魔芋葡甘聚糖/变性淀粉复配性质及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文旨在尝试利用魔芋葡甘聚糖(Konjac glucomannan,简称KGM)和羧甲基淀粉(Carboxymethyl starch,简称CMS)复配形成溶胶及凝胶。通过分子动力学模拟预测魔芋葡甘聚糖和羧甲基淀粉的复配可能性,利用分子动力学模拟结果指导复配研究;以粘度和透明度为指标探讨了配比、浓度、温度、搅拌时间、盐离子等因素对魔芋葡甘聚糖/羧甲基淀粉复配溶胶的影响;以凝胶硬度、凝胶弹性、凝胶强度和凝胶析水率为指标研究了配比、凝胶温度、pH值、浓度和常温放置时间对复配凝胶的影响;通过二次正交旋转组合试验和正交试验确定了复配溶胶和复配凝胶的最佳工艺,并将复配凝胶应用于仿生鲍鱼生产中,以期为魔芋葡甘聚糖的复配研究和魔芋葡甘聚糖/羧甲基淀粉复配凝胶应用提供参考。研究得出以下结果:
     1魔芋葡甘聚糖/羧甲基淀粉复配分子动力学模拟
     通过分子动力学模拟得出,魔芋葡甘聚糖和羧甲基淀粉共混后,分子间发生氢键对接作用,复配后体系势能大幅度降低,体系趋于稳定,魔芋葡甘聚糖与羧甲基淀粉之间形成大量的分子内和分子间氢键,在60℃时形成的氢键数最多,二者维持一定的稳定构象。
     2魔芋葡甘聚糖/羧甲基淀粉复配溶胶性质
     当魔芋葡甘聚糖与羧甲基淀粉的配比为8︰2时,魔芋葡甘聚糖/羧甲基淀粉复配溶胶粘度最大,羧甲基淀所占比例越大,复配溶胶透明度越高;随着浓度的增加,复配溶胶粘度增大,透明度降低;当温度为60℃时,复配溶胶达到最大粘度值,但温度对复配溶胶透明度的影响不大;搅拌时间在0.75 h左右时,溶胶具有较高粘度,随着搅拌时间的延长,溶胶透明度升高;KCl会引起魔芋葡甘聚糖/羧甲基淀粉复配溶胶粘度和透光率的下降。
     3魔芋葡甘聚糖/羧甲基淀粉复配凝胶性质
     当魔芋葡甘聚糖与羧甲基淀粉的配比为8︰2时凝胶的硬度、弹性、凝胶强度及持水性有最大值;随着浓度的增加,魔芋葡甘聚糖/羧甲基淀粉复配凝胶的硬度、凝胶强度和持水性升高,浓度在25.0 g/L时凝胶的弹性最好;随着温度升高,硬度、弹性、凝胶强度和持水性都升高,50~60℃是凝胶的特征温度范围;随着pH值升高,复配凝胶的的硬度、弹性、凝胶强度和持水性升高,当pH>11.0时,各指标则相对稳定;凝胶放置24 h以内可以提高凝胶的强度、弹性和硬度,而凝胶持水性则随着放置时间的延长而降低。
     4最佳溶胶和凝胶制备条件
     通过二次正交旋转组合和验证试验得出浓度为10.0 g/L的魔芋葡甘聚糖/羧甲基淀粉复配溶胶的最佳制备条件为:魔芋葡甘聚糖与羧甲基淀粉的配比为7.5︰2.5,温度60℃,搅拌时间0.875 h。通过正交试验和验证试验得出:魔芋葡甘聚糖/羧甲基淀粉复配凝胶的最佳制备条件为:魔芋葡甘聚糖与羧甲基淀粉的配比为8︰2,浓度为32.5 g/L,凝胶温度为80℃,pH为11.0、放置时间为20 h。
     5魔芋葡甘聚糖/羧甲基淀粉复配应用
     将魔芋葡甘聚糖/羧甲基淀粉复配凝胶的最佳工艺应用于魔芋仿生鲍鱼生产,以产品凝胶强度和透明度为指标,经过试验验证得出最佳工艺条件为:魔芋葡甘聚糖与羧甲基淀粉的配比为8︰2,浓度为32.5 g/L,凝胶温度90℃,pH为11.5。
     以上结果表明,魔芋葡甘聚糖与羧甲基淀粉具有一定的复配交互作用,二者复配后在最佳条件下可形成性能较好的魔芋葡甘聚糖/羧甲基淀粉溶胶或魔芋葡甘聚糖/羧甲基淀粉凝胶,具有一定的实际生产应用价值。
This paper aims to improve the nature of the sol and the properties of the gel by using carboxymethyl starch (CMS) to mix with konjac glucomannan (KGM). The possibility of mixing of KGM and CMS was predicted by molecular dynamics simulation, and the result was used as instruction for mixing. The effects of ratio, concentration, temperature, stiring time, salt ions and other factors on the KGM/CMS complex sol were discussed in this paper. The effects of ratio, concentration, gel temperature, pH, and standing time on the complex gel were also studied. Then the best process could be ascertained through quadratic-rotation-orthogonal experiment and orthogonal experiment. In order to provide references for the complex study on the application of KGM and KGM/CMS, the complex gel was applied to biomimetic food such as abalone to test its practical application results.The results was as follows:
     1 Molecular Dynamics Simulation of the Mixing of KGM/ CMS
     The result of molecular dynamics simulation indicated that intermolecular hydrogen bond effect was generated after mixing of KGM/CMS, energy of position for system was decreased after mixing and was to being stable, intramolucular and intermoleculer hydrogen bond were formed between KGM/CMS, and the number of hydrogen bond was the highest when it was at 60℃, and the stable conformation was maintained.
