35CrMo高强度钢在海洋大气中的氢渗透行为与环境致脆机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋大气腐蚀环境是海洋腐蚀环境之一。金属材料在海洋大气环境下会发生环境敏感断裂。在环境敏感断裂中,氢脆是其中的一个重要类型。氢脆是合金中存在过量的氢,并在拉应力协同作用下造成的一种脆断。氢渗透已被证明是金属材料失效的主要原因之一。氢脆导致了材料强度降低,在较低载荷下会导致材料的灾害性破坏,因此研究海洋用钢在海洋大气中的致脆机制与氢渗透行为是十分必要的。本文所做工作主要有以下几点:
     一、采用Devanathan-Stachurski氢渗透技术,研究了35CrMo高强度钢未受力试样在海洋大气腐蚀环境中的氢渗透及腐蚀失重行为。主要分为两个部分:(1)干湿循环实验;(2)模拟海洋大气腐蚀实验。实验结果表明,在海洋大气腐蚀环境中,35CrMo高强度钢存在着明显的氢渗透现象,在不同腐蚀环境中现象有所不同。Cl-离子、H2S、SO2等污染物对氢渗透产生了明显的促进作用。另外,氢渗透量与腐蚀失重存在着明显的线性关系。
     二、采用慢应变速率拉伸实验法(SSRT),在海洋大气腐蚀环境中对35CrMo试样进行力学性能测试,研究氢渗透对35CrMo应力腐蚀开裂敏感性的影响。实验结果表明,在各种腐蚀条件下,氢渗透会增加35CrMo的应力腐蚀开裂敏感性,使得最大载荷、断裂时间及应变值均减小。
     三、采用Devanathan-Stachurski氢渗透技术与慢应变速率拉伸实验法,进行了35CrMo高强度钢受力试样在海洋大气环境中的氢渗透实验,研究材料形变对氢渗透的影响。实验结果表明,在弹性变形阶段,氢渗透电流逐渐增大,在塑性变形阶段开始后,氢渗透逐渐减小,在塑性变形阶段后期,随着形变的增大,氢渗透电流增大。
Marine atmospheric corrosion environment is one of the marine corrosion environment. Metal and its alloy can occur environment sensitive fracture in marine atmosphere. Hydrogen embrittlement(HE) is one of the important forms of the environment sensitive fracture and it is induced by the interaction of the extra hydrogen in the metal and the stress. It is confirmed that hydrogen permeation is one of the primary causations of the metal failure. Hydrogen embrittlement makes the material strength descend and brings the disastrous accident. It is necessary to research the embrittlement mechanism and the hydrogen permeation behaviors of the metals in marine atmosphere. The research works are listed in below:
     1. The hydrogen permeation behaviors and corrosion weight losses of 35CrMo specimens with no stress were researched by using Devanathan-Stachurski’s hydrogen permeation technique. This research works were composed with two parts. (1) the wet– dry cycle experiments; (2) the simulated marine atmosphere experiments. Experimental results showed that obvious hydrogen permeation behaviors can be observed and differed with the experimental conditions. Cl- ions, H2S and SO2 promoted the hydrogen permeation obviously. There was a clear linear correlation between the amount of hydrogen permeated and the corrosion weight loss.
     2. The effect of hydrogen permeation to the environment sensitive fracture of 35CrMo in the marine atmosphere environment was researched by using slow strain rate tensile test(SSRT). Experimental results showed that hydrogen permeation can increase the degree of environment sensitive fracture of 35CrMo and made the maximum load, fracture time and the strain of the specimens descend.
     3. The effect of the stress to the hydrogen permeation behavior in marine atmospheric corrosion environment was researched by using Devanathan-Stachurski’s hydrogen permeation technique and slow strain rate tensile test. Experimental results showed that, hydrogen permeation current increased with stress under elastic deformation range, the earlier period of the plastic deformation, while decreased with the onset of plastic deformation and then reached a critical point after which increased.
引文
[1] Rozenfeld I L. Atmosphetic corrosion of metals. Houston: NACE, 1972.
    [2] Barton K. Protection against atmospheric corrosion. London: Wiley, 1976.
