广域环境下的电网静态稳定性能态势评估研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电网互联范围的不断扩大、电力工业市场化体制改革的不断深入,以及大规模风光等可再生资源并网发电迅猛增长的趋势,使电网运行环境日益复杂,电网安全运行面临严峻挑战。广域测量系统(Wide Area Measurement System, WAMS)技术的成熟以及智能化电网的发展,为电网在线稳定性能态势评估以及预防性控制奠定了基础。目前,基于实测信息的在线稳定性能态势评估主要聚焦于两个方面:一是基于戴维南等效方法的静态电压稳定评估;二是基于实测轨迹的暂态功角稳定预估。虽然,电网静态稳定问题的确涉及功角和电压两个侧面,但二者在一定条件下又是辨证的统一。因此,面临新的形势,在广域环境下开展电网在线静态稳定性能态势评估的研究,具有重要的理论意义和工程应用价值。
     由此,实现“在线评估、实时决策”的电网监控框架,把握电网输电规律和静态稳定机理是根本。本文研究思路:在广域环境下,以戴维南等效方法为手段,从静态稳定角度出发,将电磁有功功率作为联系电压和功角两个侧面辨证统一关系的纽带,进而丰富电网静态稳定评估理论,有助于电网在线稳定监控的实施。本文的主要工作和创新成果如下:
     (1)将戴维南等效参数辨识归结为优化问题,提出一种基于轨迹灵敏度的戴维南等效参数迭代优化辨识方法。该方法以节点电压计算值平方与电压实测值平方的差最小为目标,待辨识参数的物理限制作为约束,数学模型简捷、易于快速求解。结合戴维南等效参数对节点电压的轨迹灵敏度,对辨识参数初值进行自适应变步长修正,进而提高参数辨识的精度和速度。仿真算例表明,所提方法具有自适应性强、辨识结果有效等特点,具备在线应用前景。
     (2)继承传统静态的功角稳定和电压稳定假设条件和概念,在相角和功率因数角δ-Ф空间上构造一种线性化的静态稳定边界域,并以此为基础,提出一种以节点稳定裕度为目标的定量化切负荷快速计算方法。基于局部量测信息获得各节点戴维南等效参数,即可直观展示各节点所处的稳定模式及相对稳定裕度,当节点稳定裕度较低时快速获得近似切负荷量,供调度员参考。这一方法间接避免了潮流计算和具体临界值的求取,从而弥补了传统方法在线应用中存在的求解规模、网络参数依赖、收敛性和计算速度等困境。仿真结果表明,该方法物理概念清晰、计算快速,适于在线应用。
     (3)基于两节点系统模型,推导了一定有功输送条件下,有功损耗和静态稳定裕度与功率因数角间关系的解析表达式。以此为基础,在二维坐标系下构造出反映这种关系的实时运行域,并提出3个新指标,用以快速预估节点无功补偿情况、指导无功优化目标的选择。实时跟踪辨识戴维南等效参数,可清晰确定当前运行状态下各节点近似所需无功补偿量及无功优化方向,从而为广域环境下的电网局部化无功补偿、控制及均衡化规划等提供了一种新的思路。
     (4)针对静态的功角稳定和电压稳定在概念和机理上尚未统一,给稳定分析与控制带来不便的情形。在前述研究工作的基础上,从动力学角度出发,提出电网静态稳定实质是电磁有功功率牵引下,“源-网-荷”功率转化过程中的平衡性思想。电压只是这一过程的支撑,本质上属于非线性系统输出变量的有界性问题,而与稳定性没有必然关系。广域环境下基于全参量灵敏度给出广义同步力矩系数的概念,使静态稳定评估理论得到扩展。另外,给出电压支撑量化指标,衡量电网对电压的支撑水平。理论研究与多场景算例分析表明了新判据的有效性和合理性,广域环境下有望实现电网稳定性能态势在线评估和预警。
     (5)将本文研究方法嵌入到山东电网AVC系统中,实现电网静态稳定性能态势在线评估。将小扰动分析法和本文的稳定裕度指标相结合,分析了风电并网对烟台电网稳定性能的影响。另外,将连续潮流与戴维南等效方法结合,针对山东电网2010年冬季实际预测数据,对多种运行方式下的静态稳定性能和无功补偿进行详细分析,为山东电网运行和规划提供有益参考。最后,面向调度中心监控主站,介绍了“电网静态稳定监控与预警系统”的框架体系和设计理念,并完成相应功能模块的开发,可进一步扩展智能调度支持系统的稳定监控功能。
     综上所述,本文基于电网实测或仿真信息,就戴维南等效参数辨识、静态稳定域、定量化切负荷、局部化无功补偿、广义静态稳定统一判据等方面进行了比较全面的研究和探索。并提出了相应的模型和方法,经算例仿真和实际电网应用得到比较有效的验证。当然,在实际应用中还有若干细节问题需要深入研究,以便在理论和实践上得到进一步丰富、发展和完善。
With the continuous expansion of power system interconnected range, the continuous development of power industry market reformation, and the rapid growth trend in large-scale renewable resources of power generation including wind energy, optical energy, etc, the power system running environment faces increasingly complex situation and the operation safety faces serious challenges. The maturity of wide-area measurement system (WAMS) technology and the development of smart power grid lay a foundation for on-line stability situation assessment and preventive control in power system. Currently, the on-line stability situation assessment, which bases on measured information, focuses mainly on two aspects:first, the static voltage stability situation assessment based on Thevenin equivalent method; second, the transient angle stability assessment based on measured power angle trajectory. Although the static stability of power system indeed involves two sides, voltage and power angle, the two are a dialectical unity under certain conditions. Consequently, facing the new situation, carrying out the study of on-line static stability situation assessment for power system under the wide-area environment, has important theoretical significance and engineering application value.
