新型碳质纳米材料的功能化及其在吸波、直接甲醇燃料电池中的应用、分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本博士学位论文在前人相关研究的基础上,采用化学镀和液相还原法,制备了镍1-x-钴x-磷/多壁碳纳米管(Ni1-xCox/MWNTs)、镍-钴-磷/碳化硅(Ni-Co-P/SiC)、镍/化学转化石墨烯(Ni/CCG)、铂/化学转化石墨烯(Pt/CCG)、铂/多壁碳纳米管(Pt/MWNTs)五种新型纳米材料;用扫描电子显微镜(SEM)、透射电子显微镜(TEM)研究了这些材料的形貌特征:用X射线粉末衍射仪(XRD)、X光电子能谱仪(XPS)、X射线能谱仪(EDX)分析了这些材料的晶格结构和元素组成;用振动样品磁强计(VSM)、矢量网络分析仪分析了Ni1-xCoxP/MWNTs、Ni-Co-P/SiC和Ni/CCG的磁学、吸波性质;用电化学方法研究了Pt/CCG、Pt/MWNTs作为直接甲醇燃料电池催化剂的催化性能。研究内容主要包括:
     1.将多壁碳纳米管用浓硝酸煮沸处理、SnCl2、PdCl2溶液敏化活化之后,在自配的化学镀Ni-Co溶液(Ni:Co=1:3、1:1、3:1)中施镀,得到Ni1-xCoxP/MWNTs复合材料(x=0.75,0.50,0.25,Ni1-xCoxP的粒径分布在8-18nm)。XRD数据显示,与MWNTs复合的Ni1-xCoxP纳米粒子在经过热处理之后具有晶格结构,以不规则的点状结构分散在MWNTs的外壁上。样品的磁学性能测量结果指出,所制备材料的矫顽力和磁化强度都随着Ni含量的增加而降低。在频率2-18GHz范围内,Ni1-xCoxP/MWNTs-石蜡的混合物的复介电常数值随着Ni含量的增加而降低;复数磁导率只有微小的增加。随着Ni含量的降低,所制备材料的电磁波反射损失最高峰向低频区域移动,并且当x=0.75且匹配厚度为2.5mm时,在7.75GHz处出现最大的反射损失-26.84dB。
     2.使用两步活化法的化学镀技术,将Pd活化后的SiC放入自配的Ni-Co溶液中施镀得到Ni-Co-P/SiC复合材料。形貌和结构分析证明Ni-Co-P的颗粒均匀性好,并且在热处理之后由α-Co和Ni3P组成。磁学性质分析和微波吸收测试结果表明,Ni-Co-P/SiC的饱和磁化强度以及矫顽力都比较低,具有较高的介电常数值,磁损耗对材料的微波吸收性能也有一定的贡献。电磁波反射损失测量结果显示,当起始溶液中Ni-Co的原子比例为1.5时,最大的反射损失值是-32dB,此时的匹配厚度为2.5mm、频率为6.30GHz。
     3.使用水合肼还原法,用NiSO4、氧化石墨(Graphite Oxide, GO)分别作为Ni和碳质载体的来源,制备了Ni/CCG复合材料。磁学性质分析结果表明,所制备的Ni/CCG呈现出铁磁性质,有望在吸波材料,磁记录领域等方面得到应用。
     4.将石墨粉氧化成GO,再将其在氯铂酸-乙二醇-水溶液体系中还原,得到Pt/CCG复合材料;用相似的方法对MWCNT进行处理,得到Pt/MWCNT复合材料。然后对比这两种材料作为直接甲醇燃料电池催化剂的催化性能,证明Pt/CCG和Pt/MWCNT的电化学活性表面积分别是36.27m2/g和33.43m2/g。Pt/CCG具有更强的CO中毒忍耐力,显示出增强的电催化氧化甲醇的活性。
In recent years, the problem of electromagnetic interference (EMI) has drawn considerable attention due to the explosive growth in the application of electronic devices such as mobile phone, local area network, personal computers and radar systems. The conventional absorbing materials such as ferrites and metallic materials have been studied widely. Although presenting good absorption properties these materials are too heavy. An alternative approach is coating support media of low density with polymer or metallic materials. The recent development in absorber technology is to produce absorbers that are thin, flexible and strong. Carbon nanotubes, grapheme and SiC are exactly suitable as a supporting media for this purpose because of their low density, good thermal and chemical stabilization.
