水稻质膜质子泵基因OsA8对氮磷钾的响应特征及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子生物学的迅速发展为植物营养学科的深入研究提供了丰富的材料和有效的研究方法,使进一步揭示植物营养养分吸收及转运的分子调控机理成为可能。近二十多年来,根据Mitchell的化学渗透假说,对植物细胞膜离子转运和电生理的研究已经初步阐明了溶质分子跨膜转运的机制。由于H+的跨膜转运形成的质子电化学梯度所引起的质子驱动力与各种溶质分子和各种生长调节因子等主动转运相偶联,使得H+-ATPase在养分吸收、转运、分配,以及植物生长发育等方面的重要作用逐渐被重视。然而在植物体内数量众多的ATPase家族基因中只有及少几个基因的生理功能得到阐明。目前调控水稻矿质营养方面的单个质膜H+-ATPase作用及其调控机理尚未见报道。氮磷钾是植物必需同时又是土壤中经常缺乏的三大营养元素,特别是土壤中磷的移动性差和有效性低,植物适应低磷营养的机理受到了广泛的关注。已经有证据表明,植物养分的吸收和转运与质膜质子泵的活性有关。水稻是模式作物和我国重要的粮食作物,水稻全基因组中,总共有10个属于质膜质子泵的基因。开展与氮磷钾营养有关的水稻质膜质子泵ATPase基因的功能研究,对揭示植物高效调控吸收和转运营养的机理以及植物的品种改良具有重要意义。
     本文以一个水稻质膜质子泵基因OsA8完全敲除的OsA8纯合突变体(Tos17插入突变)和其野生型植株(Oryze Sativa ssp. Japonica cv. Hitomebore)为材料,对比研究在不同磷、钾、氮条件下突变体和野生型植株的形态和生理特征及分子响应机制,探讨OsA8基因的功能。主要结果如下:
     1.在正常营养供应条件下OsA8基因在水稻叶片和缺磷条件下根系中均有表达,但其表达水平比较低。值得注意的是与已经报道的大豆中质膜H+-ATPase总活性受磷缺乏增强不同,OsA8在缺磷条件下叶片中表达受到抑制,根系中表达增强;水稻缺氮或缺钾也降低OsA8基因的表达,但其幅度相对缺磷引起的变化较小。
     2.以日本农业生物资源研究所水稻基因组资源中心(Rice Genome resource center, National Institute of Agrobiological Science, Japan)提供的突变体H0310为材料,分别用抑制PCR和反向PCR方法,鉴定并得到了14个OsA8屯合突变株。RT-PCR分析进一步确认该基因在纯合突变体中没有表达。
     3.敲除OsA8基因能减少水稻根系和地上部分的生物量并改变植株的形态。在水培条件下,无论是缺磷或正常供应磷处理,OsA8突变体水稻根系的总根长、总体积以及表面积和根尖数都较野生型植株的小。然而,正常营养条件下OsA8突变体根系的平均半径无明显变化,但在缺磷条件下其根系的平均半径降低,而且初生根的半径则有所增加。突变体地上部分表现为分蘖数减少并且分蘖延迟,但株高的影响不明显。
     4.与该基因的表达特性吻合的是,我们通过水培和砂培试验证明了OsA8与磷的吸收,特别是磷从根系到地上部分的转运有明显的相关性。在缺磷条件下突变体的根系中磷浓度显著高于野生型植株;在正常供磷条件下其磷浓度没有显著差异。在正常供磷条件下,突变体地上部分磷浓度明显降低;但在缺磷条件下没有显著差别。表明突变体水稻根系中磷向地上部分的转运受到了明显的抑制。
     5.OsA8对硝态氮、钾的缺乏也有响应,但其影响程度远没有对磷的响应程度高。不同氮钾处理条件对OsA8突变体植株的形态没有明显的影响;在养分吸收方面,OsA8突变体中钾和硝态氮的吸收受到抑制,但提高根系向地上部分的转运。
     6.除了对硝态氮、磷、钾吸收及转运的影响,敲除OsA8还显著增加了水稻根系中可溶性糖的含量,与此一致的是,突变体中H+-ATPase活性,根系还原酶活性都高于野生型植株;生物量明显降低,表明突变体消耗比较多的能量也不能完全弥补敲除OsA8的影响。
     7.通过RT-PCR分析,我们的结果显示OsA家族基因中部分基因分别响应磷、钾和氮形态的变化,这些基因表达水平的变化比较复杂,原因可能与其担负的功能复杂程度有关。
     8.对磷转运蛋白Phtl家族中各基因的分析表明:OsPT6基因的表达与植株中OsA家族基因的表达(或H+-ATPase活性)有明显的关系。并且Phtl家族大部分基因的表达强度与所分析的组织中磷的含量呈负相关。
     总之,通过对突变体的分析,我们发现水稻质膜质子泵基因OsA8的功能与水稻磷的吸收和转运,硝态氮、钾的吸收及其转运有关。敲除OsA8影响Pht1家族OsA家族部分基因的表达水平以及根系活力、可溶性糖含量、H+-ATPase活性。因此,维持OsA8的表达对保持氮磷钾的充分吸收利用和植株的正常形态有重要作用。
Advancements in molecule biology provide plentiful materials and effective methods for researches in field of plant nutrition. It is therefore promising to reveal the molecule mechanism of nutrient uptake and translocation in plants. Based on the theory of chemical osmosis and experimental analyses in translocation of ions across plasma membrane and electrical physiology in last two decades, elementary mechanism of nutrient across plasma membrane has been elucidated. Due to coupling of proton motive force resulting from proton transport across membrane with the active transport of soluble matter and hormone, increasing interest is raised to the functions of H+-ATPases in nutrition uptake, translocation and redistribution, as well as growth and development. Although there are many numbers in the large H+-ATPases family, few of them have been characterized for their physiological functions. Particularly, no plasma membrane H+-ATPase gene associated with nutrient acquisition has been reported in rice so far. Nitrogen (N), phosphorus (P) and potassium (K) are three macro essential nutrients of plants and are often insufficient in many soils. Due to the low avaiability of P in nature soils, comprehensive attention has been paid to the physiological and molecular mechanisms of plants to adapt the deficiency of P. Research in soybean has shown that entire activity of plasma membrane ATPase is associated with P uptake and translocation. Rice (Oryza Sativa) is a model plant and an economically important crop, there are total10members of OsAs, plasma membrane proton ATPase genes in rice. Researches on function of ATPase in rice relating to its nutrient uptake and translocation is, therefore, extremely important for improving the plant nutrient use efficiency by molecular approaches.