     Thus, the power transmission rules and the static stability mechanism is the fundamental to realize the "on-line assessment and real-time decision-making" power system monitoring framework. Under the wide-area environment, this thesis used Thevenin equivalent method as the means, and from the static stability point of view, the electromagnetic active power as a link to contact voltage and angle as a dialectical unity. Thus, the power system stability analysis theory is enriched, which contributes to the on-line stability monitoring implementation. The main research work and innovation of this thesis are shown as follows:
     (1) Formulating the identification of Thevenin equivalent parameters as an optimization problem, an iterative optimized identification method of Thevenin equivalent parameters based on trajectory sensitivity is proposed. Its objective is to minimize the difference between the square of calculated voltage and the one of the measured voltage, and its constraint is the physical limitations of identified parameters, which is simple and reliable to compute. The initial value of the identification parameter is adaptively step-changing adjusted based on the trajectory sensitivity of the equivalent parameters to the node voltage, which improves the identification precision. The simulation demonstrates the effectiveness and practicality of the proposed method, which has the prospect of application in real-time power system.
     (2) Inheriting the traditional static angle stability and voltage stability assumptions and concepts, a static stability region is constructed in the space of phase angle and power-factor angle (δ-φ). Based on this, a fast calculation method for quantitative load shedding is proposed, in which the node stability index is taken as an object. Based on local measurement information, the Thevenin equivalent parameters of each node can be acquired, so the stability patterns and the relative stability margin can be directly demonstrated. When the stability margin is at low degree, the approximate load-shedding can be quickly calculated for dispatcher to refer to. The method can indirectly avoid the calculation of power flow and specific critical value, and compensate for the defects of traditional method in the aspects of system scale, network parameters dependence, convergence and speed of calculation. Simulation results show the validity of this method, which has explicit physical meaning, requires less computation work and has the prospect of application in real-time stability assessment and preventive control of power system operating condition.