    [3] Ailor W H, ed. Atmospheric corrosion. New York: Wiley, 1982.
    [4] COBURN k, ed. Atmospheric factors affecting the corrosion the engineering metals. ASTM STP 646. ASTM, Philadelphia: 1978.
    [5] Dean S W, Rhea E C, ed. Atmospheric corrosion of metals. ASTM STP 767. ASTM, Philadelphia: 1982.
    [6] Dean S W, Lee S, ed. Degradation of metals in the atmosphere. ASTM STP 965. ASTM, Philadelphia: 1988.
    [7] Kirk W W. Lawsen H H, ed. Atmospheric corrosion. ASTM STP 1239. ASTM, Philadelphia: 1995.
    [8] Johansson L G. The corrosion of steel in atmospheres containing small amount of SO2 and NO2, 9th Intern. Cong. on metallic corrosion. Toronto: 1984, 1: 407-411.
    [9] Oesch S. The effect of SO2, NO2, NO and O3 on corrosion of unalloyed carbon seel and weathering steel-the Results of laboratory exposure. Corros. Sci., 1996, 38(8): 1357-1368.
    [10] Oesch S. Faller M. Environmental effects on materials: the effect of the air pollutants SO2, NO2, NO and O3 on the corrosion of copper, zinc and aluminum. A short literature survey and results of laboratory exposures. Corro. Sci., 1997, 39(9): 1505-1530.
    [11] Svensson J E, Johansson L G. A laboratory study of the the effect of ozone, nitrogen dioxide and sulfur dioxide on the atmospheric corrosion of zinc. J. Electrochem. Soc., 1993, 140(8): 2210-2216.
    [12] Tidblao J, Leygraf C. Atmospheric corrosion effects of SO2 and NO2, A comparation of laboratory and field-exposed copper. J. Electrochem. Soc., 1995, 142(3): 749-756.
    [13] Zakipour S, Tidblad J, Legraf C. Atmospheric corrosion of SO2 and O3 on laboratory-exposed copper. J. Electrochem. Soc., 1995, 142(3): 757-760.
    [14] Strandberg H, Johansson L G, Lindqvist O. The atmospheric corrosion of statue bronzens exposed to SO2 and NO2. Werkst. Korros., 1997. 48(11): 721-730.
    [15] Zakipour S, Atmospheric corrosion effects of SO2, NO2 and O3, A comparison of laboratory and field-exposed nickel. J. Electrochem. Soc., 1997, 144(10): 3513-3517.
    [16] Kucera V, et al. Materials damage caused by acidifying air pollutants-4 year result from an international exposure program within UNECE. 12th International Corrosion Congress. 1993, 2:494-508.
    [17] Cox A, Lyon L B. An electrochemical study of the atmospheric corrosion of mild steel, III-the effect of sulphur dioxide. Corro. Sci., 1994, 36(7): 1193-1199.
    [18] Persson D, Leygraf L. Initial interaction of sulphur dioxide with water covered metal surfaces: an in-situ IRAS study. J. Electrochem. Soc., 1995, 142(5): 1459-1468.
    [19] Morcillo M, chiro B, Otero E, et al. Effect of marine aerosol on atmospheric corrosion. Mater. Perform., 1999, 38(4): 72-77.
    [20] Cole. I S, Patterson D A, Furman S A, et al. A holistic approach to modeling atmospheric corrosion. 14th ICC. Cape Town: 1999. 265.
    [21] Arroyave C, Lopez F A, Morcillo M. The early atmospheci corrosion stages of catbon steel in acidic fogs. Corro. Sci., 1995, 37(11)1751-1761
    [22] Svensson J E, Johansson L G. The synergistic effect of hydrogen sulfide and nitrogen dioxide on the atmospheric corrosion of zinc. J. Electrochem. Soc., 1996, 143(1): 51-58.
    [23] Abott W H. Corrosion of electrical contacts: review of flowing mixed gas test developments. Br. Corros. J., 1989, 24(2): 153-159.
    [24] skerry B S. Johnson J B, Wood G C, et al. Corrosion in smoke. Hydrocarbon and SO2 polluted atmosphere, I, II, III. Corro. Sci., 1988, 28(7): 657-740.