     In this study, using wild type rice (Oryzae Sativa ssp. Japonica cv. Hitomebore) as a control, we investigated the physiological functions of OsA8, a plasma membrane proton-ATAase by comparison of the responses between Tos17insertional homozygote mutant of OsA8gene and its wild type in nutrient uptake and translocation. The main results are shown as follows:
     1. OsA8is expressed in leaves under normal nutrient supply condition and roots in P deficiency of rice, but its expression level is low. It is worth noting that contrary to the report in soybean that P deficiency enhanced ATPase activity, we observed that expression of OsA8was repressed in leaves and enhanced in roots by P deficiency in rice plant. Deficiency of K and N also decreased the expression of OsA8, but the effect was much weaker in comparison with that of P deficiency.
     2. We obtained the Tos17insertional OsA8mutant, H0310, from the Rice Genome resource center, National Institute of Agrobiological Science (Japan). Using suppression PCR and IR-PCR methods, we identified14OsA8homozygotes. RT-PCR analysis confirmed that no detectable expression of OsA8in these mutants.
     3. Knockout of OsA8reduced biomass of roots and aerial part in addition to affect root morphology. Under hydroponic growth condition, either with supply of normal nutrient solution or with P deficient solution, the mutant showed reduced total length, volume, surface area and number of root tips. However, the mean diameter of roots grown in normal nutrient solution was not affected although it was affected under P deficient condition. The mutant also showed less number of tillers and retardation of tillering. No obvious effect was observed on plant height.
     4. Consistent with its expression pattern, we found that OsA8is linked to P uptake, particularly to the translocation of P from roots to shoots. Under P deficient condition, root P concentration of the mutant was significantly higher than that of wild type. However, no obvious difference of root P concentration was observed under normal nutrient supply condition. Under normal nutrient condition, shoot P concentration of the mutant was significantly lower than that of wild type, no obvious difference could be found in P deficient condition. These suggest that, compared with control, P translocation from root to shoot of OsA8mutant was obvious depressed.
     5. Similar to its response to P deficiency, OsA8responded to NO3--N and K deficiency. However, the extent of the responses was much smaller. Different N and K treatments exert no obvious influence on morphology of the mutant. However, the uptake of K and NO3--N was repressed in the mutant whereas their translocation was improved.
     6. In addition to the influences on uptake and translocation of NO3--N, P and K, knockout of the gene increased concerntration of soluble sugar in roots of the mutant. Consistently, activities of H+-ATPase and root reductase were also enhanced in the mutant. Contrast with lower biomass, suggest that higher energy expense also can't compensate fully the influence of knock out of OsA8.
     7. RT-PCR analyses showed that Knockout of OsA8gene affected expression of several OsA and OsPhtl genes. Knockout of OsA8increased the expression of OsAl and OsA2in the roots of Pi-starved mutants. However, a lower abundance of OsA2was noticed in leaves of the mutant. In addition, OsA6appears to be induced only in roots of Pi-sufficient wild type plants. This suggests a complex regulation of expression of the members of the OsA family in roots and leaves under Pi starvation conditions. In addition, P-starvation strongly enhanced expression of OsPT6, a member of phosphate transporters in Phtl family in its wild type in the cultivar Hitomebore, however, did not induce the expression of OsPT6in roots of the mutant. Knockout of OsA8did not noticeably affect the expression of other members of the Phtl family.
     In summary, we found that function of the plasma membrane proton pump OsA8was linked to phoshphorus uptake, translocation of NO3--N and potassium in rice. Knockout of OsA8influenced the expression of some genes in the Phtl family besides H+-ATPase activities, root reductase activities, and the concentration of soluble sugar in root. Maintenance of the gene's expression is important to keep normal nutrient uptake and translocation in addition to normal growth of rice.
引文
Amarzguioui M., Holen T., Babaie E., etc. Tolerance for mutations and chemical modifications in a SiRNA. Nucleic Acids Research,2003,31(2):589-595.
    An G, Lee S., Kim S.-H. etc. Molecular genetics using T-DNA in rice. Plant and Cell Physiology, 2005,46(1):14-22.
    Arango M., Gevaudant F., Oufattole M., etc. The plasma membrane proton pump ATPase:the significance of gene subfamilies. Planta,2003,216:355-365.
    Balhadere P.V. Talbot N.J. PDE1 encodes a P-ATPase involved in appressorium-mediated plant infection by the rice blast fungus magnaporthe grisea. The Plant Cell,2001,13:1987-2004.
    Baxter I., Tchieu J., Sussman M.R, etc. Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice. Plant Physiology,2003,132(2):618-622.