     (3) Based on Thevenin equivalent parameters, the analytical expression formulas of active power loss and static voltage stability related to power-factor angle under certain active power model are derived in this paper. According to these formulas, a real-time region reflecting the relationship between active power loss and static voltage stability margin is constructed in a two-dimensional coordinate system. Three new reference indexes are proposed, based on which node reactive power compensation can be quickly estimated and the objective of optimal reactive power flow can be chosen. Real-time tracking the Thevenin equivalence parameters, the reactive power compensation and optimizing direction of node can be confirmed clearly. The method provides a new idea for localized reactive power compensation, control and equalization planning under the wide-area environment.
     (4) The concepts of static angle stability and static voltage stability are inconsistent, which brings inconvenience to stability analysis and control. From the dynamics views, this thesis argues that the essence of the power system static stability is the balance during the source-network-load power transformation process, while voltage is just a physical quantity which supports the conversion process. And the value of voltage has not necessary internal relationship with system static stability, and it is just boundedness as a non-linear power system output variable. Therefore, this thesis deduces the maximum system active power transmission capability, and its semi-circular boundary in R-X coordinate system. Based on comprehensive physical parameter sensitivities, stability criterion of generalized synchronous torque coefficient, which expanded the static stability theory, is also presented in this paper. In addition, the voltage support level index is also given to measure system voltage support capability. Theory analysis and various simulation examples show the validity and rationality of the newly developed criterion, and it is expected to realize on-line stability monitoring in power system based on wide-area measurement system.
     (5) This thesis method has been embedded in Power Grid AVC system to realize on-line static stability situation evaluation. Combined the small single analysis and the stability index to analyze the stability performance of wind power to Yantai Power Grid. In addition, with continuation power flow and with the Thevenin equivalent, the static voltage stability and reactive power compensation analysis and research of variety Shandong Power Grid operation ways in the year of 2010 winter actual projections data is presented, the research results can give useful reference for Shandong Power Grid operation and planning. Finally, facing the dispatch center monitoring, It has introduced the frame and design concept of the "static stability of power system monitoring and early warning system", and has completed the corresponding function module development that will further expand the monitoring function of the intelligent scheduling support system.
     In summary, based on the power system measured or simulation information, this thesis has completed comprehensive research and exploration in the Thevenin equivalent parameters identification, the static stability margin, the quantitative load-shedding, the localized reactive power compensation, generalized static stability criterion and so on. And put forward the corresponding models and methods, the availability is effective verified by numerical simulation and practical power system applications. Of course, there are several details that need further research in practical applications, so that the theory and practice can be further enriched, developed and improved.
引文
[1]刘有飞,李政,刘镭.电网互联和电力市场运营下的电网稳定安全运行对策研究.华中电力,2009,5(22):13-15.
    [2]张晋华,蒋卫平,印永华.特高压规划电网安全稳定性研究.中国电机工程学报.2008,28(22):64-68.
    [3]张丽英,叶廷路,辛耀中,等.大规模风电接入电网的相关问题及措施.中国电机工程学报,2010,30(25):1-9.
    [4]韩祯祥,曹一家.电力系统的安全性及防治措施.电网技术,2004,28(9):1-6.
    [5]甘德强,胡江溢,韩祯祥.2003年国际若干停电事故思考.电力系统自动化,2004,28(3):1-4.
    [6]薛禹胜.时空协调的大停电防御框架:(一)从孤立防线到综合防御.电力系统自动化,2006,30(1):8-16.
    [7]陈向宜,陈允平,李春艳,等.构建大电网安全防御体系-欧洲大停电事故的分析及思考.电力系统自动化,2007,31(1):4-8.
    [8]薛禹胜.时空协调的大停电防御框架(二):广域信息、实时量化分析和自适应优化控制.电力系统自动化,2006,30(2):1-10.
    [9]Milosevic B, Begovic M M. Voltage-stability protection and control using a wide-area network of phasor measurements. IEEE Transactions on Power Systems,2003,18(1):121-127.
    [10]林伟芳,孙华东,汤涌,等.巴西“11·10”大停电事故分析及启示.电力系统自动化,2010,34(7):1-5.
