柴胡桂枝汤挥发油对Fmr1基因敲除小鼠的治疗作用和机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的研究Fmr1小鼠是否存在与人类脆性X综合征(FXS)患者相似的异常行为,评价是否可以作为FXS的疾病模型。
     方法以PCR和免疫印迹技术对Fmr1基因敲除(KO)小鼠和野生型(WT)小鼠进行基因型鉴定;HE和Go1gi染色方法分别观察2组动物睾丸和脑内树突棘形态;分别对实验动物进行听源性惊厥(AGS)观察,以水迷宫、避暗、跳台方法检测动物学习记忆水平,以旷场、高架十字迷宫和自主活动实验检测动物探索行为能力。
     结果WT小鼠扩增出预期约为500bp的DNA片断,KO小鼠则是800bp的DNA片断,KO小鼠无FMRP蛋白表达,树突棘长度明显增长,密度显著增加,KO雄性小鼠有巨睾征;AGS易感性比WT明显增高(P<0.05);Morris水迷宫实验的定向航行实验显示,KO小鼠的潜伏期和穿越平台次数与WT小鼠相比有明显增多(P<0.05);空间搜索实验显示,KO小鼠在目标象限停留时间明显短于WT小鼠的停留时间(P<0.05);避暗实验和跳台实验显示,KO小鼠潜伏期明显短于WT小鼠,而错误次数明显增多(P<0.05);旷场实验显示,KO小鼠在中央区域停留时间及进入次数明显多于WT小鼠(P<0.05);KO小鼠与WT小鼠相比,总运动路程明显增多,速度明显增快(P<0.05);高架十字迷宫实验显示,KO小鼠在开放臂活动时间、次数以及路程均明显多于WT小鼠(P<0.05);自主活动实验显示,KO小鼠的活动次数明显多于WT小鼠(P<0.05),而站立次数明显少于WT小鼠(P<0.05)。
     结论从基因型、蛋白表达谱、形态学及行为学等方面结果提示Fmrl基因敲除小鼠具有人类脆性X综合征类似的表型,可作为FXS疾病模型用于论文的后续研究,而且这些表型与FMRP表达缺失有关。
     目的观察柴胡桂枝汤挥发油对Fmr1基因敲除小鼠异常行为的干预。
     方法利用超临界CO2萃取技术制备柴胡桂枝汤挥发油并用GC-MS分析鉴定柴胡桂枝汤挥发油成分;4周龄KO及WT小鼠按处理方式的不同被随机分为药物处理组(即腹腔注射柴胡桂枝汤挥发油)、溶媒对照组(即腹腔注射植物油)及空白对照组(即不给予任何处理)。药物处理组进一步按所给浓度的不同继续分组,分别对各组动物在给药后进行避暗、跳台、高架十字迷宫、旷场、自主活动和AGS等行为学观察。
     结果经GC-MS分析鉴定柴胡桂枝汤挥发油含有28种组分。其中,最主要成分姜辣素占31.94%,丁香酚占18.01%,单萜类物质占12.34%,3-丁基-1(3H)-异苯并呋喃酮占9.34%,肉桂类物质占8.03%。
     旷场实验显示,随柴胡桂枝汤挥发油浓度的增加,KO和WT小鼠的平均速度、穿越中央格次数、总路程等逐渐降低。高架十字迷宫实验显示,KO小鼠给予柴胡桂枝汤挥发油处理后,与KO溶媒组相比,KO小鼠在开放区域活动时间、次数以及路程均降低,有显著的统计学差异(P<0.05)。自主活动实验显示,使用柴胡桂枝汤挥发油后,KO小鼠的活动次数明显减少,动物站立次数明显增多(P<0.05);跳台实验显示,柴胡桂枝汤挥发油处理后,KO小鼠潜伏期和错误次数有明显改善(P<0.05),WT小鼠潜伏期和错误次数有较少改善。避暗实验中,柴胡桂枝汤挥发油处理后,KO小鼠潜伏期延长(P<0.05),错误次数减少(P<0.05),WT小鼠潜伏期和错误次数无明显改善(P>0.05)。听源性惊厥实验中,随柴胡桂枝汤挥发油浓度的增加,KO小鼠的AGS的潜伏期延长,发作程度降低(P<0.05),1.5mg/g浓度的柴胡桂枝汤挥发油能完全抑制AGS的发生。
     结论柴胡桂枝汤挥发油可以改善KO小鼠AGS和运动过多的发生,改善学习记忆能力,对KO小鼠的异常行为有一定治疗作用。
     目的初步探讨柴胡桂枝汤挥发油干预Fmrl基因敲除小鼠听源性惊厥的可能机制。
     方法4周龄KO及WT小鼠按处理方式的不同被随机分为药物处理组(即腹腔注射柴胡桂枝汤挥发油)、溶媒AGS组、溶媒对照组和空白对照组,进一步将药物处理组和溶媒AGS组给予AGS诱发,溶媒对照组和空白对照组不给予AGS诱发;以高效液相色谱方法检测脑中氨基酸水平的变化,以免疫组织化学方法观察各组动物脑皮质及海马内GAD的表达;分别以邻苯三酚自氧化法、硫代巴比妥法、硝酸还原酶法检测各组小鼠脑内超氧化物歧化酶(SOD)、丙二醛(MDA)和一氧化氮(NO)的水平,以Golgi染色方法观察各组小鼠脑内树突棘形态变化,初步探讨柴胡桂枝汤挥发油改善KO小鼠AGS的可能机制。
     结果KO小鼠脑皮质及海马内GAD阳性神经元数量与WT小鼠相比明显减少(P<0.05)。
     KO溶媒对照组和KO空白对照组(未经AGS诱发)小鼠与WT溶媒对照组和和WT空白对照组相比,脑内Y-氨基丁酸及甘氨酸水平明显降低,谷氨酸水平明显升高(P<0.05);KO溶媒对照组与KO空白对照组相比,脑内Y-氨基丁酸、甘氨酸,谷氨酸水平无明显变化;KO溶媒AGS组小鼠经AGS诱发后,与KO溶媒对照组和KO空白对照组相比,脑内γ-氨基丁酸水平有明显降低(P<0.05);KO小鼠药物处理组与KO溶媒AGS组及WT用药组相比,脑内谷氨酸水平均有明显降低(P<0.05)。
     与WT溶媒AGS对照小鼠相比,KO溶媒AGS组小鼠脑内SOD活力明显降低,MDA和NO水平则明显增高(P<0.05);‘KO溶媒对照组与KO空白对照组脑内SOD、MDA和NO水平无明显变化,KO小鼠用药组注射柴胡桂枝汤挥发油后,与KO溶媒AGS组和WT用药照小鼠相比,SOD活力增高,而MDA和NO水平均降低(P<0.05)。
     各组KO小鼠与各组WT小鼠脑皮质树突棘形态改变无统计学差异(P>0.05)。
     结论柴胡桂枝汤挥发油可能通过降低兴奋性氨基酸水平,增加抑制性氨基酸水平,增强自由基清除,阻止过氧化物生成,减少NO神经毒性来治疗Fmr1基因敲除小鼠听源性惊厥。
Objective:To explore whether Fmrl mouse exhibits abnormal behavior as patients with Fragile X Syndrome (FXS).