    Baxter I.R., Young J.C., Armstrong G., etc. A plasma membrane H+-ATPase is required for the formation of proanthocyanidins in the seed coad endothelium of Arabidopsis thaliana. Proceedings of the National Academy Sciences of USA,2005,102(7):2649-2654.
    Bezerra I.C., Michaels S.D., Schomburg F.M., etc. Lesion in the mRNA cap-binding gene ABA HYPERSENSITIVE 1 supress FRIGIDA-mediated delayed flowering in Arabidopsis. The Plant Journal,2004,40(1):112-132.
    Carpenter A.E. Sabatini D.M. Systematic genome-wide screens of gene function. Nature Genetics, 2004,5:11-22.
    Courbot M., Willems G., Motte P., etc. A major Quantitative trait locus for Cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase. Plant Physiology,2007,144:1052-1065.
    Ewing N.N. Bennett A.B. Assessment of the number and expression of P-type H+-ATPase genes in tomato. Plant Physiology,1994,106:547-557.
    Gevaudant F., Duby G., von Stedingk E., etc. Expression of a constitutively activated plasma membrane H+-ATPase alters plant development and increases salt toletance. Plant Physiology,2007, 144:1763-1776
    Harper J.F., Manney L., Sussman M.R. The plasma membrane H+-ATPase gene family in Arabidopsis: genomic sequence of aha10 which is expressed primarily in developing seeds. Molecular Genetics and Gonomics,1994,244:572-587.
    Haydon M.J. Cobbett C.S. A novel major facilitator superfamily protein at the tonoplast influences zinc tolerance and accumulation in Arabidopsis. Plant Physiology,2007,143:1705-1719.
    Henikoff S. Comail L. Single-nucleotide mutations for plant functional genomics. Annual Review of Plant Biololgy,2003,54:375-401.
    Hermans C., Hammond J.P., White P.J. etc. How do plants respond to nutrient shortage by biomass allocation? Trends in Plant Science,2006, 11(12):610-617.
    Hirano M., Hirano T. Positive and negative regulation of SMC-DNA interactions by ATP and accessory proteins. The EMBO Journal,2004,23:2664-2673.
    Hirochika H., Guiderdoni E., An G., etc. Rice mutant resource for gene discovery. Plant Molecular Biology,2004,54(3):325-334.
    Houlne G., Boutry M. Identification of an Arabidopsis thaliana gene encoding a whose expression in restricted to anther tissues. The Plant Journal,1994,5:311-317.
    Hsieh A.C., Bo R., Manola J., etc. A Library of SiRNA duplexes targeting the phosphoinositide 3-kinase pathway:determinants of gene silencing for use in cell-based screens. Nucleic Acids Research,2004,32(3):893-901.
    Hu G., deHart A.K.A., Li Y., etc. EDS1 in tomato is required for resistance mediated by TIR-class R genes and the receptor-like R gene Ve. The Plant Journal,2005,42(3):376-391.
    Inoue M., Sakuraba Y., Motegi H., etc. A Series of Maturity Onset Diabetes of the Young type 2(MODY2)Mouse Models Generated by a Large-scale ENU mutagenesis program. Human Molecular Genetics 2004,13(11):1147-1157.
    Jang S., An K., Lee S., etc. Characterization of tobacco MADS-box genes involved in floral initiation. Plant and Cell Physiology,2002,43(1):230-238.
    King O.D., Lee J.C., Dudley A.M., etc. Predicting phenotype from patterns of annotation. Bioinformatics,2003,19(1):1183-1189.
    Kolesnik T., Szeverenyi I., Bachmann D., etc. Establishing an efficient Ac/Ds tagging system in rice: sarge-scale analysis of Ds flanking sequences. The Plant Journal,2004,37(2):301-314.
    Lee S., Kim J., Son J.-S., etc. Systematic reverse genetic screening of T-DNA tagged genes in rice for functional genomic Aanalyses:MADS-box genes as a test case. Plant Cell Physiololgy,2003, 44(12)1403-1411.
    Li X., Zhang Y. Reverse genetics by fast neutron mutagenesis in higher plants. Functional and Integrative Genomics,2002,2:254-258.
    Lunde C.F., Morrow D.J., Roy L.M., etc. Progress in maize gene discovery:A project update Functional and Integrative Genomics,2003,3(1):25-32.
    Maathuis F.J.M. Sanders D. Plasma membrane transport in context-making sense out of complexity. Current Opinion in Plant Biology,1999,2:236-243.
    MaeDivmid C.W., L. Gaither A., Eide D. Zinc Transporters that regulate vacuolar zinc storage in Saccharomyces Cerevisiae. The EMBO Journal,2000,19(22):2845-2855.
    Mao C., Qiu J., Wang C., etc. NodmutDB:a database for genes and mutants involved in symbiosis. Bioinformatics,2005,21(12):2927-2929.
    Menda N., Semel Y., Peled D. etc. In silico screening of a saturated mutation library of tomato.The Plant Journal,2004,38:861-872.
    Michelet B., Lukaszewiez M., Dupriez V., etc. A plant plasma membrane proton-ATPase gene is regulated by development and environment and shows signs of a translational regulation. The Plant Cel,1994,6:1375-1389.
    Oufattole M., Arango M., Boutry M. Identification and expression of three new Nicotiana plumbaginifolia genes which encode isoforms of a plasma-membrane H+-ATPase, and one of which is induced by mechnical stress. Planta,2000,210:715-722.
    Padmanaban S., Lin X., Perera I., etc. Differential expression of vacholar H+-ATPase subunit c genes in tissues active in membrane trafficking and their roles in plant growth as revealed by RNAi Plant Physiology,2004,134:1514-1526.