     2 Property of the KGM/CMS Complex Sol
     The transparency of sol could be improved by increasing CMS, and when KGM/CMS application was 8︰2, the compounded sol had the best viscidity. With the increase of concentration, complex sol had higher viscidity and lower transparency. The best viscidity of sol got at 60℃, and the influence of temperature on transparency was not large. Constantly stirring could improve the transparency which is higher when stiring time was about 0.75 h. But the viscidity and luminousness of KGM/CMS complex sol would be dropped by KCl.
     3 Property of the KGM/CMS Complex Gel
     The mechanical properties such as hardness, flexibility, gel intensity and retentiveness, etc., were highest when KGM/CMS application was 8︰2. With the increase of concentration, the hardness, flexibility, gel intensity and retentiveness of KGM/CMS complex gel rose, and the flexibility of the gel was best at 25.0 g/L. The mechanical properties and retentiveness were improved as the temperature rising, and 50~60℃was the characteristic gel temperature range. The mechanical properties and retentiveness were also raised as the pH rising. While pH>11.0,they were relatively stable. The intensity, flexibility and hardness could be improved in 24 hours quiescence. However, the retentiveness of the gel debased as the setting time extending.
     4 Best Conditions of the Sol and Gel
     By quadratic-rotation-orthogonal experiment, it could be concluded as follows: The best conditions of the 10.0 g/L KGM/CMS complex sol were: KGM/CMS application 7.5︰2.5, temperature 60℃, stirring time 0.875 h. And the best conditions of the KGM/CMS complex gel by orthogonal experiments and validation were: KGM/CMS application 8︰2, concentration 32.5 g/L, gel temperature 80℃, pH value 11.0, and standing time 20 h.
     5 Application of KGM/CMS
     The best process conditions of KGM/CMS complex gel could be applied to the konjac biomimetic food, and experiments proved that the best technological conditions were KGM/CMS application 8︰2, concentration 32.5 g/L, gel temperature 90℃, and pH value 11.5 .
     These results indicated that the sol and gel properties of KGM could be improved by CMS. After complex, KGM/CMS sol or KGM/CMS gel with better performance under certain conditions, and good practical application results were attained.
引文
[1]刘佩瑛.魔芋栽培与加工[M].重庆:重庆科学技术出版社,1985.
    [2]何家庆.论东南亚魔芋资源的利用历史、现状及开发潜力[J].武汉植物学研究,1995,(3):269-279.
    [3]邹新禧,谢美然.魔芋葡甘聚糖的研究进展[J].现代化工,1992,(12):15-17.
    [4] Shimahara H,Suauki H,Sugiyama N,et al.Isolation and characterization of oligosaccharides from an enzymic hydrolysate of konjac glucomannan[J].Agricultural Biochemistry,1975,39(2):293-299.
    [5] Maekaji K.Determination of acidic component of konjac gluconmannan[J].Agricultural Biochemistry,1978,42(1):177-178. [ 6] Kato K,Watanabe T,Matsuda K.Studies on the chemical structure of konjac glucomannan I: Isolation and characterization of oligosaccharides from the partial acid [J].Agricultural Biochemistry,1980,34:532.