     Graphene, one-atom thick planar sheet of hexagonally arrayed sp2 carbon atoms, exhibits excellent physical and chemical properties, which makes it promising for potential applications in many technological fields, such as nanoelectronics, sensors, nanocomposites, batteries, supercapacitors and hydrogen storage. Especially, graphene has potential application as a heterogeneous catalyst support in direct methanol fuel cells. In comparison with CNTs, graphene not only possesses similar stable physical properties but also larger surface areas. Combination of graphene and functional nanoparticles may lead to materials with interesting properties for a variety of applications, and they are specifically expected to have enhanced electrocatalytic activity. The contents of this thesis are as follows:
     1. Ni1-xCox Palloy nanoparticles (x=0.25,0.50,0.75), with diameters in the range of 8-18nm were uniformly attached on the surface of multi-walled carbon nanotubes (MWNTs) by electroless plating, which were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectrometry (EDX), X-ray diffraction analysis (XRD), vibrating sample magnetometer (VSM) and vector network analyzer, respectively. Magnetization measurement indicates that both coercivities and saturation magnetizations decreased linearly with increasing Ni concentration in Ni-Co-P deposits. The complex permittivities of MWNTs-olefin matrix composites also decreased linearly with increasing Ni concentration while the complex permeabilities increased slightly, which were measured in the range of 2-18GHz. The microwave absorbing properties enhanced with increasing Co concentration and a maximum reflection loss of-26.84dB was obtained at the frequency of 7.75GHz when the matching thickness was 2.5mm and x=0.75.
     2. Silicon carbide particles reinforced nickel-cobalt-phosphorus matrix composite coatings were prepared by two-step electroless plating process (pre-treatment of sensitizing and subsequent plating) for the application to lightweight microwave absorbers, which were characterized by scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), vibrating sample magnetometer (VSM) and vector network analyzer, respectively. The results show that Ni-Co-P deposits are uniform and mixture crystalline of a-Co and Ni3P and exhibit low specific saturation magnetization and low coercivity. Due to the conductive and ferromagnetic behavior of the Ni-Co thin films, high dielectric constant and magnetic loss can be obtained in the microwave frequencies. The maximum microwave loss of the composite powder less than-32 dB was found at the frequency of 6.30 GHz with a thickness of 2.5mm when the initial atomic ratio of Ni-Co in the plating bath is 1.5.
     3. A magnetic hybrid of chemically converted graphene (CCG) and nickel nanoparticles was synthesized by chemical reduction using hydrazine as a reducing agent. The Ni/CCG hybrid was characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and vibrating sample magnetometer (VSM). The results show that Ni nanoparticles were uniformly dispersed on the surface of CCG sheets and its main particle sizes were distributed in the range of 35-40nm. Magnetic measurement indicates that Ni/CCG exhibits typical ferromagnetic behavior, which makes it promising applications in electronic-magnetic nanodevices, absorbing mateials and data storage systems.
     4. We have investigated a simple approach for the deposition of platinum (Pt) nanoparticles onto surfaces of graphite oxide (GO) nanosheets with particle size in the range of 1-5 nm by ethylene glycol reduction. During Pt deposition, a majority of oxygenated functional groups on GO was removed, which resulted in a Pt/chemically converted graphene (Pt/CCG) hybrid. The electrochemically active surface areas of Pt/CCG and a comparative sample of Pt/multi-walled carbon nanotubes (Pt/MWCNT) are 36.27 m2/g and 33.43 m2/g, respectively. The Pt/CCG hybrid shows better tolerance to CO for electro-oxidation of methanol compared to the Pt/MWCNT catalyst. Our study demonstrates that CCG can be an alternative two-dimensional support for Pt in direct methanol fuel cells.