    [25] Joel S Patton, Karl Wolf. Fire and smoke corrosivity of metals. Mater. Perform., 1992, 31(5): 46-49.
    [26] Bawden R J, Ferguson J M. Trend in materials degradation rates in the Uk. Industrial Corrosion., 1989, 7(8): 9-15.
    [27] Lobning R E, Jankosk C A. Atmospheric corrosion of copper in the presence of ammonium sulfate particles. J. Electrochem. Soc., 1998, 145(3): 946-956.
    [28] Lobning R E, Siconolfi D J, et al. Atmospheric corrosion of aluminum in the presence of ammonium sulfate particles. J. Electrochem. Soc., 1996, 143(4): 1175-1182.
    [29] Lobning R E, Siconolfi D J, et al. Atmospheric corrosion of zinc in the presence of ammonium sulfate particles. J. Electrochem. Soc., 1996, 143(5): 1539-1546.
    [30] Dean S W, Reiser D B. Time of wetness and dew formation: A model of atmospheric heat transfer. ASTM STP 1239. ASTM, Philadelphia: 1995. 3-10
    [31] Cole I S, Ganther W D, Norberg P. A new approach to predicating wetness on a metal surface and its implication on atmospheric corrosion. 14th ICC. Cape Town. South Africa: 1999. 394.
    [32] Tibdlad J, Mikhailov A A, Cicero V. A model for calculation of time of wetness using relative humidity and temperature data. 14th ICC. Cape Town. South Africa: 1999. 337.
    [33] 梁彩风,郁春娟,张晓云.海洋大气及污染海洋大气对典型钢腐蚀的影响[J].海洋科学,2005,29(7):42.
    [34] 廖国栋,吴国华,苏少燕.金属材料暴露试验与人工加速试验腐蚀速率的研究[J].环境试验.2005, 12: 13.
    [35] I Dehri, M Erbil. The effect of relative humidity On the atmospheric corrosion of defective organic coating materials-an EIS study with anew approach[J].Corrosion Science, 2000, 42: 969.
    [36] 朱惠斌, 黄燕萍. 海洋大气环境中钢铁表面的防腐蚀[J]. 全面腐蚀控制,2003, 17(4): 26.
    [37] K P Trethewey, J Chamberlain. Corrosion for science engineering[M]. Second edition, England: Associated Companies throughout the world. 1995.
    [38] 夏兰廷,黄桂桥,张三平等.金属材料的海洋腐蚀与防护[M]. 北京:冶金工业出版社, 2003, 3.
    [39] Sehumacher M. Seawater Corrosion Handbook[M]. USA, New Jersey: Park Ridge, 1979, 2.
    [40] 刘刚,张奎志,曲政等.某滨海电厂钢结构腐蚀防护[J].腐蚀与防护,2004, 25(9): 400.
    [41] B F Brown, Stress-corrosion cracking, A perspective review of the problem, AD 71589, 16, p.1, 1970.
    [42] John W Oldfield and Brain Todd. Ambient Temperature Stress Corrosion Crackingof Austenitic Stainless Steel in Swimming Pools. Material Performance, 29(12), 57(1990).
    [43] 蔡秀光.应力腐蚀的危害及其控制.福建化工,2006, 2: 41-43.
    [44] R N Parkins, J. Iron and Steel Inst, 1952, 172, 149.
    [45] H H Uhlig, J Sava., Trans. Amefr. Soc. Metala. 1963, 56, 361
    [46] F S lang., Corrosion., 1962, 18, 378t.
    [47] W. R. Deker, H. Grefen, Stahl and Eisen, 1956, 76, p1616.
    [48] 左景伊.应力腐蚀破裂[M].西安:西安交通大学出版社,1989
    [49] 克舍H.金属腐蚀[M].北京:化学工业出版社,1980
    [50] T. P. Hoar, J. G. Hines, JISI, 1954,177, 148.
    [51] A. J. Mcevily, A. P. Bond, J. Elect. Chem. Soc. 112,131(1965)
    [52] N. A. Nielsen, Physical metallurgy of stress corrosion fracture, Intersci., 1959, 341.