    Palmgren M.G, Harper J.F. Pumping with plant P-type ATPase. Journal of Experimental Botany,1999, 50:883-893.
    Palmgren M.G. Plant plasma membrane H+-ATPase:powerhouse for nutrient uptake. Annual Review Plant Physiology Plant Molecule Biology,2001,52:817-845.
    Pancoska P., Moravek M., Moll U.M. Efficient RNA interference depends on global context of the target sequence:quantitative analysis of silencing efficiency ssing eulerian graph representation of SiRNA. Nucleic Acids Research,2004,32(4):1469-1479.
    Polacco J.C., Freyermuth S.K., Gerendas J., etc. Soybean genes involved in nickel insertion into urease. Journal of Experimental Botany,1999,50(336):1149-1156.
    Rabotti G and Zocchi G Plasma-membrane bound H+-ATPase and reductase activities in Fe-deficient cucumber roots Plant Physiology,1994,90(4)779-785
    Ramage C.M, Williams R. Mineral nutrition and plant morphogenesis. In Vitro Cellular and Developmental Biology.2002,38(2):116-124.
    Reiser J., LInka N., Lemke L., etc. Molecular physiological analysis of the two plastidic ATP/ADP transporters from Arabidopsis. Plant Physiology,2004,136:3524-3536.
    Requena N., Breuninger M., Franken P., etc. Symbiotic status, phosphate, and sucrose regulate the Expression of two plasma membrane H+-ATPase genes from the mycorrhizal fungus Glomus mosseae. Plant Physiology,2003,132:1540-1549.
    Robertson W.R., Clark K., Young J.C., etc. An Arabidopsis thaliana plasma membrane proton pump is essential for pollen development. Genetics,2004,168:1677-1687.
    ROsA M., Rajendra B., Yves G., etc. Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant, Cell and environment,2007,30:85-112.
    Sakamoto H., Thiberge S., Akerman S., etc. Towards systematic identification of plasmodium essential genes by transposon shuttle mutagenesis. Nucleic Acids Research,2005,33(20):174-182.
    Sheng H, He L. F, Sasaki T, etc. Citrate secretion coupled with the modulation of soybean root tip under aluminum stress. Up-regulation of transcription, translation, and threonine-oriented phosphorylation of plasma membrane H+-ATPase. Plant Physiol.2005,138:287-296
    Shikanai T., Miiller-Moule P., Munekage Y., etc. PAA1, a P-type ATPase if Arabidopsis,functions in copper transport in chloroplasts. The Plant Cell,2003,15:1333-1346.
    Sohail M., Doran G, Riedemann J., etc. A simple and cost-effecitive method for producing small interfering RNAs with high efficacy. Nucleic Acids Research,2003,31(7):e38.
    Sondergaard T.E., Schulz A., Palmgren M.G. Energization of transport processes on plants. Roles of the plasma membrane H+-ATPase. Plant Physiology,2004,136:2475-248.
    Song K. M, Jiao X. Z, Li L. etc. The Relationship Between Phosphate Uptake and Changes in Plasmalemma H+-ATPase Activities from the Roots of Tomato Seedlings During Phosphate Starvation. Acta Phytophysiologica Sinica 2001,27(1):87-93
    Sun H.-J., Uchii S., Watanabe S.,etc. A highly efficient transformation protocol for Micro-tom, a Model cultivar for Tomato functional genomics. Plant Cell Physiology,2006,47(3):426-431.
    Ueno K., Kinoshita T., Inoue S., etc. Biochemical characterization of plasma membrane H+-ATPase activation in guard cell protoplasts of Arabidopsis thaliana in response to blue light. Plant and Cell Physiology,2005,46(6):955-969.
    Urban M., Bhargava T., Hamer J.E. An ATP-driven efflux pump is a novel pathogenicity factor in rice blast disease. The EMBO Journal,1999,18(3)512-521.
    Vitart V., Baxter I., Doerner P., Harper J.F. Evidence for a role in growth and salt resistance of a plasma membrane H+-ATPase in the root endodermis. The Plant Journal,2001,27:191-201.
    Wang G L., Wu C., Zeng L., He C., etc. Isolation and characterization of rice mutants compromised in Xa21-mediated resistance to X.Oryzae pv Oryzae. Theoretical and Applied Genetics, 2004,108:379-384.
    Yan F., Zhu Y., Miiller C., etc. Adaptation of H+-pumping and plasma membrane H+-ATPase activity in proteoid roots of white lupin under phosphate deficiency. Plant Physiology,2002,129:50-63.
    Yang M., Nadeau J. A., Zhao L., etc. Characterization of a cytokinesis defective(cydl) mutant of Arabidopsis. Journal of Experimental Botany,1999,50(338):1437-1446.
    Yasui M., Hazama A., Kwon T.-H., etc. Rapid gating and anion permeability of an intracellular aquaporin. Nature,1999,402:184-187.
    Yi K., Wu Z., Jie Zhou, etc. OsPTFl, a novel transcription factor involved in tolerance to phosphate starvation in rice. Plant Physiology,2005,138:2087-2096.
    Zhang J. S., Xie C., Li Z. Y., etc. Expression of plasma membrane H+-Atpase gene in reponse to salt stress in a rice salt-tolerant mutant and its original variety Theoretical and Applied Genetics 1999, 99:1006-1011
    Zhang W.H., Yu B.J., Chen Q., etc. Tonoplast H+-ATPase activity in barley roots is regulated by ATP and pyrophosphate contents under NaCl stress. Journal of Plant Physiology and Molecular Biology, 2004,30(1):45-54.