    [11]K. E. Martin. IEEE standard for synchrophasors for power systems. IEEE Tram. on PD,1998,13(1):73-77.
    [12]XIE Xiaorong, XIN Yaozhong, XIAO Jinyu, et al. WAMS applications in Chinese power systems. IEEE Power and Energy Magazine,2006,4(1): 54-63.
    [13]罗建裕,王小英,鲁庭瑞等.基于广域测量技术的电网实时动态监测系统应用.电力系统自动化,2003,27(24):78-80.
    [14]王英涛,印永华,蒋宜国等.我国实时动态监测系统的发展现状及实施策略研究.电网技术,2005,29(11):44-48.
    [15]Nuqui R F, Phadke A G, Schulz R P, et al, Fast on-line voltage security monitoring using synchronized phasor measurements and decision trees, IEEE Power Engineering Society Winter Meeting,2001,3:1347-1352.
    [16]Larsson M, Karlsson D, System protection scheme against voltage collapse based on heuristic search and predictive control, IEEE Trans on Power Systems,2003,18(3):1001-1006.
    [17]赵庆生,刘笙,陈陈,等.基于相量测量与能量分析的在线失稳预警.电力系统自动化,2003,27(14):9-12.
    [18]刘道伟,谢小荣,穆刚,等.基于同步相量测量的电力系统在线电压稳定指标.中国电机工程学报,2005,25(1):13-17.
    [19]毛安家,郭志忠,张学松.一种基于广域测量系统过程量测数据的快速暂态稳定预估方法.中国电机工程学报,2006,26(17):38-43.
    [20]秦晓辉,毕天姝,杨奇逊.基于WAMS的电力系统机电暂态过程动态状态估计.中国电机工程学报,2008,28(7):19-25.
    [21]Liu C W, Thorp J S. New method for computing power system dynamic response for real-time transient stability prediction. IEEE Trans on Circuit and Systems-I:Fundamental Theory and Applications,2000,47(3):324-337.
    [22]AMIN S M, WOLLENBERG B F. Towards smart grid. IEEE Power & Energy Magazine,2005,3(5):34-41.
    [23]European Technology Smart Grids Platform. Smart Grids.-vision and strategy for European electricity network of the future [EB/OL]. [2009-08-01]. http://www. smartgrids. eu/documents/vision, pdf.
    [24]刘振亚.大会主旨报告:大力发展特高压技术推动能源利用方式创新与变革//2009特高压输电技术国际会议.2009年5月20日-22日,北京.
    [25]余贻鑫,栾文鹏.智能电网述评.中国电机工程学报,2009,29(34):1-8.
    [26]张伯明,孙宏斌,吴文传,等.智能电网控制中心技术的未来发展.电 力系统自动化,2009,33(17):21-28.
    [27]刘俊勇,沈晓东,田立峰,等.智能电网下可视化技术的展望.电力自动化设备,2010,30(1):7-13.
    [28]Kessel P, Glavitsch H. Estimating the voltage stability of power system. IEEE Trans on PWRS,1986,1(3):374-375.
    [29]Chung T S, Fu Y. A fast voltage security assessment method via extended ward equivalent and neural network approach. IEEE Power Engineering Review,1999,19(10):40-43.
    [30]柳焯.基于节点阻抗解析的电压稳定性评估.中国电机工程学报,1999,19(11):64-68.
    [31]Vu K, Begovic M M, et al. Use of local measurement to estimate voltage stability margin. IEEE Trans on PWRS,1999,14(3):1029-1035.
    [32]徐冰亮,柳焯,王永刚,等.电网负荷节点临界阻抗模的性质及意义.哈尔滨工业大学学报,1999,31(4):91-95.
    [33]刘宝柱,于继来.基于阻抗动态部进的PVZ曲线快速求解.中国电机工程学报,2004,24(9):104-109.
    [34]李兴源,王秀英.基于静态等值和奇异值分解的快速电压稳定性分析方法.中国电机工程学报,2003,23(4):1-4.