引文
[1]H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, R. E. Smalley. C60: Buckminsterfullerene. Nature,1985,318:162-163.
    [2]S. Iijima. Helical microtubules of graphitic carbon. Nature,1991,354:56-58.
    [3]S. Iijima, T. Ichihashi. Single-shell carbon nanotubes of 1-nm diameter. Nature,
    1993,363:603-605.
    [4]D. S. Bethune, C. H. Klang, M. S. De Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature,1993,363:605-607.
    [5]S. J. Tans, M. H. Devoret, H. J. Dai, A. Thess, R. E. Smalley, L. J. Geerligs, C. Dekker. Individual single-wall carbon nanotubes as quantum wires. Nature,1997, 386:474-477.
    [6]W. Z. Li, C. H. Liang, J. S. Qiu, W. J. Zhou, H. M. Han, Z. B. Wei, G Q. Sun, Q. Xin. Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell. Carbon,2002,40:787-803.
    [7]W. Z. Li, C. H. Liang, W. J. Zhou, J. S. Qiu, Z. H. Zhou, G Q. Sun, Q. Xin. Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells.J. Phys. Chem. B,2003, 107(26):6292-6299.
    [8]A. G Rinzler, J. H. Hafner, P. Nikolaev. P. Nordlander, D. T. Colbert, R. E. Smalley, L. Lou, S. G. Kim, D. Tomanek. Unraveling nanotubes:field emission from an atomic wire. Science,1995,269:1550-1553.
    [9]A. C. Dillon, K. M. Jones, T. A. Bekkedahl. C. H. Kiang, D. S. Bethune, M. J. Heben. Storage of hydrogen in single-walled carbon nanotubes. Nature,1997,386: 377-379.
    [10]Y. Ye, C. C. Ahn, C. Witham, B. Fultz, J. Liu, A. G Rinzler, D. Colbert, K. A. Smith, R. E. Smalley. Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Appl/Phys. Lett.,1999,74(16):2307-2309.
    [11]J. M. Planeix, N. Coustel, B. Coq, V. Brotons, P. S. Kumbhar, R. Dutartre, P. Geneste, P. Bernier, P. M. Ajayan. Application of carbon nanotubes as supports in heterogeneous catalysis. J.Am. Chem. Soc.,1994,116(17):7935-7936.
    [12]B. Coq, J. M. Planeix, V. Brotons. Fullerene-based materials as new support media in heterogeneous catalysts by metals. AppL CataL A-Gen.,1998,173(2):175-183.
    [13]Y. Zhang, H. B. Zhang, G D. Lin, P. Chen, Y. Z. Yuan, K. R. Tsai. Preparation, characterization and catalytic hydroformylation properties of carbon nanotubes- supported Rh-phosphine catalyst. Appl. Catal. A-Gen.,1999,187:213-224.
    [14]C. H. Liang, Z. L. Li, J. S. Qiu, C. Li. Graphitic nanofilaments as novel support of Ru-Ba catalysts for ammonia synthesis.J. Catal,2002,211:278-282.
    [15]H. Z. Zhang, J. S. Qiu, C. H. Liang. Z. L. Li, X. N. Wang, Y. P. Wang, Z. C. Feng, C. Li. A novel approach to Co/CNTs catalyst via chemical vapor deposition of organometallic compounds. Catal. Lett.,2005,101(3-4):211-214.
    [16]K. P. de Jong, J. W. Geus. Carbon nanofibers:catalytic synthesis and applications. Catal. Rev.-Sci. Eng.,2000,42(4):481-510.
    [17]Z. W. Pan, S. S. Xie, B. H. Chang, C. Y. Wang, L. Lu, W. Liu, M. Y. Zhou, W. Z. Li, L. X. Qian. Very Long carbon nanotubes. Nature,1998,394:631-632.