    [7]郭金明.离子交联魔芋葡甘聚糖凝胶的制备及流变性能研究[D].武汉:武汉理工大学,2008.
    [8] Kaname K,Kohsaku,Okuyama,et al.Constitution of konjac glucomannan:chemical analysis and 13C NMR spectroscopy[J].Carbohydrate Polymers,2003,53:183.
    [9] Millane R P,Hendrixson T L.Crystal structures of mannan and glucomannans[J].Carbohydrate Polymer,1994,25(4):245-251.
    [10]许时婴,钱和.魔芋葡甘聚糖的化学结构与流变性质[J].无锡轻工业学院学报,1991(1):11-12.
    [11] Pang J,Sun Y J,Tian S P,et al.Molecular dynamics simulation of glucomannan solution[J]. Structural Chemisty,2005(7):841-845.
    [12]王雅立.魔芋葡甘聚糖分子稳定性研究[D].福州:福建农林大学,2007.
    [13] Xiao C,Liu H,Lu Y.Characterization of poly (vinylpyrro-lidone) konjac glucomannan blend films[J].Journal of Applied Polymer Science,2001(a),81(5):1049-1055.
    [14] Xiao C,Lu Y,Zhang L.Preparation and physical properties of konjac glucomannan polyacrylamide blend films[J].Journal of Applied Polymer Science,2001(b),81(4):882-888.
    [15] Kohyama K,Nishinari K.Dependence of the specific volume of konjac glucomannan on pH.gums stab[J].Food Industry,1989,459-462.
    [16]周新平,王波,何培新.魔芋葡甘露聚糖的化学改性研究[J].胶体与聚合物,2008,2(3): 40-41.
    [17]陈立贵.魔芋葡甘聚糖的改性研究进展[J].安徽农业学报,2008,36(15):6157-6160.
    [18]朱琰,张丽.魔芋葡甘聚糖在固定化领域里的应用进展[J].生物技术,2007,17(6):91-94.
    [19]许秀真,陈玉成,庞杰.改性魔芋葡甘聚糖膜结构和性能的研究进展[J].化工环保,2004,(24):129-131.
    [20]林晓艳,陈彦,罗学刚.魔芋葡甘露聚糖去乙酰基改性制膜特性研究[J].食品科学,2002,23(2):21-24
    [21]吴绍艳,张升晖,吴亮.焦磷酸钠对魔芋葡甘聚糖酯化交联改性研究[J].食品科学,2005,(2):61-63.
    [22]肖云,张迎庆,干信.硫酸酯化葡甘聚糖凝胶颗粒的血液相容性研究[J].湖北工业大学学报,2005,20(1):4-7.
    [23]王丽霞,庞杰,陆蒸.魔芋葡甘聚糖醚化研究[J].江西农业大学学报,2003,25 (4):632-634.
    [24]李斌,谢笔钧,任熙儒.魔芋葡甘聚糖的羧甲基化改性及其应用研究[J].西部粮油科技,2002(3):29-32.
    [25]汪超,李斌,谢笔钧,等.魔芋葡甘聚糖羧甲基化方法改进研究[J].农业工程学报,2005,21 (5):140-144.
    [26]董红兵,李斌,谢笔钧.氧化魔芋葡甘聚糖/Ca(OH)2杂化膜的制备与性能[J].化学与生物工程,2005,9:22-25.
    [27]庞杰,李斌,谢笔钧,等.氧化魔芋葡甘聚糖的结构研究[J].结构化学,2004,23:912-917.
    [28] Zhou M,Pu W F,Hu P.Advances of high water absorbent starch graft copolymers[J]. Modern Chemical Industry,2003,23(11):182-220.
    [29]张克举,王乐明,李小红,等.魔芋粉-丙烯酸-丙烯酰胺接枝共聚合成高吸水树脂[J].化工学报,2007,58(6):1592-1597.
    [30]徐霞,杨秦欢,陆爱霞,等.魔芋葡甘聚糖接枝共聚物的合成及其抗菌活性[J].林产化学与工业,2006,26(1):75-78.
    [31]何东保,彭学东.卡拉胶与魔芋葡甘聚糖协同相互作用及其凝胶化的研究[J].高分子材料与工程,2001,17(2):28-30.
    [32]陈运中.魔芋精粉与黄原胶的协同增效作用及应用研究[J].食品科学,1999,(9):12-14.