     Method:Genotypes of Fmrl knockout mice (KO mice) and wild type mice (WT mice) were identified by PCR and Western Blot in Experiment Animal Center of Guangzhou Medical College. The morphology of testis and dendritic spine of the two groups were studied under HE and Golgi stain. Animals were tested for audiogenic seizure (AGS), for learning capability and memory through Morris water maze, passive avoidance test, step-down test, and for general locomotor activity and willingness to explore via open field test, elevated plus maze and inner open field test.
     Results:Genotype analysis revealed WT mice had the expected500bp DNA segments, whereas KO mice had800bp segments. What's more, KO mice exhibited macroochidism, abnormal morphology of dendritic spine and absent FMRP (Fragile X Mental Retardation Protein), and they were more susceptible to AGS (P<0.05). In the space navigation experiment of Morris water maze, they had longer latency and more platform-crossing activities than their WT counterparts (P<0.05); in space search experiment, KO mice stayed shorter than WT mice in the target quadrants (P<0.05). In passive avoidance test and step-down test, KO mice reacted swifter but made more mistakes (P<0.05). In open field test, they stayed longer in the central area and entered more constantly into the area than the WT mice (P<0.05); and in general, they traveled further and faster than WT mice (P<0.05). In elevated plus maze, they had longer duration, higher frequency and greater travel distance in the open area (P<0.05). In inner open field test, they traveled more often but stood less frequently (both P<0.05). Conclusion:Genotype, protein expression profile, morphological and behavioral aspects suggested that Fmrlgene knockout mice and patients of Fragile X syndrome behaved similarly, which are linked to the lost of FMRP expression. This study indicates that Fmrl KO mice can serve as animal model for FXS research.
     Objective:To observe the effect of bupleuri and ramuli cinnamomi decoction on abnormal behaviours in Fmrl knockout mice.
     Method:Bupleuri and ramuli cinnamomi decoction was extracted with supercritical carbon dioxide, whose components were assayed by GC-MS (Gas chromatography-mass spectrometry). Fmr1knockout (KO) and wild type (WT) mice of four-week old were randomized into three subgroups:treatment group (receiving intraperitoneal injection of bupleuri and ramuli cinnamomi decoction of different concentrations), solvent control group (receiving intraperitoneal injection of vegetable oil) and blank control group (receiving no injections). After treatments, animal behaviours were observed under open field test, elevated plus maze, inner open field test, step-down test, passive avoidance test and AGS test.
     Results:GC-MS identified28components in bupleuri and ramuli cinnamomi decoction, whose main ingredients included gingerol (31.94%), eugenol (18.01%), monoterpenoids (12.34%),3-Butyl-1(3H)-isobenzofuranone (9.34%) and cinnamon substances (8.03%).