    Zhao R., Dielen V., Kinet J.M. Cosuppression of a plasma membrane H+-ATPase isoform impairs sucrose translocation, stomatal opening, plant growth, and male fertility. The Plant Cell,2000, 12:535-546.
    Nelson N.,等(廖国祥节译,吴纯校).H+-ATP酶的进化,国外医学分子生物学分册,1991,13(2):97-99.
    曹新,黄赞.RNAi:基因功能研究新途径.生命科学,1999,11(6):268-272.
    程英豪,郑文明,瞿礼嘉,等.插入T-DNA片段构建部分水稻突变体株系.中国农业科学,2004,37(3):313-321.
    狄廷均,朱毅勇,仇美华,等.水稻根系细胞膜H+-ATPase对铵硝营养的响应差异中国水稻科学,2007,21(4):360-366
    龚小卫,彭颖,刘靖华,等.利用RNAi技术抑制ARPC2基因表达的研究.解放军医学杂志,2004,29(10):882-884.
    黄国存,周洪显,崔四平,等.水分胁迫对玉米幼叶质膜ATPase活性影响及其与钙调素和渗透调节的关系.华北农学报,1997,12(1):30-33.
    黄娟,李家洋.拟南芥基因组研究进展.微生物通报,2001,28(3):99-101.
    纪宗玲,刘继中,陈苏民.基因功能的研究方法.生物工程学报,2002,18(1):117-120.
    廖鸣娟,董爱华,王正栋,等.植物转座子及其在功能基因组学中的应用.遗传,2000,22(5):345-348.
    刘国振,朱立煌.植物同源盒基因的克隆与功能研究遗传,1998,20(3):42-47.
    刘敏,曹毅,蒋彦.利用RNAi技术大规模分析基因功能的研究.植物学通报,2002,19(4):491-495.
    刘楠梅.基因功能研究方法浅介.生物技术通讯,2000,11(3):231-233.
    马挺军,向远寅,王沙生.盐胁迫对胡杨液泡膜H+-ATPase水解活性的影响.新疆农业大学学报, 2003,26(2):43-48.
    钱前,程式华.水稻遗传学和功能基因组学.科学出版社,中国北京,2006.
    师科荣,王爱国.功能基因组学的研究方法.生物技术通讯,2002,13(4):301-304.
    舒薇,郭勇.人类基因组及后基因组研究进展及其应用与开发研究现状.生物技术通讯,2000,11(4):1-5.
    孙春晓,于常海.基因功能研究的技术和方法.国外医学分子生物学分册,2000,22(2):112-115.
    孙岩松,杨晓.ENU诱导点突变——大规模基因突变和功能研究.生物工程学报,20012,1(7):365-370.
    孙衍刚,陆剑,杨秀娟,等.基因功能研究的一些新思路.生理科学进展,2003,34(1):55-57.
    王延枝.植物细胞中膜H+-ATPase的研究进展.生物化学和生物物理进展,1989,16(6):438-445.
    夏家辉.人类遗传病的家系收集疾病基因定位克隆一疾病基因功能的研究.中国工程科学,2000,2(11):1-11.
    肖翠英,张思仲.RNA干扰研究的新进展.医学分子生物学杂志,2004,1(2):104-106.
    许征宇,狄廷均,朱毅勇,等.水稻根系细胞膜H+-ATPase对缺磷的反应.植物营养与肥料学报,2008,14(2):221-226
    阎双勇,谭振波,李仕贵.水稻插入突变库构建研究进展.中国生物工程杂志,2004,24(6)48-54.
    杨健,唐恩洁,朱道银.RNAi一一种关闭基因的新方法.川北医学院学报,2003,18(3):187-189.
    叶苓.基因敲除技术与疟原虫基因功能研究.国外医学寄生虫分册,1999,26(4):153-156.
    袁晓东,李国印,汤敏谦.一种高效的功能基因分离解析法.遗传,2002,24(3):320-324.
    周晓馥,王兴智.病毒载体诱导转录后基因沉默系统的建立及烟草(Nicotfana benthamiana)rbcs基因功能的研究(博士学位论文摘要).分子植物育种,2003,1(3):423-424.
    庄金秋,贾杏林.功能基因组学研究进展.动物医学进展,2004,25(4):32-36.
    Agrawal G.K., Yamazaki M., Kobayashi M., etc. Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion. Tagging of a Zeaxanthin Epoxidase gene and a novel OsTATC gene. Plant Physiology,2001,125:1248-1257
    An G, Lee S., Kim S. etc. Molecular genetics using T-DNA in rice. Plant Cell Physiology, 2005,46(1)14-22.
    Arango M. The plasma membrane proton pump ATPase:the significance of gene subfamilies. Planta,2003,216:355-365.
    Baxter I., Tchieu J., Sussman M.R etc. Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice. Plant Physiology,2003,132(2):618-622..
    Henikoff S. Comail L. Single-nucleotide mutations for plant functional genomics. Annual Review of Plant Biology,2003,54:375-401.
    Hirochika H. Contribution of the Tos 17 retrotransposon to rice functional genomics. Current Opinion in Plant Biology,2001,4(2):118-122.
    Hirochika H. Retrotransposon of rice:Their regulation and Use for Genome Analysis. Plant Molecular Biology,1997,35(1-2);231-240.
    Hirochika H., Guiderdoni E., An G., etc. Rice mutant resource for gene discovery. Plant Molecular Biology,2004,54(3):325-334.
    Hirochika H., Sugimoto K., Otsuki Y., etc. Retrotransposon Of Rice Involved in Mutations Induced by Tissue Culture. Proceedings of the National Academy Sciences of USA,1996, 93(15):7783-7788.