    [35]邱晓燕,王兴源,王建,等.电力系统实时等值及电压稳定性分析.电网技术,2004,28(7):7-9.
    [36]王冰,游振华,韩学军,等.考虑负荷静态特性的重负荷节点静态电压稳定分析.继电器,2007,35(11):21-25.
    [37]安天瑜,周苏荃.基于戴维南等值参数的电压失稳概率解析.哈尔滨工程大学学报,2008,29(3):237-241.
    [38]李连伟,吴政球,钟浩,等.基于节点戴维南等值的静态电压稳定裕度快速求解.中国电机工程学报,2010,23(4):1-4.
    [39]汤涌,林伟芳,孙华东,等.基于戴维南等值跟踪的电压失稳和功角失稳的判别方法.中国电机工程学报,2009,29(25):1-6.
    [40]Fusco G, Losi A, Russo M. Constrained least squares methods for parameter tracking of power system steady-state equivalent circuits. IEEE Trans on Power Delivery,2000,15(3):1073-1080.
    [41]王漪,柳焯.基于戴维南等值的系统参数跟踪估计.电网技术,2000,24(11):28-30.
    [42]李娟,刘修宽,曹国臣,等.一种面向节点的电网等值参数跟踪估计方法的研究.中国电机工程学报,2003,23(3):30-33.
    [43]李来福,于继来,柳焯.戴维南等值跟踪的参数漂移问题研究.中国电机工程学报,2005,25(20):1-5.
    [44]李来福,柳进,于继来,等.节点戴维南等值参数在线跟踪简捷算法.中国电机工程学报,2006,26(10):40-44.
    [45]汤涌,孙华东,易俊,等.基于全微分的戴维南等值参数跟踪算法.中国电机工程学报,2009,29(13):48-53.
    [46]罗华伟,吴政球,戴庆华,等.电网戴维南等值参数的快速计算.中国电机工程学报,2009,29(1):33-39.
    [47]赵金利,余贻鑫.基于本地相量测量的电压失稳指标工作条件分析.电力系统自动化,2006,30(24):1-4.
    [48]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析.北京:清华大学出版社,2002:133-234.
    [49]彭志炜,胡国根,韩祯祥.电力系统临界电压稳定与功角稳定极限分析.电网技术,1997,21(5):16-19,27.
    [50]周晓渊,邱家驹,陈新琪.高压侧电压控制对单机无穷大系统稳定性的影响.中国电机工程学报,2003,23(1):60-63.
    [51]武诚,徐政,常勇.高压侧电压控制对电力系统小扰动稳定性的影响.电工技术学报,2009,24(1):146-152.
    [52]顾伟,蒋平,唐国庆.提高电力系统小扰动稳定性的最优分岔控制策略.电力自动化设备2007,27(10):29-33.
    [53]徐昊,马进,付红军,等.负荷模型不确定性对多机系统小扰动稳定的影响分析.电力系统自动化,2010,34(21):17-20.
    [54]XIE Huan, ZHANG Baohui, LI Yinghui. A variable structure trajectory predictive algorithm based on transform for complex exponential times series//Proceedings of Transmission and Distribution Conference & Exhibition:Asia and Pacific, August 14-15,2005, Dalian, China.
    [55]谢欢,张保会,于广亮,等.基于轨迹几何特征的暂态不稳定识别.中国电机工程学报,2008,28(4):16-22.
    [56]卢芳,于继来.基于广域相量测量的暂态稳定快速评估方法.电力系统自动化,2010,34(8):24-28.
    [57]竺炜,陶琼,周有庆.基于弹性力学空间映射的发电机静态功角稳定分析.中国电机工程学报,2010,30(19):44-50.
    [58]周双喜,朱凌志,郭锡玖等.电力系统电压稳定性及其控制.北京:中国电力出版社,2004.
    [59]Tamura Y, Mori H, 1wamoto S. Relationship between voltage instability and multiple load flow solutions in electric power systems. IEEE Transactions on Power Apparatus and Systems,1983, PAS-102(5):1113-1125.