     In open field test, the average speed, number of travels passing the central field and total traveling distance of KO and WT mice decreased with increased concentration of bupleuri and ramuli cinnamomi decoction. In elevated plus maze, travel duration, frequency and distance of KO treatment group in open arm decreased in comparison with KO solvent control group (P<0.05). In inner open field test, they moved less frequently but stood more often (P<0.05). In step-down test, their latency was prolonged and the number of errors was reduced (both P<0.05), whereas changes in those parameters were not significant among WT treatment group. In passive avoidance test, latency and errors extended and dwindled among KO treatment group (both P<0.05) but barely changed among WT mice (P>0.05). In audiogenic seizure experiment, latency delayed and severity of the seizure declined among KO treatment group with increased essential concentration (P<0.05) and seizure was suppressed under decoction of1.5mg/g. Conclusion:Bupleuri and ramuli cinnamomi decoction can be therapy to abnormal behaviour of KO mice by reducing audiogenic seizure and hyperactivity, and improving learning capability and memory.
     Objective:To identify the intervention mechanisms of bupleuri and ramuli cinnamomi decoction on Fmrl knockout mouse.
     Method:Experimental animals, KO and WT mice of four-week old, were randomized into three subgroups:treatment group (receiving intraperitoneal injection of bupleuri and ramuli cinnamomi decoction), solvent plus AGS group and solvent control group. Then, the first two groups underwent AGS induction whereas the third group was left untreated. We detected their levels of amino acid by high performance liquid chromatography and the expressions of GAD (glutamate decarboxylase) and other molecules in the hippocampus and cortex by immunohistochemistry. We assayed and compared the levels of superoxide dismutase (SOD), malondialdehyde (MDA) and nitric oxide (NO) respectively by pyrogallol autoxidation method, thiobarbituric method and nitrate reductase method. These efforts would lead to possible mechanisms of bupleuri and ramuli cinnamomi decoction's therapeutic effect on abnormal behaviour of KO mice.
     Results:KO mice possessed fewer neurons with GAD in the hippocampus and cortex than WT mice (P<0.05).
     KO mice in solvent control group expressed fewer y-aminobutyric acid (GABA) and glycine but more glutamate than WT solvent control group (P<0.05). After AGS induction, KO mice of solvent plus AGS group had a significant decrease in GABA level as compared with KO blank control group (P<0.05). The glutamate level of KO treatment group was lower than KO solvent plus AGS group and WT treatment group (P<0.05).
     SOD activity of KO solvent plus AGS group was lower but MDA and NO levels were higher than WT solvent plus AGS group (P<0.05). And KO treatment group manifested higher SOD activity and lower MDA and NO levels than KO solvent plus AGS and WT treatment groups (P<0.05).
     bupleuri and ramuli cinnamomi decoction did not alter spine length after1time treatment in4W KO mice (p>0.05).
     Conclusion:The intervention mechanisms of bupleuri and ramuli cinnamomi decoction on abnormal behaviours of Fmrl knockout mice may lie in the reduced ratio of excitatory amino acid to inhibitory amino acids, enhanced free radicals elimination, suppressed peroxide production and diminished NO neurotoxic effects.
引文
[1]Hagerman R J,Cronister A. Fragile X Syndrome Diagnosis ,Treatment and Research. 2nd Edition. Baltimore: Johns Hopkins University Press .1996.
    [2]Willemsen R,OImer R,De Diego Y,et al. Twin Sisters, Monozygotic with the Fragile X Mutation, But with a Different Phenotype. J Med Genet.2000, 37:603-604.
    [3]Verkerk AJ,Pieretti M,SutcliffeJS, et al.Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragileX syndrome.Cell. 1991,65(5).905-914
    [4]O' Donnell WT, Warren ST.A decade of molecular studies of fragileX syndrome. Annu. Rev. Neurosci.2002, 25:315-338
    [5]Bakker CE.Fmri knockout mice: a model to study fragileX mental retardation The Dutch-Belgian FragileX Consortium.Cell.1994,78(1):23-33
    [6]Weiler I J, Spangler CC, Klintsova AY, et al. Fragile X mental retardation protein is necessary for neurotransrnitter-activated protein translation at synapses. Proc Natl Acad Sci U SA. 2004,101 (50): 17504-17509.
    [7]Brown V, Jin P, Ceman S, Darnell X, et al Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragileX syndrome. Cell. 2001,107(4).477-487.
    [8]Bardoni B,Mandel JL. Advance in understanding of fragileX pathogenesis and FMRP function and in identification of X linked mental retardation genes Curr Opin ,Genet .2002,12:284-293
    [9]Beckel-M itchener A, Greenough WT Correlates across the structural, functional, and molecular phenotypesof fragileX syndrome. Merit Retard Dev Disabil Res Rev. 2004,10(1):53-59.
    [10]Zalfa F , Giorgi M , Primerano B , et al. The fragileX syndrome protein FMRP associates with BC1 RNA and regulates the translation of specific mRNAs at synapses. Cell. 2003,112 (3): 317-327.
    [11]Schaeffer C , Bardoni B , Mandel JL , et al. The fragileX mental retardation protein binds specifically to it s mRNA via a purine quartet motif . EM BO J. 2001 ,20 (17): 4803-4813.
    [12]Saugstad JA, Marino MJ, Folk JA, et al. GS4 inhibitssignaling by group I metabotropic glutamate receptors. J Neurosci.1998,18:905-913.
    [13]Bailey D B, Hatton D. Variability in FMRPand early development in males with fragileX syndrome. American Journal on Mental Retardation.2001,106:16-27.