    Hirochika S., Sugimoto K., Otsuki Y., etc. Systematic reverse gebetic screening of T-DNA tagged genes in rice for functional genomic analysis:MADS-box genes as a test case. Plant Cell Physiology,2003,44(12):1403-1411.
    Kolesnik T., Szeverenyi I., Bachmann D., etc. Establishing an efficient Ac/Ds tagging system in rice. Large-scale analysis of Ds flanking sequences. The Plant Journal,2004,37(2):301-314.
    Lee S., Kim J., Son J.-S., etc. Systematic reverse genetic screening of T-DNA tagged genes in rice for functional genomic analyses:MADS-box genes as a test case. Plant Cell Physiology, 2003,44(12)1403-1411.
    Li X., Song Y., Century K., etc. A fast neutron deletion mutagenesis-based reverse genetics system for plants. The plant Journal,2001,27(3):235-242.
    Liu Y.G, Whittier R.F. Thermal asymmetric interlaced PCR:Automatable amplification and aequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics,1995,25(3):674-681.
    Miyao A., Tanaka K., Murata K., etc. Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome. The Plant Cell,2003,15:1771-1780
    Miyao A., Yamazaki M Hirochika H. Systematic Screening of Mutants of Rice by Sequencing retrotransposon-insertion sites. Plant Biotechnolog,1998,15(4):53-256.
    Oufattole M., Arango M.. Boutry M. Identification and Expression of Three New Nicotinaa Plumbaginifolia Genes Which Encode Iso forms of a Plasma-menbrane H+-ATPase and one of Which is Induced by Mechanical Stress. Planta,2000,210:715-722.
    Sondergaard T.E., Schulz A., Palmgren M.G.. Energization of transport processes on plants.roles of the plasma membrane H+-ATPase. Plant Physiology,2004,136:2475-2482.
    Ueno K., Kinoshita T., Inoue S. etc. Biochemical characterization of plasma membrane H+-ATPase activation in guard cell protoplasts of Arabidopsis thaliana in response to blue light. Plant and Cell Physiology.2005,46(6):955-969.
    Urban M., Bhargava T., Hamer J.E. An ATP-Driven Efflux Pump is a Novel Pathogenicity Factor in Rice Blast Disease. The EMBO Journal,1999,18(3):512-519.
    Yamazaki M., Tsugawa H., Miyao A., etc. The rice retrotransposon Tos17 prefers low-copy-number sequences as integration targets. Molecular Genetic Genomics,2001, 265:336-344
    马秀芳,高勇,华泽田,等.水稻逆转座子的研究现状.分子植物育种,2003,1(3):515-521.
    阎双勇,谭振波,李仕贵.水稻插入突变库构建研究进展.中国生物工程杂志,2004,24(6):48-54.
    Aas L., Rengel A. Tang C. The effect of Nitrogen nutrition on cluster root formation and proton extrusion by Lupinus Albus. Annals of Botany,2002,89:435-442.
    Aono T., Kanada N., Ijima A., etc. The response of the phosphate uptake system and the organic acid exudation system to phosphate starvation in sesbania rostrata. Plant and Cell Physiology 2001, 42(11):1253-1264.
    Arango M., Gevaudant R, Oufattole M., etc. The plasma membrane proton pump ATPase:the significance of gene subfamilies. Planta,2003,216:355-365.
    Chen C.-W., Yang Y.-W., Lur H.-S., etc. A novel function of abscisic acid in the regulation of rice(Oryza sativa L.) root growth and development. Plant Cell Physiology,2006,47(1):1-13.
    Debi B.R., Taketa S., Ichii M. Cytokinin inhibits lateral root initiation but stimulates lateral root elongation in rice (Oryza sativa). Journal of Plant Physiology,2005,162:507-515.
    Grauwe L.D., Vandenbussche F., Tietz O., etc. Auxin, ethylene and brassinosteroids:tripartite control of growth in the Arabidopsis hypocotyls. Plant Cell Physiology,2005,46(6):827-836.
    Hermans C, Hammond J.P., White P.J. etc. How do plants respond to nutrient shortage by biomass allocation? Trends in Plant Science,2006, 11(12):610-617.
    Inukai Y., Sakamoto T., Ueguchi-Tanaka M., etc. Crown rootless 1, which is essential for crown root formation in rice, is a target of an auxin response factor in auxin signaling. The Plant Cell,2005, 17(5):1387-1396.
    Kawahara A. Inoue Y. Ethylene promotes the induction by auxin of the cortical microtubule randomization required for low-pH-induced root hair initiation in lettuce (Lactuca sativa L.) seedlings. Plant Cell Physiology,2003,44(9):932-940.
    Lambers H., Shane M.W., Cramer M.D., etc. Root structure and functioning for efficient Acquisition of phosphorus:Matching morphological and physiological traits. Annals of Botany,2006, 98:693-713.
    Montiel G., Gantet P., Jay-Allemand C, etc. Transcription factor networks. Pathways to the knowledge of root development. Plant Physiology,2004,136(3):3478-3485.
    Palmgren M.G. Plant plasma membrane H+-ATPase:powerhouse for nutrient uptake. Annual Review of Plant Physiology and Plant Molecule Biology,2001,52:817-8
    Raghavan C, Ong E.K., Dalling M.J., etc. Regulation of genes associated with auxin, ethylene and ABA pathways by 2,4-dichlorophenoxyacetic acid in Arabidopsis. Functional and Integrative Genomics,2006,6:60-70.
