):166-168.
    [4]徐恒钧,石巨岩,阮玉忠.材料科学基础[M].北京:北京工业大学出版社,2001:399-409.
    [5]齐广慧,刘相法,杨志强等.“绿色”高效Al-Si合金变质剂Al-P中间合金[J].材料科学与工艺,2001,9(2):211-214.
    [6] M. Bamberger. Structural refinement of cast magnesium alloys[J]. Materials Science and Technology,2001,17(1):15-24.
    [7]张春香,关绍康,石广新等. Mg-8Zn-4Al-1Si-0.3Mn-xAlP合金的显微组织及性能[J].中国有色金属学报,2004,14(8):1353-1359.
    [8]刘相法,乔进国,刘玉先等. Al-P中间合金对共晶和过共晶Al-Si合金的变质机制[J].金属学报,2004,40(5):471-476.
    [9]刘相法,乔进国,王振卿等. Al-8Ti-2C对Al-P中间合金变质效果的促进作用[J].稀有金属材料与工程,2004,33(9):924-927.
    [10]袁广银,刘满平,王渠东等. Mg-Al-Zn-Si合金的显微组织细化.金属学报,2002,38(10):1105-1108.
    [11] Arsenault R J, Shi N. Dislocation generation due to differences between the coefficients of thermal expansion[J]. Materials Science and Engineering, 1986, 81 A: 175 -187.
    [12] Lu Y Z, Wang Q D, Zeng X Q,etc. Effect of Si on the precipitation behavior of Mg-6Al alloy[J]. Journal of Materials Science Letters,2001,20:397-399.
    [13] M.S. Dargusch, A.L.Bowles, K.Pettersen, etc. The effect of silicon content on the microstructure and creep behavior in die-cast magnesium AS alloys[J]. Metallurgical and Materials Transactions, 2004,35A(6): 1905-1909.
    [14] Jae Joong Kim, Do Hyang Kim, K.S.Shin, etc. Modification of Mg2Si morphology in squeeze cast Mg-Al-Zn-Si alloy by Ca or P addition[J]. Scripta Materialia, 1999,41(3):333-340.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700