    [53] M. Pourbaix. Significance of Protection Potential in Pitting and Intergranular Corrosion. Corrosion, 1970, 26, 431.
    [54] 李久青,杜翠薇等,腐蚀试验方法及监测技术,北京:中国石化出版社. 2007:129-134.
    [55] R. N. Parkins, Slow strain rate testing - 25years experience, Slow strain rate testing for the evaluation of environmentally induced cracking: research and engineering applications, ASTM STP1210, Russell D. Kane, Editor,Philadephia, 1993, p7-21.
    [56] R. N. Parkins, Development of slow strain rate testing and its implications, Stress corrosion craeking: slow strain rate technique, ASTM STP665, G. M. Ugiansky andJ. H. Payer, Eds., American Society for Testing and Materials, Philadephia, 1979, p5-25.
    [57] J. H. Payer, W. E. Berry, W. K. Boyd, Evaluation of slow strain-rate stress corrosion tests results, Stress corrosion cracking: slow strain rate technique, ASTM STP665, G. M. Ugiansky and J. H. Payer, Eds., American Society for Testing and Materials, Philadephia, 1979, p61-77.
    [58] Schofied, Michael J., Bradshaw, Roy, Cottis, R. A., Stress corrosion cracking of duplex stainless steel weldments in sour conditions, Materials Performance, 1996, Vol.35, No.4, p65-70.
    [59] D. A. Meyn, P. S. Pao, Slow strain rate testing of precacked titanium alloys in salt water and inert environment, Slow strain rate testing for the evaluation of environmentally induced cracking: research and engineering applications, ASTM STP1210, Russell D. Kane, Editor, Philadephia, 1993, p158-169.
    [60] Erilsson. H, Berhandsson. S, Applicability of duplex stainless steels in Sour environments, Corrosion, 1991, Vol.47, No.9, p719-727.
    [61] J. A. Beavers, G. H. Koch, Limitations of slow strain rate testing technique, Slow strain rate testing for the evaluation of environmentally induced cracking: research and engineering applications,ASTM STP1210, Russell D. Kane, Editor, Philadephia, 1993, p22-39.
    [62] R. D. Kane, S. M. Wilhelm, Status of standardization activities on slow strain rate testing techniques, slow strain rate testing for the evaluation of Environmentally induced craeking: research and engineering applications, ASTM STP1210, Russell D. Kane, Editor, Philadephia, 1993, p40-47.
    [63] Zhang Xueyuan, Duyuanlong, Relationship between susceptibility to embrittlement and hydrogen permeation current for UNS G10190 steel in 5%NaCI solution containing H2S, British Corrosion Joumal, 1998, Vol.33, No.4, P292-296.
    [64] Ahluwalia, Harklrat S, Problems associated with slow strain rate quality assurance testing of nickel-base corrosion resistant alloy tubulars in hydrogen sulfideenvironments, Slow strain rate testing for the evaluation of environmentally induced craeking: research and engineering applications, ASTM STP1210, Russell D.Kane, Editor, Philadephia, 1993, p225-239.
    [65] Ikeda, Akio, Ueda, Masakatsu, Okamoto, Hiroshi, Role of slow strain rate testing on evaluation of corrosion resistant alloys for hostile hot sour gas production, Slow strain rate testing for the evaluation of environmentally induced craeking: research and engineering applications, ASTM STPI210, Russell D. Kane, Editor, Philadephia, 1993, p240-262.
    [66] Muizhnek, I. A, Accelerated corrosion creaking tests of steels in Active-passive loading, Soviet Materials Science (English Translation of Fiziko-Khimicheskaya Mekhanika Materialov), (1990), Vol.26, No.2, p168-171.
    [67] J. H. Payer, W. E. Berry, R. N. Parkins, Application of slow strain-rate technique to stress corrosion cracking of piping steel, Stress corrosion cracking: slow strain rate technique, ASTM STP665, GM. Ugiansky and J. H. payer, Eds., American Society for Testing and Materials, Philadephia, 1979, p222-234.
    [68] Wang J Q, et al, Microstructure of X52 and X65 pipeline steels[R], 2000 International Pipeline Conference, vol. 1, ASME 2000, 193~201.