    [60]Chiang Hsiao-Dong, Shah K S, Balu N. CPFLOW:a practical tool for tracing power system steady-state stationary behavior due to load and generation variations. IEEE Transactions on Power Systems,1995,10(2):623-633.
    [61]赵晋泉,王毅,李可文,等.一种基于连续潮流的在线静态稳定综合评估方法.电力系统自动化,2010,34(4):18-22.
    [62]Chiang Hsiao-Dong, Rene Jean-Jumeau. A more efficient formulation for computation of the maximum loading points in electric power system. IEEE Transactions on Power Systems,1995,10(2):633-645.
    [63]江伟,工成山,余贻鑫,等.直接计算静态电压稳定临界点的新方法.中国电机工程学报,2006,26(10):1-6.
    [64]韦化,丁晓莺.基于现代内点理论的电压稳定临界点算法.中国电机工程学报,2002,22(3):27-31.
    [65]Rider M J, Castro C A, Paucar V L, et al. Higher order interior-point method for minimizing load-shedding in a competitive electric power market. IEE Proceedings-Generation, Transmission and Distribution,2004,151(4): 433-440.
    [66]Feng Zhihong, Ajjarapu V Maratukulam D J. A comprehensive approach for preventive and corrective control to mitigate voltage collapse. IEEE Transactions on Power Systems,2000,15(2):791-797.
    [67]李国庆,王威,贾伟,等.于负荷裕度灵敏度的电压稳定控制方法.电机与控制学报,2002,6(2):173-178.
    [68]Flueck AJ, Gonella R, Dondeti J R. A new power sensitivity method of ranking branch outage contingencies for voltage collapse. IEEE Transactions on Power Systems,2002,17(2):263-270.
    [69]马平,蔡兴国.估计支路型事故后系统电压稳定边界的灵敏度算法.中国电机工程学报,2008,28(1):18-22.
    [70]P. A. Lof, G. Andersson, and D. J. Hill. Voltage Stability Indices for Stressed Power Systems. IEEE Transaction on Power Systems, Vol.8, No.1, Feb.1993,326-335.
    [71]冯治鸿,刘取,倪以信,黄眉.多机电力系统电压静态稳定分析-奇异值分解法.中国电机工程学报,1992,12(3):10-19.
    [72]B. Gao, G. K. Morison, and P. Ktmdar. Voltage Stability Evaluation Using Modal Analysis. IEEE Transactions on Power Systems, Vol.7, No.4, Nov.1992,1529-1543.
    [73]周双喜,姜勇,朱凌志.电力系统电压静态稳定性指标评述.电网技术,2000,25(1):1-6.
    [74]Kessel P, Glavitsch H. Estimating the voltage stability of a power system. IEEE Transactions of Power Delivery,1986,3(3):346-354.
    [75]Lof P A, Smed T, Anderson G, et al. Fast calculation of a voltage stability index. IEEE Transactions on Power Systems,1992,7(1):54-64.
    [76]袁骏,段献忠,何仰赞,等.电力系统电压稳定灵敏度分析方法综述.电网技术,1997,21(9):7-10.
    [77]Tamura T, Sakamoto K, Tayama Y. Current issues in the analysis of voltage instability phenomena. Proceedings of Bulk Power System Voltage Phenomena-Voltage Stability and Security, EL-6183, EPRI, January 1989.
    [78]Canizares C A, Alvarado F L. Point of collapse and continuation methods for large ac/dc systems. IEEE Transactions on Power Systems,1993,8(1):1-8.
    [79]Yu Yixin. Security region of bulk power system. Proceedings of International Conference on Power System Technology,Kunming, China,2002:13-17.
    [80]王刚,张雪敏,梅生伟.静态电压稳定域边界的二次近似分析.中国电机工程学报,2008,28(19):30-35.
    [81]王刚,张雪敏,梅生伟.基于随机优化的割集空间电压稳定域可视化.电力系统自动化,2008,32(2):1-5.