    [33]韩国华,吴杨桦,李海霞.利用黄原胶与魔芋精粉的协同增效作用研制低温冷冻果馅[J].冷饮与速冻食品工业,2002,8(3):14-15.
    [34]何东保,彭学东.黄原胶与魔芋葡甘聚糖马来酸酯的协同相互作用及其凝胶化的研究[J].武汉大学学报(理学版),2000,46(6):681-684.
    [35]丁金龙,孙远明,乐学义.魔芋胶与大豆分离蛋白相互作用研究[J].中国粮油学报,2003,18(3):65-69.
    [36]龚加顺,幸治梅,彭春秀,等.大豆分离蛋白及其与魔芋葡甘聚糖凝胶化作用的动态粘弹性研究[J].食品科学,2005,26(10):25-29.
    [37]孙远明,丁金龙,乐学义.魔芋葡甘聚糖与大豆分离蛋白复配凝胶作用研究[J].中国食品学报,2002,(2):65-69.
    [38]李斌,盛慧,汪超,等.魔芋粉一淀粉复配体系稳定性及其协效性研究[J].食品科技,2003,(5):55-58.
    [39]代佳佳,徐幸莲,周光宏,等.亲水胶体和玉米变性淀粉对鸡胸肉匀浆物凝胶特性的影响[J].食品科学,2009,30(11):99-103.
    [40]吴晓霞,李建科,余朝舟.魔芋葡甘聚糖-壳聚糖-羧甲基纤维素钠复合可食性保鲜膜研究[J].食品工业科技,2008,(2):236-240.
    [41]唐汝培,杜予民,樊李红.魔芋葡甘聚糖/羧甲基淀粉共混膜及其阻水性能[J].高分子材料科学与工程,2003,19(4):181-184.
    [42] Xiao C,Gao S,Wang H.Blend films from chitosan and konjac glucomannan solutions[J]. Journal of Applied Polymer Science,2000,76(40):509-516.
    [43]刘佩瑛,张盛林.魔芋葡甘聚糖的功能和在食品业上的应用[J].中国魔芋通讯,2001(3): 15-17.
    [44]陈欣,林丹黎.魔芋葡甘聚糖的性质、功能及应用[J].重庆工学院学报(自然科学),2009,23(7):36-39.
    [45]杨湘庆,沈悦玉.魔芋粉的理化性、功能性、流变性及其在食品中的应用[J].冷饮与速冻食品工业,2002,(4):34-35.
    [46]徐秋兰,庞杰.魔芋葡甘聚糖特性及其在食品中应用[J].粮食与油脂,2003,(7):46-47.
    [47]裴晨探.魔芋葡甘聚糖在军用食品中的应用[J].中国食物与营养,2008,(10):34-36.
    [48]陈绍军,陈明木,陈青青.龙眼复配涂膜保鲜剂的研究[J].农业工程学报,2006,22(8):219-223.
    [49]潘思轶,王可兴,杨东旭.魔芋涂膜保鲜冷却肉研究[J].食品科学,2004,25(8):177-180.
    [50]彭世军,陈泽群,肖体现,等.魔芋生物膜敷料治疗烧伤的临床研究[J].湖北民族学院学报(医学版),1999,16(3):8-10.
    [51]张瑜,侯世祥.盐酸小聚碱羧甲基魔芋粉小丸在大鼠体内释药研究[J].中国中药杂志,2008,33(13):1591-1595.
    [52]彭述辉,庞杰.魔芋葡甘聚糖在环保、医药及食品中的应用[J].长江蔬菜,2006,(12):30-33.
    [53]李波,谢笔钧.国外魔芋葡甘聚搪的开发研究现状[J].农牧产品开发,1999,(8):6-7.
    [54] Takigami S,Takiguchi T,Phillips G O.Microscopical studies of the tissue structure of konjac gel[J].Food Science,1997,11(4):479-484.
    [55] Walsh D E.Effect of glucomannan on obese patients a clinical study[J].Hormone and Metabolism Research,1983,15(1):283-285.
    [56]Lloyd L L,Kennedy J F,Methacanon P,et al.Carbohydrate polymers as wound management aids[J].Carbohydrate Polymers,1998,37(3):315-522.
    [57] Gao S,Zhang L.Semi-Interpenetrating polymer networks from castor oil-Based polyutrethane and nitrokonjac glucomannan[J].Journal of Applied Polymer Science,2001,81(9):2076-2773.