    [69] Kushida T, et al, Effects of metallurgical factors and test conditions on near neutral pH SCC of pipeline steels[R], Corrosion/2001, NACE International, Houston, TX, 2001.
    [70] 褚武扬,肖纪美,李世琼,金属学报,17(1981),p.10
    [71] G.C. Smith, Hydrogen in Metal, eds. Bernstein. I.M., and Thompson A W, Metals Park, OH, 1974, p.485
    [72] 陈廉,徐永波,尹万全,金属学报,14A(1978),p.253
    [73] H. H. Uhlig, J. Sava, J. Trans. ASTM., 56, 361(1963)
    [74] K Yoshino, C J McMahon. Met. Trans., 1974, 5: p.363
    [75] R.A. Oriani. Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, National Association of Corrosion Engineers, 1977: p.351
    [76] 褚武扬,李世琼,肖纪美,金属学报,1974, 16,p.363
    [77] Chu W. Y., et al. Corrosion, 1981, 37: p.514
    [78] Chu W. Y., et al. Corrosion, 1981, 37: p.320
    [79] 褚武扬,肖纪美,金属学报,21(1985),A86
    [80] 郑文龙, 于青. 钢的环境敏感断裂. 北京: 化学工业出版社. 1988: 167~171.
    [81] M.A.V.Devnathan, Z.Stachurski. A technique for the Evalution of Hydrogen Embrittlement Characteristics of Electroplating Baths. Journal of the Electrochemical Society, 1963, 110(8): 886
    [82] 张学元,杜元龙,郑立群.16Mn 钢在H2S 溶液中的脆断敏感性.材料保 护.1998,31(1):3
    [83] Yanliang Huang, Akira Nakajima, Atsushi Nishikata et al. Effect of mechanical deformation on permeation of hydrogen in iron. ISIJ international, 2003, 43: 548
    [84] U. R. Evans, Electrochemical mechanism of atmospheric rusting, Nature, 206, 980(1965)
    [85] [俄]И.И.瓦西连科,Р.К.麦列霍夫著,陈石卿,焦明山译,钢的应力腐蚀开裂,国防工业出版社,1983
    [86] 左景伊 著,应力腐蚀破裂,西安交通大学出版社,1985
    [87] John W. Oldfield and Brian Todd, Ambient-Temperature Stress Corrosion Cracking of Austenitic Stainless Steel in Swimming Pools, Material Performance, 29(12), 57(1990)
    [88] Robert M. Kain, Marine Atmospheric Stress Corrosion Cracking of Austenitic Stainless Steels, Material Performance, 29(12), 60(1990)
    [89] J. B. Gnanamoorthy, Stress Corrosion Cracking of Unsensitized Stainless Steels in Ambient-Temperature Coastal Atmosphere, Material Performance, 29(12), 63(1990)
    [90] 黄子助,吴纯素.电镀理论.北京:中国农业机槭出版社,1982.128-131
    [91] 刘国瑞,陆志兴.腐蚀与防护手册-理论基础.试验及监测[K].北京:化学工业出版社,1995.141.
    [92] H. Kim, B. N. Popov, K. S. Chen: Comparison of corrosion-resistance and hydrogenpermeation properties of Zn–Ni, Zn–Ni–Cd and Cd coatings on low-carbon steel, Corros. Sci., 2003, 45, 1505-1521.
    [93] P. G. Marsh, W. W. Gerberich, in: R.H. Jones (Ed.), Stress Corrosion Cracking, ASM International, Materials Park, Ohio, 1992, p. 63-90.
    [94] T. Casnova, J. Crousier: The influence of an oxide layer on hydrogen permeation through steel, Corros. Sci., 1996, 38(9), 1535-1544.
    [95] N. Parvathavarthini, S. Saroja, R.K. Dayal: Influence of microstructure on the hydrogen permeability of 9%Cr–1%Mo ferritic steel, J. Nucl. Mater., 1999, 264, 35-47.
    [96] P. Manolatos, M. Jerome, C. Duret-Thual, et al: The electrochemical permeation of hydrogen in steels without palladium coating. Part I: Interpretation difficulties, Corros. Sci., 1995, 37(11), 1773-1783.