    [82]贾宏杰,穆云飞,孙建伟,等.基于微扰的割集电压稳定域局部边界求解方法.电力系统自动化,2009,33(18):1-5.
    [83]段献忠,包黎晰.电力系统电压稳定分析和动态负荷建模.电力系统自动化,1999,23(19):23-28.
    [84]Borghetti A, Caldon R, Mari A, et al. On dynamic load models for voltage stability studies. IEEE Transactions on Power Systems,1997,12(1):293-299.
    [85]孙华东,周孝信.计及感应电动机负荷的电力系统在线电压稳定指标.中国电机工程学报,2006,26(6):1-6.
    [86]林舜江,李欣然,刘杨华.考虑负荷动态模型的在线小干扰电压稳定指标.电力系统自动化,2008,32(9):23-29.
    [87]汤涌,仲悟之,孙华东,等.电力系统电压稳定机理研究.电网技术,2010,34(4):24-29.
    [88]廖其龙,颜伟,刘欢,等.负荷失稳的有界性分析及其与电压稳定的关系.电力系统自动化,2010,34(3):38-43.
    [89]Capitanescu F, Van Cutsem T. Preventive control of voltage security margins:A multi-contingency sensitivity based approach. IEEE Transactions on Power Systems,2002,17(2):358-364.
    [90]郭瑞鹏,吴浩,韩祯祥,等.在线多预想故障静态电压崩溃预防控制.中国电机工程学报,2006,26(19):1-6.
    [91]Veckatesh B, Sandasivam G, Khan M A. Optimal reactive power planning against voltage collapse using the successive multi-objective fuzzy LP technique. IEEE Proceedings:Generation, Transmissionand Distribution, 1999,146(4):343-348.
    [92]Lin X, David A K, Yu C W. Reactive power optimization with voltage stability consideration in power market system. IEE Proceedings:Generation, Transmission and Distibution,2003,150(3):303-310.
    [93]Venkatesh B, Sadasivam G, Khan M A. A new optimal reactive power scheduling method for loss minimization and voltage stability margin maximization using successive multi-objective fuzzy LP technique. IEEE Trans, on Power Systems,2000,15(2):844-851.
    [94]戴剑锋,周双喜,鲁宗相,等.基于风险的电力系统无功优化问题研究.中国电机工程学报,2007,27(22):38-43.
    [95]SANCHAJL, FERNANDEZ J L. Secondary voltage control:analysis, solutions and simulation results for the Spanish transmission system. IEEE Trans on Power Systems,1996,11(2):630-638.
    [96]郭庆来,孙宏斌,张伯明,等.江苏电网AVC主站系统的研究和实现.电力系统自动化,2004,28(22):83-87.
    [97]丁晓群,黄伟,章文俊,等.基于电压控制区的主导节点电压校正方法.电网技术,2004,28(14):44-48.
    [98]August 14,2003 Outage Sequence of Events, U. S./Canada Power Out-age Task Force 2003.9.
    [99]周孝信,郑健超,沈国荣,薛禹胜.从美加东北部电网大面积停电事故中吸取教训.电网技术,2003,27(9):TI.
    [100]薛禹胜,徐伟,DongZhaoyang,等.关于广域测量系统及广域控制保护系统的评述.电力系统自动化,2007,31(15):1-5.
    [101]Milosevic B, Begovic M. Voltage-stability protection and control using a wide-area network of phasor measurements. IEEE Transactions on Power Systems,2003,18(1):121-127.
    [102]Gong Yangfeng, Schulz N, Guzman A. Synchrophasor-based real-time voltage stability index.2006 IEEE Power Systems Conference and Exposition, Atlanta, USA,2006.
    [103]Balamourougan V, Sidhu T S, Sachdev M S. Technique for online prediction of voltage collapse. IEE Proceedings:Generation, Transmission and Distribution,2004,151(4):453-460.
    [104]汪洋,卢继平,李文沅,等.基于局部网络电压相量的等值模型及其电 压稳定性指标.中国电机工程学报,2008,28(34):53-58.