    [14]Hessl D,Dyer-Friedman J,Glaser B. The influence of environmental and genetic factors on behavior problems and autistic symptoms in boys and girls with fragileX syndrome. Pediatrics.2001,108:88.
    [15]Musumeci S A,Bosco P,Calabres G. Audiogenic seizures susceptibility in transgenic mice with fragileX syndrome. Epilepsia.2000,41:19-23.
    [16]Feng Y, Absher D, Eberhart DE, et al. FMRPassociates with polyribosomes as an mRNP, and the 1304N mutation of severe fragile X syndrome abolishes this association. Molec Cell.1997,1(1):109-118.
    [17]Feng Y, Gutekunst CA, Eberhart DE, et al. FragileX mental retardation protein: nucleocytoplasmic shuttling and association with somatodendritic ribosomes. J Neurosci.1997,17(5):1539-1547.
    [18]Feng Gu, Hai-Yin Zhang, Shao-Yi Hu. Erectile dysfunction in FragileX patients Asian Journal of Andrology.2006,8:483-487.
    [19]Greco CM, Soontrapomchai K, Wirojanan J, et al.Testicular and pituitary inclusion formation in fragileX associated tremor/ataxiasyndromeJ Urol. 2007,177(4):1434-1437
    [20]Alvarez-Acevedo Garcia M, Molina Rodriguez MA, Gonzalez Casado I, et al.Macroorchidism:acase report.An Pediatr (Barc).2006,64(1):89-92.
    [21]Flynn BJ, Myers SM, Cera PJ, et al.Testicular torsion in an adolescent with Fragile X Syndrome.Pediatrics.2002,109(1):16.
    [22]Limprasert P, Jaruratanasirikul S, Vasiknanonte P.Unilateral macroorchidism in fragileX syndrome.Am J Med Genet.2000,95(5):516-517
    [23]Vatta S, Cigui I, Demori E, et al.Fragile X syndrome, mental retardation and macroorchidism.Clin Genet.1998,54(4):366-367
    [24]Slegtenhorst-Eegdeman KE, de Rooij DG, Verhoef-Post M, et al.Macroorchidism in FMR1 knockout mice is caused by increased Sertoli cell proliferation during testicular development.Endocrinology.1998,139(1):156-162.
    [25]Michelson H B, Lothman E W, An in vivo electrophysiological study of the ontogeny of excitatory and inhibitory processes in the rat hippocampus. Brain Res.1989,47:113-122.
    [26]Qin M, Kang J,Smith C B. A null mutation for Fmr1 in female mice:effects on regional cerebral metabolic rate for glucose and relationship to behavior. Neuroscience.2005,135:999-1009.
    [27]Musumeci S A, Bosco P, Calabrese G, Bakker, et al. Audiogenic seizures susceptibility in transgenic mice with fragile X syndrome. Epilepsia 2000, 41:19-23.
    [28]Yan Q J, Asafo-Adjei P K, Arnold H M, et al. A phenotypic and molecular characterization of the fmr1-tm1Cgr fragile X mouse. Genes Brain Behav. 2004,3:337-359.
    [29]Munir F,Cornish KM,Wilding J.A neuropsychological profileof attention deficits in youngmaleswith fragileX sy ndrome[J]. N europsychol ogi a2000,38(9):1261-1270.
    [30]Cornish KM,Munir F,Cross G. Differential impact of the FMR-1 full mutation on memory and attention functioning:a neuropsychological perspective[J].J Cogn Neurosci.2001,13(1):144-150.
    [31]Cornish KM,Munir F,Wilding J.A neuropsychological and behavioral profile of attention deficits in fragile X syndrome[J].Rev Neurol.2001,33:S24-29.
    [32]Steyaert J,Legius E,Borghgraef M,et al.A distinct neurocognitive phenotype in female fragile-X permutation carriers assessed with visual attention tasks [J].Am J Med Genet.2003,116 (1):44-51.
    [33]Munir F,Cornish KM,Wilding J.Nature of the working memory deficit in fragile-X syndrome[J].Brain Cogn.2000,44(3):387-401.
    [34]Wilding J,Cornish K,Munir F.Further delineation of the executive deficit in males with fragile-X syndrome[J].Neuropsychologia.2002,40(8):1343-1349.
    [35]Cornish K, Swainson R, Cunnington R, et al. Do women with fragileX syndrome have problems in switching attention:Preliminary findings from ERP and fM Rl [J].Brain Cogni.2004,54(3):235-239.
    [36]Mineur YS, Sluyter F, de Wit S, et al.Behavioral and neuroanatomical characterization of the Fmr1 knockout mo Hippocampus.2002,12:39-46.
    [37]Barbara Bardoni, Annette Schenck, Jean louisMandel. The Fragile X mental retardation p rotein [J]. Brain Research Bulletin.2001,56:375-382.
    [38]Van Dam D, D'Hooge R, Hauben E, et al. Spatial learning, contextual fear conditioning and conditioned emotional response in Fmr1 knockout mice. Behav. Brain Res.2000,117:127-136.
    [39]Tammy L, Ivanco1 TL,Greenough1 WT. Altered Mossy Fiber Distributions in Adult Fmr1 (FVB) Knockout Mice. Hippocampus.2002,12:47-54
    [40]use.
    [41]邢州,孙卫文,黄越玲,等.30日龄FMR1基因敲除小鼠的旷场行为观察.解剖学研究.2009,31(2):109-113.