    [18]T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, T. Thio. Electrical conductivity of individual carbon nanotubes. Nature,1996,382:54-56.
    [19]X. Zhou, J. J. Zhou, Z. C. Ou-Yang. Strain energy and Young's modulus of single-wall carbon nanotubes calculated from electronic energy-band theory. Phys. Rev. B,2000,62(20):13692-13696.
    [20]M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson. Exceptionally high Young's modulus observed for individual carbon nanootubes. Nature,1996,381:678-680.
    [21]E. W. Wong, P. E. Sheehan, C. M. Liber. Nanobeam mechanics elasticity, strength, and toughness of nanorods and nanotubes. Science,1997,277:1971-1975.
    [22]C. Bower, R. Rosen, L. Jin, J. Han, O. Zhou. Deformation of carbon nanotubes in nanotube-polymer composites. Appl. Phys. Lett.,1999,74(22):3317-3319.
    [23]S.Iijima, C. Brabec, A. Maiti. J. Bernholc. Structural flexibility of carbon nanotubes. J. Chem. Phys.,1996,104(5):2089-2092.
    [24]C. F. Cornwell, L. T. Wille. Elastic properties of single-walled carbon nanotubes in compression. Solid State Commum.,1997,101(8):555-558.
    [25]邹红玲,杨延莲,武斌,卿泉,李清文,张锦,刘忠范。CVD法制备单壁碳纳米管的纯化与表征。Acta Phys.-Chim. Sin.,2002,18(5):409-413.
    [26]F. Li, H. M. Cheng, Y. T. Xing, P. H. Tan, G. Su. Purification of single-walled carbon nanotubes synthesized by the catalytic decomposition of hydrocarbons. Carbon,2000,38(14):2041-2045.
    [27]E. Mizoguti, F. Nihey, M. Yudasaka, S. Iijima, T. Ichihashi, K. Nakamura. Purification of single-wall carbon nanotubes by using ultrafine gold particles. Chem. Phys. Lett.,2000,321(3-4):297-301.
    [28]S. Bandow, A. M. Rao, K. A. Williams, A. Thess, R. E. Smalley, P. C. Eklund. Purification of single-wall carbon nanotubes by microfiltration.J. Phys. Chem. B, 1997,101(44):8839-8842.
    [29]T. W. Ebbesen, P. M. Ajayan, H. Hiura, K. Tanigaki. Purification of nanotubes. Nature,1994,367:519-519.
    [30]A. C. Dillon, T. Gennett, K. M. Jones, J. L. Alleman, P. A. Parilla, M. J. Heben. A simple and complete purification of single-walled carbon nanotube materials. Adv. Mater.,1999,11(16):1354-1358.
    [31]姜晓霞,沈伟。化学镀理论及实践。第一版。北京。国防工业出版社。2002,2。
    [32]L. M. Ang, T. S, Andy Hor, G Q. Xu, C. H. Tung, S. P. Zhao, J. L. S. Wang. ELectroless plating of methals onto carbon nanotubes activated by a single-step activation method. Chem. Mater.,1999,11:2115-2118.
    [33]Y. J. Li, C. Z. Zhu, C. M. Wang. Controllable synthesis, characterization and microwave absorption properties of magnetic Ni1-xCoxP alloy nanoparticles attached on carbon nanotubes. J. Phys. D:AppL Phys.,2008,41:125303-125310.
    [34]W. X. Chen, J. Zhao, J. Y. Lee, Z. L. Liu. Microwave heated polyol synthesis of carbon nanotubes supported Pt nanoparticles for methanol eletrooxidation. Mater. Chem. Phys.,2005,91(1):124-129.
    [35]J. H. Bitter, M. K. van der Lee, A. G. T. Slotboom. A. J. van Dillen, K. P. de Jong. Synthesis of highly loaded highly dispersed nickel on carbon nanofibers by homogeneous deposition-precipitation. Catal. Lett.,2003,89(1-2):139-142.