    [58]庞杰,温成荣,余庞熔,等.一种魔芋多糖胶粘剂[P].中国CN101284974,2008.
    [59]庞杰,卢晓黎,温成荣,等.一种环保涂料及其制备方法[P].中国CN10123523,2008.
    [60]苏琼,王彦祖.淀粉精细化学品合成及其应用[M].北京:民族出版社,2004.
    [61]赵俊芳,陈焕章.羧甲基淀粉的生产和应用[J].精细与专用化学品,1997,(3):1-3.
    [62]张晓东,刘馨.高取代度羧甲基淀粉的合成与性能研究[J].纺织学报,2003,24(6):552-556.
    [63]曹凯光.高黏度羧甲基淀粉制备工艺的研究[J].食品与发酵工业,2003,29(1):53-56.
    [64]张燕平.变性淀粉制造与应用[M].北京:化学工业出版社,2001.
    [65]范庆松.干法制备高取代度羧甲基淀粉及应用性能研究[D].大连:大连理工大学2006.
    [66] Eyler R W,Klug E D,Floyd D.Determination of degree of subsititution of sodium carboxymethyl cellulose [J].Analisis Chemistry,1974,(12):19-24.
    [67] R LWhister.Starch:Chemistry and Technology[J].Academic Press Inc.,1984,12(6):145-150.
    [68]武宗文,宋心远.羧甲基淀粉溶液透明度研究[J].东华大学学报,2006,32(6):78-93.
    [69]安俊新,李新平.羧甲基淀粉钠的合成与应用现状[J].造纸化学品与应用,2005,(1):27-31.
    [70]王曙文,南喜平,代永刚.羧甲基淀粉发展现状及开发前景[J].农产品加工学刊2005,(38):57-59.
    [71] Schiotz J,Tolla F D.Softening of nanocry stalline metals at very small grain size[J].Nature,1998,391:561-563.
    [72] Wen Y,Zhou H,Fan X,et al.The influence of grain size and temperature on the mechanical deformation of nanocrystalline material:molecular dynamics simulation[J].Chinese Physics,2001,10(5):407-412.
    [73] Alder B J,Wainwright T E.Phase transition for a hardsphere system[J].Journal of Chemical Physics,1957,27:1208-1209.
    [74]赵贵哲,冯益柏,付一政,等.端羟基聚丁二烯/增塑剂共混物相容性的分子动力学模拟和介观模拟[J].化学学报,2009,67(19):2233-2238.
    [75] Trommsdorff U,Tomka I.Structure of amorphous starch 1.An atomistic model andχ-ray scattering study[J].Macromolecules,1995,28(18):28-37.
    [76] Yui T,Imada K,Shibuya N,et al.Conformation of an arabinoxylan isolated from the rice endosperm cell wall byχ-ray diffraction and a conformational analysis[J].Bioscience Biotechnology and Biochemistry,1995,59(6):965-968.
    [77] Robijn G W,Imberty A,Berg D J,et al.Predicting helical structures of the exopolysaccharide produced by Lactobacillus sake [J].Carbohydrate Research,1996,7(19):57-74.
    [78]姚雪霞.β环糊精和甾类化合物的分子动力学模拟[J].化学学报,2009,67(12):1318-1324.
    [79] Haxaire K,Braccini I,Milas M,et al.Conformational behavior of hyaluronan in relation to its physical properties as probed by molecular modeling[J].Glycobiology,2000,10(6):87-94.
    [80]孙玉敬.葡甘聚糖微结构的分子动力学模拟[D].福州:福建农林大学,2006.
    [81]唐胜春.葡甘聚糖/生物高分子复合膜及其在鲜切生菜上的应用[D].福州:福建农林大学,2009.
    [82]任艳丽,马力.山药仿生食品的工艺研究[J].四川食品与发酵,2006,(3):48-51.
    [83]李清春,张景强.仿生食品的研究概况[J].食品科学,2001,(1):20-21.
    [84]刘淑丽,刘通讯.食品仿生学的发展概况[J].四川食品与发酵,2003,(1):13-15.
    [85]屠用利.食品胶的应用与开发[J].食品工业,2004,(3):32-34.
    [86]胡国华.复合食品胶的研究及其在食品工业中的应用[A].中国食品添加剂生产应用工业协会,中国食品添加剂协会成立十周年暨第七届中国国际食品添加剂展览会学术论文集[C].广州:中国食品添加剂生产应用工业协会,2003,165-170.