    [42]Liu ZH, Chuang DM, Smith CB. Lithium ameliorates phenotypic deficits in a mouse model of fragile X syndrome. Int J Neuropsychopharmacol. 2011.14(5):618-630.
    [43]Bernardet M, Crusio WE. Fmr1 KOmice as a possible model of autistic features.ScientificWorld Journal,2006;6:1164-1176.
    [44]Peier A M, Mcllwain K L, Kenneson A, et al. (Over)correction of deficiency with YAC transgenics:behavioral and physical features. Hum Mol Genet. 2000,9:1145-1159.
    [45]陆昆雁.柴胡桂枝汤治疗顽固性感冒32例[J].国医论坛.2006,21(11):7.
    [46]季红燕.柴胡桂枝汤加减治疗消化性溃疡临床观察[J].四川中医.1996,14(4):31.
    [47]张晓梅.柴胡桂枝汤加减方对呼吸道病毒感染患者IL-6、TNF-α的调节作用[J].湖北中医学院学报.2002,25(1):60.
    [48]刘方红.柴胡桂枝汤治疗慢性胃炎120例[J].四川中医.2000,18(7):31.
    [49]赵秀琴,孙雷闯.柴胡桂枝汤加减治疗冠心病心阳不振痰气痹阻型临床观察[J].黑龙江中医药.1998,(2):14.
    [50]王宏伟.从肝论治难治性癫痫34例临床观察[J].新中医.1999,31(4):17.
    [51]张新平,廖伯年,邓正万.柴胡加龙骨牡蛎汤加减治疗儿童多动症30例四川中医.2005,23(7):86
    [52]杨蓉,王明正,成银霞.半夏超临界C02乙醇萃取物抗惊厥作用的实验研究中华中医药杂志.2011,26(11):2731-2734
    [53]于涛,刘霖.小柴胡汤合天麻钩藤饮加减治疗儿童多动症76例中医研究.2008,21(4):67
    [54]Van Dam D, D'Hooge R, Hauben E, et al. Spatial learning, contextual fear conditioning and conditioned emotional response in Fmr1 knockout mice. Behav Brain Res.2000,117:127-136.
    [55]吴美娟等.柴胡桂枝汤对D-半乳糖亚急性中毒小鼠拟衰老的实验研究.南京中医药大学学报.2000,16(3):164-165
    [56]季吉,董榕.柴胡注射液对小鼠学习记忆功能的影响南京医科大学学 报.2006,26(12):1183-1184
    [57]周芳,刁波,段凯,半夏总生物碱对帕金森病大鼠学习记忆功能的影响及其机制的初步探讨中国临床神经外科杂志.2011,16(7):413-416
    [58]杨军,王静,姜文,等.赤芍总苷对D-半乳糖衰老小鼠学习记忆及代谢产物的影响中国药理学通报.2001,17(6):697-700
    [59]马世平,詹莹,瞿融.当归芍药散的抗氧化作用研究中药药理与临床2001,17(3):1-3
    [60]李园园,杨晖,廖桂凤,等.黄芩苷抗脑缺血小鼠学习记忆功能损伤的保护作用昆明医学院学报.2011,(5):13-16
    [61]王玉梅,曹凯.刘永平,等.黄芩茎叶黄酮对大鼠缺血性记忆障碍的改善作用及对胆碱乙酰转移酶和一氧化氮合酶蛋白表达的影响首都医科大学学报.2011,32(4):494-450
    [62]王瑞婷,张建新,董雅洁,等.黄芩茎叶总黄酮对AD大鼠模型海马神经元超微结构的影响及抗氧化作用中国老年学杂志.2010,30(4):926-928
    [63]詹春,杨静,詹莉,等.异甘草素对脑缺血再灌注小鼠认知功能障碍及能量代谢的影响中国药理学通报.2005,21(2):213-216
    [64]Qin M, Kang J, Smith CB. A null mutation for Fmr1 in female mice:effects on regional cerebral metabolic rate for glucose and relationship to behavior. Neuroscience.2005; 135:999-1009。
    [65]Ayyildiz M, Yildirim M, Agar E. The effects of vitamin E on penicillin-induced epileptiform activity in rats[J]. Exp Brain Res.2006,174(1):109-113.
    [66]Levy S L,Burnham W M,Bishai A, et al. The anticonvulsant effects of vitamin E:a further evaluation[J]. Can J Neurol Sci.1992,19 (2):201-203.
    [67]凌大奎,朱永新,王维,等.气相色谱保留指数谱用于中药材鉴别的研究[J].药物分析杂志,1995,15(4):13-20.
    [68]Zelda P. Optimization of Conditions in Static Headspace GC [J]. J High Resolut Chromatogr.1992,15 (12):834-836.
    [69]Gonzalez FR, Nardillo AM. Retention Index Temperature-programmed Gas Chromatography[J]. J Chromatogr A.1999,842:29-49.
    [70]Ross K C,Coleman JR.Developmental and genetic audiogenic seizure models: behavior and biological substrates. Neurosci Biobehav Rev.2000,24:639-653.
    [71]Friedland DR, Popper P, Eernisse R,et al. Differentially expressed genes in the rat cochlear nucleus. Neuroscience 2006,142:753-768.