    Ramage C.M., Williams R. Mineral nutrition and plant morphogenesis. In Vitro Cellular and Developmental Biology,2002,38(2):116-124.
    Ramirez A., Heimbach A., Grundemann J., etc. Multilevel interactions between ethylene and auxin in Arabidopsis roots. The Plant Cell,2007,19:2169-2185.
    Ruzicka K., Ljung K., Vanneste S., etc. Ethylene Regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. The Plant Cell,2007,19:2197-2212.
    Sondergaard T.E., Schulz A., Palmgren M.G. Energization of transport processes in plants. Roles of the plasma membrane H+-ATpase. Plant Physiology,2004,136:2475-2482.
    Swarup R., Perry P., Hagenbeek D., etc. Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. The Plant Cell,2007,19:2186-2196.
    Zhao R., Dielen V., Kinet J.M. Cosuppression of a plasma membrane H+-ATPase isoform impairs sucrose translocation, stomatal opening, plant growth, and male fertility. Plant Cell, 2000,12:535-546.
    川田信一郎著(申廷秀、刘执钧、彭望瑗翻译),水稻的根系.农业出版社,中国北京,1984.
    戴高兴,邓国富,周萌.水稻低磷胁迫研究进展.广西农业科学,2006,37(6):671-675.
    郭再华,贺立源,徐才国.磷水平对不同耐低磷水稻苗根系生长及氮、磷、钾吸收的影响.应用与环境生物学报,2006,12(4):449-452.
    李德华,向春雷,郭再华,等.低磷胁迫下不同水稻品种根系生理特性的研究.华中农业大学学报,2006,25(6):626-629.
    李永夫,罗安程,黄继德,等.不同磷效率水稻基因型根系形态和生理特性的研究。浙江大学学报(农业与生命科学版),2006,32(6):658-664.
    李永夫,罗安程,魏兴华,等.水稻利用难溶性磷酸盐的基因型差异及其与根系分泌物活化特性的关系.中国水稻科学,2006,20(5):493498.
    张成良,姜伟,肖叶青,等.水稻根系研究现状与展望.江西农业学报,2006,18(5):23-27.
    Aono T., Kanada N., Ijima A., etc. The reponse of the phosphate uptake system and the organic acid exudation system to phosphate starvation in Sesbania rostrata. Plant Cell Physiology,2001, 42(11):1253-1264.
    Arango M. The plasma membrane proton pump ATPase:the significance of gene subfamilies. Planta, 2003,216:355-365.
    Baxter I., Tchieu J., Sussman M.R, etc. Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice. Plant Physiology,2003,132(2):618-622
    Delhaize E. Randall P.J. Characterization of a phosphate-accumulator mutant of thaliana. Plant Physiology,1995,107:207-213.
    Ding Y., Luo W., Xu G. Characterization of magnesium nutrition and interaction of magnesium and potassium in rice. Annals of Applied biology,2006,149:111-123.
    Dong B., Rengel Z., Delhaize E. Uptake and translocation of phosphate by pho2 mutant and wild-type seedlings of Arabidopsis thaliana. Planta,1998,205:251-256.
    Forno D.A., Cock GH., Gomez K.A. Laboratory Manual for physiological Studies of Rice. Los Banos, Laguna, Philippines:International Rice Research Institute,1971.
    Goh C.-H., Jung K.-H., Roberts S.K. etc. Cytosolic ATP for activation of outward-rectifying K+ channels in mesophyll protoplast of chlorophyll-deficient mutant rice (OsCHLH) seedlings. Journal of Biological Chemistry,2003,279(8):6874-6882.
    Hermans C, Hammond J.P., White P.J., etc. How do the plants respond to nutrient shortage by biomass allocation? Trends in Plant Science,2006, 11(12):610-617.
    Kai M., Takazumi K., Adachi H., etc. Cloning and characterization of four phosphate transporter cDNAs in tobacco. Plant Science,2002,163(4):837-846
    Liu J.Q., Samac D.A., Bucciarelli B., etc. Signaling of phosphorus deficiency-induced gene expression in white lupin require sugar and phloem transport. The Plant Journal,2005,41(2):257-268
    Palmgren M.G Plant plasma membrane H+-ATPase:powerhouse for nutrient uptake. Annual Review Plant Physiology Plant Molecule Biology,2001,52:817-8
    Palmgren M.G, Harper J.F. Pumping with plant P-type ATPase. Journal of Experimental Botany,1999, 50:883-893.
    Poirier Y., Thoma S., Somerville C., etc. A mutant of Arabidopsis deficient in xylem loading of phosphate. Plant Physiology,1991,97:1087-1093.
    Raghothama K.G. Phosphate transporter and signaling. Current Opinion in Plant Biology,2000, 3(3):182-187
    Requena N., Breuninger M., Franken P., etc. Symbiotic status, phosphate, and sucrose regulate the Expression of two plasma membrane H+-ATPase genes from the mycorrhizal fungus Glomus mosseae. Plant Physiology,2003,132:1540-1549.
    Sakano K. Proton/phosphate stoichiometry in uptake of inorganic phosphate by cultured cells of Catharanthus roseus (L.). G. Don. Plant Physiology,1990,93:479-483.
    Shane M.W. Lambers H. Systemic suppression of cluster-root formation and net P-uptake rates in Grevillea crithmifolia at elevated P supply:a proteacean with resistance for developing symptoms of'P toxicity'. Journal of Experimental Botany,2006,57(2):413-423.