    [87] Nkola W,Martin L B,Roger J W.The extraction of a glucanannan polysaccharide from konjac corms [J].Journal of the Science of Food and Agriculture,1993,61(4):429-431.
    [88] Zhang J,Wu D H.Characteristic of the aqueous solution of high DS carboxymethyl starch [J].Journal of Applied Polymer Science,1992,46(2):369-374.
    [89]王友选,朱晓康.羧甲基淀粉[J].淀粉与淀粉糖,1998(1):15-17.
    [90]张友松.变性淀粉生产与应用手册[M].北京:中国轻工业出版社,1999.
    [91] Pang J,Sun Y J.Studies on the effect of structure to property stability of glucomannan[J]. Journal of Structural Chemistry,2005,15(6):1061-1065.
    [92] GB/T 18104-2000.魔芋精粉[S].北京:国家林业局,2000.
    [93] NY/T 494-2002.魔芋粉[S].北京:中华人民共和国农业部,2002.
    [94]张秋云.3,5-二硝基水杨酸法测定魔芋精粉中葡甘露聚糖含量[J].中国民族民间医药,2008,(5):69-30.
    [95]毛杰.交联-羧甲基淀粉的制备及其理化特性研究[D].合肥:合肥工业大学,2005.
    [96]姚杰,包正,尤宏,等.羧甲基马铃薯淀粉的制备及性能研究[J].江苏食品与发酵,2004,(4):8-12.
    [97]张升晖,吴绍艳,颜益智,等.魔芋葡甘露聚糖纯化及性能研究[J].食品科学,2005,26(9):275-277.
    [98]武宗文,宋心远.羧甲基淀粉溶液透明度研究[J].东华大学学报(自然科学版),2006,32(6):107-110,115.
    [99]唐俊辉.分子聚集体中分子间相互作用的理论研究[D].北京:中国科学院,2001.
    [100]尹显锋,邬应龙,刘丹.魔芋葡甘露聚糖溶液透明度影响因素的初步研究[J].食品研究与开发,2006,27(2):21-23.
    [101] Ding Z L,Yoshida M,Zueten M,et al.A study on the deswelling behaviour of a thermoresponsive hydrogel prepared by radiation polymerization[J].Radiation Physics and Chemistry,1993,42(4-6):959-962.
    [102]杨书珍,史欣峰,潘思轶,等.魔芋-卡拉胶复配凝胶质构特性研究[J].天然产物研究与开发,2007,(19):404-407.
    [103] Yshinori.Recent advances in the understanding of egg white protein functionality[J].Trends in Food Science and Technology,1995,(6):87-95.
    [104]汪海波.低酯果胶的凝胶质构性能研究[J].食品科学,2006,27(12):123-130.
    [105]詹永,杨勇.复配魔芋粉凝胶特性的影响因素[J].中国食品添加剂,2005,(3):61-68.
    [106]廖勇诚,谢笔钧.魔芋葡甘聚糖-硼复配物研究[D].武汉:华中农业大学,2002.
    [107]汪超.魔芋葡甘聚糖与黄原胶物理组合的微细结构和构效关系[D].武汉:华中农业大学,2005.
    [108]车永真,范大明,陆建安,等.微波法快速提高蛋清粉凝胶强度及其机理的研究[J].食品工业科技,2008,(29):79-83.
    [109]陈欣,林丹黎.魔芋葡甘聚糖的性质、功能及应用[J].重庆工学院学报(自然科学版),2009,23(7):36-39.
    [110]庞杰,林琼,张甫生,等.魔芋葡甘聚糖功能材料研究与应用进展[J].结构化学,2003,22(6):633-642.
    [111]任艳丽,马力.山药仿生食品的工艺研究[J].四川食品与发酵,2006,(3):48-51.
    [112]刘淑丽,刘通讯.食品仿生学的发展概况[J].四川食品与发酵,2003,(1):13-15.
    [113]黄中伟.魔芋"鱿鱼”加工技术[J].贮藏加工,2000,(3):32.
    [114]姜梅,王善荣.魔芋仿生果肉的制作工艺研究与开发[J].食品与发酵工业,2003,29(9):111-113.
    [115]张甫生,阚健全,王雅立,等.魔芋仿生系列食品研究[J].中国食物与营养,2006,(11):41-42.
    [116]张水华,孙群社.食品感官鉴评(第二版)[M].广州:华南理工大学出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700