    [105]廖国栋,王晓茹.利用局部区域量测的电压稳定在线监测.中国电机工程学报,2010,30(4):56-61.
    [106]艾琳,姜彤,杨以涵.基于节点导纳矩阵形式的在线电压稳定分析.中国电机工程学报,2010,30(22):51-56.
    [107]Nguyen T B, Pai M A. Dynamic security-constrained rescheduling of power systems using trajectory sensitivities. IEEE Transactions on Power Systems, 2003,18(2):848-854.
    [108]房大中,秦益飞.应用轨迹灵敏度计算临界切除时间新方法研究.中国电机工程学报,2005,25(14):7-11.
    [109]贺仁睦,郑晓雨,马进,等.基于轨迹灵敏度的负荷参数辨识范围调整方法.电力系统自动化,2009,33(13):17-21.
    [110]Tao He, Sharma Kolluri, Sujit Mandal, et al. Identification of weak locations in bulk transmission systems using voltage stability margin index.8th International Conference on Probabilistic Methords Applied to Power Systems, Iowa State University, Ames, Iowa, September 12-16,2004: 878-882.
    [111]傅旭,王锡凡.一种新的节点静态电压稳定指标及切负荷算法.电网技术,2006,30(10):8-12,17.
    [112]段俊东,郭志忠.一种可在线确定电压稳定运行范围的方法.中国电机工程学报,2006,26(4):113-118.
    [113]LIN C M, VITTAL V, KLIEMANN W. Investigation of modal interaction and its effects on control performance in stressed power systems using normal forms of vector fields[J]. IEEE Transaction on Power Systems,1996,11(2): 781-787.
    [114]孙华东,汤涌,马世英.电力系统稳定的定义与分类述评.电网技术,2006,30(17):31-35.
    [115]张芳.电力系统动态电压稳定控制算法研究(博士学位论文).天津大学,2007:3-19.
    [116]刘道伟,韩学山,王勇,等.在线电力系统静态稳定域的研究及其应用.中 国电机工程学报,2009,29(34):42-49.
    [117]张艳萍.受端系统小扰动电压稳定问题的研究(博士学位论文).华北电力大学(北京),2008:53-85.
    [118]冯治鸿,刘取,倪以信.多机电力系统电压动态稳定性的分析研究.中国电机工程学报,1992,12(3):29.39.
    [119]Lee B, Ajjarapu V. A piecewise global small-disturbance voltage stability analysis of structure preserving power system models. IEEE Transactions on Power Systems,1995,10(4):1963-1971.
    [120]ZhuT X, Tso S K, Lo K L. An investigation into the OLTC effects on voltage collapse. IEEE Transactions On Power Systems,2000,15(2):513-521.
    [121]Cutsem T V, Grenier M E, Lefebvre D. Combined detailed and quasi steady-state time simulations for large-disturbance analysis. Electrical Power and Energy Systems,2006,28:634-642.
    [122]Guedes R B, Martins AC, Alberto L F, et al. An extended energy function for voltage collapse analysis considering voltage dependent load models.2003 IEEE Bologna Power Tech Conference, Bologna, Italy,2003.
    [123]王开鹏,张毅威,陈磊,等.基于伴随系统理论的静态电压稳定鞍结分岔点计算.电力系统自动化,2009,33(14):7-11.
    [124]Y. Xue, Th. Van Cutsem, M. Ribbens-Pavella. Extended equal area criterion justifications, generalizations, applications. IEEE Transactions on Power Systems,1989,4(1):44-52.
    [125]汤涌,林伟芳,孙华东,等.考虑负荷变化特性的电压稳定判据分析.中国电机工程学报,2010,30(16):12-18.
    [126]C. W. Taylor. Power system voltage stability. EPRI Power System Engineering Series, McGraw Hill,1994.
    [127]韩学山,杨明,张利.价值调度推进智能化电网发展的思考.电力系统自动化,2010,34(2):5-9,74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700