    [97] L. Coudreuse, J. Charles: The use of a permeation technique to predict critical concentration of H2 for cracking, Corros. Sci., 1987, 27(10/11), 1169-1181.
    [98] P. Bruzzoni, R. Garavaglia: Anodic iron oxide films and their effect on the hydrogen permeation through steel, Corros. Sci., 1992, 33(11), 1797-1807.
    [99] T. Tsuru, Y. Huang, M. R. Ali: Hydrogen entry into steel during atmospheric corrosion process, Corros. Sci., 2005, 47, 2431-2440.
    [100] Y. Huang, Y. Zhu: Hydrogen ion reduction in the process of iron rusting, Corros. Sci., 2005, 47, 1545-1554.
    [101] S. Yoshizawa, T. Tsuruta, K. Yamakawa, B. Gijutsu: Corros. Eng., 1975, 24, 365.
    [102] S. H?rlé, F. Mazaudier, Ph. Dillmann, G. Santarini: Corros. Sci., 2004, 46, 1431-1465.
    [103] T. Omura, T. Kudo and S. Fujimoto: Environmental Factors Affecting Hydrogen Entry into High Strength Steel due to Atmospheric Corrosion, Materials Transaction., 2006, 47 (12), 2956-2962.
    [104] Turnbull. A, Saenz de Santa Maria M, Thomas ND: Corros Sci., 1989, 29, 89.
    [105] Iyer. RN, Takeuchi. I, Zamanzadeh. M, Pickering. HW: Corrosion., 1990, 144,2313.
    [106] 李 明, 李晓刚, 陈华, 在湿H2S环境中金属腐蚀行为和机理研究概述.腐蚀科学与防护技术. 2005, 17(2), 107-111
    [107] H. Y. Ma, X. L. Cheng, S. H. Chen, C. Wang, J. P. Zhang, H. Q. Yang: J. Electroanal. Chem., 1998, 451(1-2), 11-17.
    [108] X. L. Cheng, H. Y. Ma, J. P. Zhang, X. Chen, S. H. Chen, H.Q. Yang: Corrosion., 1998, 54(5), 369-376.
    [109] H. Y. Ma, X. L. Cheng, S. H. Chen, G. Q. Li, X. Chen, S. B. Lei, H. Q. Yang: Corrosion., 1998, 54(8), 634-640.
    [120] D. W. Shoesmith, P. Taylor, M. G. Bailey, D. G. Owen: J. Electrochem. Soc., 1980, 127, 1007-1015.
    [121] 杨怀玉,陈家坚,曹楚南,曹殿珍。H2S 水溶液中的腐蚀与缓蚀作用机理的研究。中国腐蚀与防护学报。2000,20(1), 1-7.
    [122] P. A. Schweitzer: Atmospheric Degradation and Corrosion Control, in: P.A. Schweitzer (Ed.), Corrosion Technology, Marcel Dekker, Inc., New York, Basel, 1999, p.24.
    [123] K. Barton, Z. Bartonova: Werkst. Korros., 1970, 21, 25.
    [124] G. Schikorr: Werkst. Korros., 1963, 14, 69; 1964, 15, 457.
    [125] P. Bastien P. Azou: C. R Acad. Sci., Paris, 232(1951),.1845.
    [126] J. A. Donovan: Metall. Trans., 7A(1976), 677.
    [127] R. Otsuka, M. Isaji: Scr. Metall., 13(1979), 927.
    [128] M. Kurkela, G. S. Frankel, R. M. Latanision, et al: Scr. Metall., 16(1982), 455.
    [129] B. J. Berkowitz, F. H. Heuman: Atomistics of Fracture, ed. By R. M. Latanision, J. R. Pickens, Plenum Press, New York, (1984), 823.
    [130] T. Zakroczymski: Corrosion, 41(1985), 485
    [131] G. S. Frankel, R. M. Latanision., Metall. Trans., 17A(1986), 869.
    [132] G. S. Frankel, R. M. Latanision., Metall. Trans., 17A(1986), 861.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700