    [36]M. L. Toebes, F. F. Prinsloo, J. H. Bitter, A. J. van Dillen, K. P. de Jong. Influence of oxygen-containing surface groups on the activity and selectivity of carbon nnaofiber-supported ruthenium catalysts in the hydrogenation of cinnamaldehyde. J. Catal.,2003,214:78-87.
    [37]E. van Steen, F. F. Prinsloo. Comparison of preparation methods for carbon
    nanotubes supported iron fischer-tropsch catalysts. CataL Today,2002,71: 327-334.
    [38]R. Q. Yu, L. W. Chen, Q. P. Liu, J. Y. Lin, K. L. Tan, S. C. Ng, H. S. O. Chan, G. Q. Xu, T. S. Andy Hor. Platinum deposition on carbon nanotubes via chemical modification. Chem. Mater.,1998,10:718-722.
    [39]P. Serp, R. Feurer, J. L. Faria, J. L. Figueiredo. Controlled-growth of platinum nanoparticles on carbon naotubes or nanospheres by MOCVD in fluidized bed reactor.J. Phys. IV,2002,12(4):29-36.
    [40]P. M. Ajayan, O. Stephan, C. Colliex, D. Trauth. Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science,1994,265: 1212-1214.
    [41]L. S. Schadler, S. C. Giannaris, P. M. Ajayan. Load transfer in carbon nanotubes epoxy composites. Appl. Phys. Lett.,1998,73(26):3842-3844.
    [42]M. S. P. Shaffer, A. H. Windle. Fabrication and characterization of carbon nanotube/poly (vinyl alcohol) composites. Adv. Mater.,1999,11(11):937-941.
    [43]J. H. Fan, M. X. Wan, D. B. Zhu, B. H. Chang, Z. W. Pan, S. S. Xie. Synthesis, characterizations and physical properties of carbon nanotubes coated by conducting polypyrrole. J.Appl. Poly. Sci.,1999,74(11):2605-2610.
    [44]C. A. Grimes, C. Mungle, D. Kouzoudis, S. Fang, P. C. Eklund. The 500 MHz to 5.50 GHz complex permittivity spectra of single-wall carbon nannotube-loaded polymer composites. Chem. Phys. Lett.,2000,319(5-6):460-464.
    [45]B. McCarthy, J. N. Coleman, R. Czerw, A. B. Dalton, H. J. Byrne, D. Tekleab, P. Iyer, P. M. Ajayan, W. J. Blau, D. L. Carroll. Complex nano-asseblies of polymers and carbon nanotubes. Nanotechnology,2001,12:187-190.
    [46]Y. K. Zhou, B. L. H, W. J. Zhou, J. Hung, X. H. Li, B. Wu, H. L. Li. Electrochemical capacitance of well-coated single-walled carbon nanotube with polyaniline composites. Electrochim Acta,2004,49(2):257-262.
    [47]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. Electric field effect in atomically thin carbon films. Science,2004,306:666-669.
    [48]C. G. Lee, X. D. Wei, J. W. Kysar, J. Hone. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science,2008,321:385-388.
    [49]J. H. Chen, C. Jang, S. D. Xiao, M. Ishigami, M. S. Fuhrer. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat NanotechnoL,2008,3: 206-209.
    [50]S. Stankovich, D. A. Dikin, G H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff. Graphene-based composite materials. Nature,2006,442:282-286.
    [51]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov. Two-dimensional gas of massless Dirac fermions in graphene. Nature,2005,438:197-200.
    [52]Y. B. Zhang, Y. W. Tan, H. L. Stormer, P. Kim. Experimental observation of the quantum hall effect and berry's phase in graphene. Nature,2005,438:201-204.
    [53]C. P. Burgess, B. P. Dolan. Quantum hall effect in graphene:emergent modular symmetry and the semicircle law. Phys. Rev. B,2007,76(11):113406.