    [72]Maison SF, Casanova E, Holstein GR, et al. Loss of GABAB receptors in cochlear neurons:Threshold elevation suggests modulation of outer hair cell function by type 11 afferent fibers. J Assoc Res Otolaryngol 2009,10:50-63.
    [73]Fowler CE, Aryal P, Suen KF,et al. Evidence for association of GABAB receptors with Kir3 channels and regulators of G protein signalling (RGS4) proteins. J Physiol.2007,580:51-65.
    [74]Laura K. K. Pacey, Scott P. Increased GABAB Receptor-Mediated Signaling Reduces the Susceptibility of Fragile X Knockout M ice to Audiogenic Seizures Mol Pharmacol.2009,76:18-24.
    [75]Martin dl,Rmival k.Regulate ofy-aminobutyri acid synthesis in the brain J Neurochem.1993;60:359-407.
    [76]Asada H,Kawamura Y,Maruyama,etal.Mice lacking the 65Kda isoform of glutamic acid decarboxylase(GAD65)maitain normal levels of GAD67and GABA in their brains but are susceptible to seizures.Biochem Biophys Res commun.1996,229(3):891-895.
    [77]Shear F Kash,Randall S Johnson,Laurence H Tecott. et al.Epilepsy in mice deficient in the 65-kDa isoform of glutamic decarboxylase. Neurobiology.1997, 94:14060-14065.
    [78]Houseer CR, Esclapez M.Vulnerability and plasticity of the GABA system in the pilocarpine model of spontaneous recurrent seizures. Epilepsy Res. 1996;26(1):207.
    [79]Esclapez M,Houseer CR.Up-regulation of GAD65 and GAD67 in remaining hippocamal GABA nerons in a model of temporal lobe epilepsy[J].comp Neurol.1999,412(3):488-505.
    [80]Najlerahim A,Williams SF,pearson RCA,etal.Increased expression of GADmRNA during the chronic epileptic syndrome due to intrahippocampal tetanustoxin[J] Exp Brain RES.1992,90:332-338.
    [81]何小华,王伟,阮旭中等.戊四氮所致发病过程中谷氨酸脱羧酶基因表达的研究.卒中与神经疾病杂志.2001,8(2):71-73.
    [82]徐小平,郭平,宋玉如等.马桑内酯对大鼠脑内γ-氨基丁酸和谷氨酸含量的影响.华西医大学报.1991,22(2):213-21.
    [83]王伟,朱长庚,阮旭中等.癫痫状态大鼠海马(BADmRNA、GABA-TmRNA表达水平的动态观察.中华神经科杂志.1996,29(4):206.
    [84]姚君茹,潘三强,吕来清,等.慢性癫痫模型大鼠脑谷氨酸神经元的变化.解剖科学进展.2004,10:26229.
    [85]崔瑛,颜正华,侯士良,等.熟地黄对动物学习记忆障碍及中枢氨基酸递质、受体的影响[J].中国中药杂志,2003,28(9):862-866。
    [86]柯尊记,姚志彬.老年学习记忆减退大鼠的海马GABA能神经元数量变化[J]解剖科学进展.2000,6(2):148-151。
    [87]Rive B,Vercelletto M.Damier FD,et a I.Memantine enhances autonomyinm od erate to severe Alzheim er s'disease [J] Int J Geriatr Psychiatry.2004,19: 458-464
    [88]孙长凯,黄远桂.一氧化氮(NO)研究:分子、细胞、免疫与神经科学[J].中国神经免疫和神经病学杂志.1995,2:184.
    [89]Chen L, Toth M.Fragile X mice develop sensory hyperreactivity to auditory stimuli[J].Neuroscience.2001,103(4):1043-1050
    [90]王桥,宋学英,朱莹,等.生姜醇提取物抗氧化与抗缺氧作用的研究.中国中药杂志,2003,28(6):551-552.
    [91]宋学英,王桥,朱莹,等.生姜对急性缺氧小鼠的保护作用.首都医科大学学报,2004,25(4):438-440.
    [92]何丽娅,黄崇新.生姜对缺血性脑损伤是过氧化氢酶、Ca2+-ATPase活性及乳酸含量的影响.医学理论与实践.1999,12(1):7-9.
    [93]Ahmed RS.Seth V, Pasha ST, et al. Influence of dietary ginger(Zingiber Offieinales Rose)on oxidative stress indueed by malathion in rats[J].Food ChemToxieal.2000,38(5):443-450.
    [94]Ahmed Rs,Seth v,Baneijee BD,et al. Influence of dietary ginger(Zingibe Offieinales Rose)on antioxidant defense system in rat:comparison with aseorbic acid[J].Indian J Exp Biol.2000,38(6):604-606.
    [95]Ippoushi K, Azuma K, Ito H, et al.6-Gingerol inhibits nitric oxide synthesis in aetivated J774.1 mouse maeroPhages and Prevents Peroxynitrite-induced oxidation and nitration reaetions [J].Life Sci.2003:73(26):3427-37.
    [96]王军,张薇,王玉升,等.生姜水提物对脑缺血再灌注损伤的保护作用[J].中医药临床杂志.2007;19(1):23-24.