    Shen H., Chen J., Wang Z., etc. Root plasma membrane H+-ATPase is involved in the adaptation of sorbean to phosphorus starvation Journal of experimental Botany 2006,57(6):1353-1362
    Smith F.W., Mudge S.R., Rae A.L. etc. Phosphate transport in plants. Plant and Soil,2003,248:71-83
    Teis E. S.. Alexander S., and Palmgren M.G. Energization of transport processes in plants. Roles of the plasma membrane H+-ATpase Plant Physiology 2004,136:2475-2482
    Ullrich-Eberius C.I., Novacky A., Fischer E., etc. Relationship between energy dependent phosphate uptake and the electrical membrane potential in Lemna gibba G1. Plant Physiology,1981,67: 797-801.
    Ulrich-Eberius C.I., Novacky A., Van Bel A.J.E., Phosphate uptake in Lemna gibba G1:energetics and kinetics. Planta,1984,161:46-52.
    Versaw W.K, Harrison M.J. A chloroplast phosphate transporter, PHT2;1, influence allocation of phosphate within the plant and phosphate-starvation response. The Plant cell,2002, 14(8):1751-1766
    Walters R.G., Ibrahim D.G., Horton P., etc. A mutant of Arabidopsis lacking the triose-phosphate/ phosphate translocator reveals metabolic regulation of Starch breakdown in the light. Plant Physiology,2004,135:891-906.
    Yan., Zhu Y., Muller C., Zorb C., etc. Adaptation of H+-pumping and plasma membrane H+-ATPase activity in proteoid roots of white lupin under phosphate deficiency. Plant Physiology,2002, 129:50-63.
    Zhao R., Dielen V., Kinet J.M. Cosuppression of a plasma membrane H+-ATPase isoform impairs sucrose translocation, stomatal opening, plant growth, and male fertility. Plant Cell,2000, 12:535-546.
    单树花,宋克敏,刘晶如,等.磷饥饿下番茄幼苗根系液泡膜H+-ATPase活性的适应性变化.植物生理与分子生物学学报,2006,32(6):685-690.
    Aas L., Rengel A., Tang C. The effect of Nitrogen nutritionon cluster root formation and proton extrusion by Lupinus Albus. Annals of Botany,2002,89:435-442.
    Baxter I., Tchieu J., Sussman M.R., etc. Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice. Plant Physiology,2003,132(2):618-622.
    Goh C.-H., Jung K.-H., Roberts S.K. etc. Cytosolic ATP for activation of outward-rectifying K+ channels in mesophyll protoplast of chlorophyll-deficient mutant rice (OsCHLH) seedlings. Journal of Biological Chemistry,2003,279(8):6874-6882.
    Hermans C., Hammond J.P., White P.J., etc. How do the plants respond to nutrient shortage by biomass allocation? Trends in Plant Science,2006, 11(12):610-617.
    Hirano M. Hirano T. Positive and negative regulation of SMC-DNA interactions by ATP and accessory proteins. The EMBO Journal,2004,23:2664-2673.
    Hua L.P, Chen M., Wang B.S. Effect of K+nutrition growth and activity of leaf tonoplast V-H+-ATPase and V-H+-PPase of Suaeda salsa under NaCl stress. Acta Botanica Sinica,2002,44(4):433-440.
    Li C., Geering K. Horisberger J.-D. The third sodium binding site of Na, K-ATPase is functionally linked to acidic pH-activated inward current. The Journal of Membrane Biology,2006,213:1-9.
    Michelet B., Lukaszewiez M., Dupriez V., etc. plant plasma membrane proton-ATPase gene is regulated by development and environment and shows signs of a translational regulation. The Plant Cell, 1994,6:1375-1389.
    Moore B., Zhou L., Rolland F., etc. Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science,2003,300:332-336
    Palmgren M.G. Plant plasma membrane H+-ATPase:powerhouse for nutrient uptake. Annual Review Plant Physiology Plant Molecule Biology,2001,52:817-845.
    Reyes N., Gadsby D.C. Ion permeation through the Na+, K+-ATPase. Nature,2006,443:470-474.
    Sondergaard T.E., Schulz A., Palmgren M.G Energization of transport processes in plants. Roles of the plasma membrane H+-ATpase. Plant Physiology,2004,136:2475-2482.
    Stimac R., Kerek F. Apell H.-J. Mechanism of the Na,K-ATPase inhibition by MCS derivatives. The Journal of Membrane Biology,2005,205:89-101.
    Ueno K., Kinoshita T., Inoue S., etc. Biochemical characterization of plasma membrane H+-ATPase activation in guard cell protoplasts of Arabidopsis thaliana in response to blue light. Plant and Cell Physiology,2005,46(6):955-969.
    Vitart V., Baxter I., Doerner P., etc. Evidence for a role in growth and salt resistance of a plasma membrane H+-ATPase in the root endodermis. The Plant Journal,2001,27:191-201.
    狄廷均,朱毅勇,仇美华等.水稻根系细胞膜H+-ATPase对铵硝营养的响应差异中国水稻科学,2007,21(4):360-366
    狄廷均,朱毅勇,许征宇等.小白菜体内硝酸盐积累与其细胞膜上H+-ATPase的关系.中国农业科学,2008,40(1):162-168.
    黄国存,周洪显,崔四平等.水分胁迫对玉米幼叶质膜ATPase活性影响及其与钙调素和渗透调节的关系.华北农学报,1997,12(1):30-33.
    焦新之,倪晋山.小麦离体根K+吸收能力的诱导提高与原生质膜-ATP酶活性及膜磷脂/膜蛋白比例变化的关系.实验生物学报,1981,14(3)229-237.
    朱祝军,钱亚榕,Pfelffe W.氮素形态对番茄根系液泡膜焦磷酸酶活性的影响.植物学报,2001,43(11):1146-1149.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700