    [97]王军,张磊,王子华,等.生姜醇提物对脑缺血再灌注小鼠脑组织ATP酶和自由基代谢的影响[J].江苏中医药.2007,39(4):59-80.
    [98]王军,刘惠霞,张薇,等.生姜挥发油对脑缺血再灌注损伤的保护作用[J].中医杂志,2007,45(6):1612
    [99]Hu D,Huang XX,Feng YP. Effect of dl-3-n-butylphalide(NBP)on purine metabolites in striatum extracellular fluid in four-vessel occlusion rats. Acta Pharm Sin 1996,31:13-17.
    [100]Chong ZZ,Feng YP.Effects of dl-3-n-butylphthalide on Production of TXB2 and 6-keto-PGF1 in rat brain during focal cerebral ischemia and reperfusion. Acta Pharmacol Sin.1997,18:505-508.
    [1]Warren S T.Sherman S L.The fragile X syndrome In The Metabolic and Molecular Bases of Inherited Disease. 2001,1:1257-1290.
    [2]Verkerk AJ,Pieretti M,Sutcliffe JS,et al.Identification of a gene (FMR-1) co ntaining a CGG repeat coincident with a breakpoint cluster region exhibiting le ngth variation in fragile X syndrome [J]. Cell. 1991,65(5):905-14
    [3]Fu YH,Kuhl DP,Pizzuti A,et al. Variation of the CGG repeat at thefragile X site results in genetic instability: resolution of the Sherman paradox[J].Cell.1 991,67(6):1047-58.
    [4]O'Donnell WT,Warren ST.A decade of molecular studies of fragile X syndr ome. Annu Rev Neurosci .2002,25:315-338
    [5]Bakker CE.Fmri knockout mice: a model to study fragile X mental retarda tion The Dutch-Belgian Fragile X Consortium [J].Cell. 1994,78 (1):23-33
    [6]Martin LJ, Blackstone CD, Huganir RL, et al.Cellular localization of a met abotropic glutamate receptor in rat brain [J].Neuron. 1992,9: 259-270
    [7]Shigemoto R.Mizuno N. Metabotropic glutamate receptors-immuno cytochem ical and in situ hybridization analysis. In Handbook of Chemical Neuroanatomy: Metabotropic Glutamate Receptors: Im munocytochemical and in situ Hybridiz ation Analyses.2000,(18):63-98
    [8]Vanderklish PW.Edelman GM.Dendritic spines elongate after stimulation of group 1 metabotropic glutamate receptors in cultured hippocampal neurons[J].P roc Natl Acad Sci USA.2002,99(3):1639-1644
    [9]Doherty J.Dingledine R.The roles of metabotropic glutamate receptors in sei zures and epilepsy [J]. Curr Drug Targets CNS Neurol Disord.2002,1(3):251-26 0
    [10]Lee AC,Wong RK,Chuang SC,et al.Role of synaptic metabotropic glutamat e receptors in epileptiform discharges in hippocampal slices[J].J Neurophysiol.20 02,88:1625-1633
    [11]Wong RK,Chuang SC,Bianchi R.Rasticity mechanisms underlying mGluR-i nduced epileptogenesis [J].Adv Exp Med Biol.2004,548: 69-75
    [12]Incorpora G,Sorge G,Sorge A,et al.Epilepsy in fragile X syndrome[J]. Brai n Dev.2002,24(8):766-9
    [13]Berry-Kravis E.Epilepsy in fragile X syndrome [J].Dev Med Child Neurol, 2002,44(11):724-8
    [14]Musumeci SA,Bosco P,Calabrese G,et al.Audiogenic seizures sus ceptibility in transgenic mice with fragile X syndrome[J].Epilepsia2000,41(1):19-23
    [15]Rodrigues SM,Bauer EP,Farb CR,et al.The group ⅠI metabotropic glutamate receptor mGluR5 is required for fear memory formation and long-term potenti ation in the lateral amygdale [J].J Neurosc.2002,22:5219-5229
    [16]Swanson CJ,Bures M,Johnson MP,et al.Metabotropic glutamate receptors as novel targets for anxiety and stress disorders [J].Nat Rev Drug Discov.2005,4 (2):131-144.
    [17]Chen L,Toth M.Fragile X mice develop sensory hyperreactivity to auditory stimuli[J]. Neuroscience.2001,103,1043-1050.
    [18]Tsiouris JA,Brown WT. Neuropsychiatric symptoms of fragile X syndrome: pathophysiology and pharmacotherapy [J]. CNS Drugs.2004,18(11):687-703
    [19]Chen L,Toth M.Fragile X mice develop sensory hyperreactivity to auditory stimuli[J]. Neuroscience.2001,103(4):1043-1050
    [20]Nielsen DM,Derber W,McClellan DA,et al.Alterations in the audi tory star tie response in Fmr1 targeted mutant mouse models of fragile X syndrome[J].B rain Res.2002,927(1):8-17
    [21]Park D, Lee S, Jun K, et al Translation of clock rhythmicity into neural f iring in suprachiasmatic nucleus requires mGluR-RL Cbeta4 sig naling.Nat[J]. Ne urosci.2003,6:337-338
    [22]Dockendorff TC,Su HS,McBride SM.et al.Drosophila lacking dfmr1 activit y show defects in circadian output and fail to maintan courtship interest[J]. N euron.2002,34:973-984
    [23]Walker K, Reeve A, Bowes M, et al.mGlu5 receptors and nociceptive fun ction Ⅱ. mGlu5 receptors functionally expressed on peripheral sen sory neurone s mediate inflammatory hyperalgesia [J]. Neuropharma cology.2001,40:10-19
    [24]Liu M,utamate receptor 5 in enteric neurons [J].J Neurosci2000,20:3200-32 05
    [25]Segal M.Andersen P.Dendritic spines shaped by synaptic activity[J]. Curr Opin Neurobiol.2000,10(5):582-6
    [26]Irwin SA.Patel B.Idupulapati M,et al.Abnormal dendritic spine characteristi cs in the temporal and visual cortices of patients with fragile X syndrome:a q uantitative examination [J]. Am J Med Genet.2001,98:161-167
    [27]Nimchinsky EA, Oberlander AM, Svoboda K.Abnormal development of de ndritic spines in FMR-1 knock-out mice [J].J Neurosc.2001,21:5139-5146
    [28]Irwin SA,Idupulapati M,Gilbert ME,et al.Dendritic spine and den dritic fiel d characteristics of layer V pyramidal neurons in the visual cortex of fragile-X knockout mice [J].Am J Med Genet.2002,111(2):140-146
    [29]Braun K,Segal M.FMRP involvement in formation of synapses among cult ured hippocampal neurons[J]. Cereb Cortex,2000,10(10):1045-1052
    [30]Segal M,Kreher U,Greenberger V, et al.ls fragile X mental retarda tion pr otein involved in activity-induced plasticity of dendritic spines?[J].Brain Res.200 3,972(1-2):9-15
    [31]Fagni L,Chavis P,Ango F,et al.Complex interactions between mGluRs, intr acellular Ca2+ stores and ion channels in neurons [J]. Trends Neurosc.2000,23 (2):80-88
    [32]Weiler IJ,Irwin SA,Klintsova AY,et al.Fragile X mental retardation protein is translated near synapses in response to neurotransmitter activation[J].Proc N atl Acad Sci U S.1997,94(10):5395-5400
    [33]Feng Y,Gutekunst CA,Eberhart DE,et al.Fragile X mental retarda tion prot ein:nucleocytoplasmic shuttling and association with soma todendritic ribosome s[J].J Neurosci.1997,17(5):1539-1547
    [34]Ben A,OostraFunctions of the fragile X protein [J].Trends Mol Med,2002, 8(3):102-103
    [35]Feng Y,Absher D,Eberhart DE,et al.FMRP associates with polyribo somes as an mRNP, and the 1304N mutation of severe fragile X syndrome abolishes this association[J]. Molec Cell.1997,1(1):109-118
    [36]Waler IJ, Greenough WT.Synaptic synthesis of the Fragile X protein:pos sible involvement in synapse maturation and elimination [J].Am J Med Genet.1 999,83(4):248-252
    [37]Antar LN, Afroz R, Dictenberg JB, et al. Metabotropic glutamate re cepto r activation regulates fragile x mental retardation protein and FMR1 mRNAloca lization differentiallyin dendrites and at synapses[J]. J Neurosc.2004,24(11):2648-2655
    [38]Rehm H,Wiedenmann B,Betz H.Molecular characterization of synaptophysi n, a major calcium-binding protein of the synaptic vesi cle membrane[J].EMBO J.1986,5(3):535-541
    [39]Thiel G.Synapsin Ⅰ,synapsin Ⅱ, and synaptophysin:marker proteinsof syna ptic[J].Brain Patho.1993,3(1):87-95
    [40]Wiedenmann B.Franke WW.Identification and localization of synap tophysi n, an integral membrane glycoprotein of Mr 38,000 character istic of presynapt ic vesicles[J]. Cell.1985,41 (3):1017-1028
    [41]Jingami H,Nakanishi S,Morikawa K.Structure of the metabotropic glutamat e receptor[J]. Curr Opin Neurobiol.2003,13(3):271-8[42] Bortolotto ZA, Fitzjohn SM, Collingridge GL.Roles of metabotropic glutamate receptors in LTP and L TD in the hippocampus [J]. Curr Opin Neurobiol.1999,9(3):299-304
    [43]Huber KM,Gallagher SM, Warren ST et al.Altered synaptic plasticity in a mouse model of fragile X mental retardation [J].Proc Natl Acad Sci USA.200 2,99(11):7746-7750
    [44]Gasparini F.Kuhn R,Pin JP. Allosteric modulators of group I metabotropic glutamate receptors novel subtype-selective ligands and therapeutic perspectives [J].Curr Opin Pharmaco.2002,2(1):43-49
    [45]Gasparini F,Lingenhohl K,Stoehr N,et ai.2-Methyl-6- (phenylethynyl)-pyridi ne (MPEP), a potent selective and systemically active mGlu5 receptor antagoni st [J].Neuropharmacology.1999,38:1493-1504
    [46]McBride SM,Choi CH,Wang Y,et al.Pharmacological rescue of synaptic pl asticity, courtship behavior, and mushroom body defects in a Drosophila model of fragile X syndrome [J]. Neuron.2005,45(5):753-764

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700