    [54]K. Ziegler. Minimal Conductivity of graphene:nonuniversal values from the Kubo formula. Phys. Rev. B,2007,75(23):233407.
    [55]A. K. Geim, K S. Novoselov. The rise of graphene. Nat. Mater.,2007,6:183-191.
    [56]K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, A. K. Geim. Room-temperature quantum hall effect in graphene. Science,2007,315:1379.
    [57]P. W. Sutter, J.-I, Flege, E. A. Sutter. Epitaxial graphene on ruthenium. Nat. Mater.,2008,7:406-411.
    [58]C. Berger, Z. M. Song, T. B. Li, X. B. Li, A. Y. Ogbazghi, R. Feng, Z. T. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B,2004,108(52); 19912-19916.
    [59]C. Berger, Z. M. Song, X. B. Li, X. S. Wu, N. Brown, C. Naud, D. Mayou, T. B. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer. Electronic
    confinement and coherence in patterned epitaxial graphene. Science,2006,312: 1191-1196.
    [60]K. S. Kim. Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B. H. Hong. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature,2009,457:706-710.
    [61]A. Reina, X. T. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, J. Kong. Large area, Few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett.,2009,9(1):30-35.
    [62]X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science,2009,324: 1312-1314.
    [63]W. S. Hummers, R. E. Offeman. Preparation of graphitic oxide.J. Am. Chem. Soc., 1958,80:1339.
    [64]B. C. Brodie. Sur le poids atomique du graphite. Ann. Chim Phys,1860,59: 466-472.
    [65]L. Staudenmaier. Verfahren zur darstellung der graphitsaure. Ber. Dtsch. Chem. Ges.,1898,31:1481-1499.
    [66]H. He, T. Riedl, A. Lerf, J. Klinowski. Solid-state NMR studies of the structure of graphite oxide.J. Phys. Chem.,1996,100:19954-19958.
    [67]H. He, J. Klinowski, M. Forster, A. Lerf. A new structural model for graphite oxide. Chem. Phys. Lett.,1998,287:53-56.
    [68]A. Lerf, H. He, M. Forster, J. Klinowski. Structure of graphite oxide revisited. J. Phys. Chem. B,1998,102:4477-4482.
    [69]W. W. Cai, R. D. Piner, F. J. Stadermann, S. J. Park, M. A. Shaibat, Y. Ishii, D. X. Yang, A. Velamakanni, S. J. An, M. Stroller, J. H. An, D. M. Chen, R. D. Ruoff. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science,2008,321:1815-1817.
    [70]S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon,2007,45:1558-1565.
    [71]J. R. Lomeda, C. D. Doyle, D. V. Kosynkin, W. F. Hwang, J. M. Tour. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets.J. Am. Chem. Soc.,2008,130:16201-16206.
    [72]V. C. Tung, M. J. Allen, Y. Yang, R. B. Kaner. High-throughput solution processing of large-scale graphene. Nat. Nanotech.,2008,4:25-29.
    [73]G. X. Wang, J. Yang, J. S. Park, X. L. Gou, B. Wang, H. Liu, J. Yao. Facile synthesis and characterization of graphene nanosheets.J. Phys. Chem. C,2008, 112:8192-8195.
    [74]Y. C. Si, E. T. Samulski. Synthesis of water soluble graphene. Nano Lett.,2008, 8(6):1679-1682.
    [75]R. Muszynski, B. Seger, P. V. Kamat. Decorating graphene sheets with gold nanoparticles.J. Phys. Chem. C,2008,112:5263-5266.
    [76]W. Gao, L. B. Alemany, L. J. Ci, P. M. Ajayan. New insights into the structure and reduction of graphite oxide. Nat. Chem.,2009,1:403-408.
    [77]H. C. Schniepp, J.-L. Li, M. J. McAllister, H. Sai, M. Herrera-Alouso, D. H. Adamson, R. K. Prud'homme, R. Car, D. A. Saville, I. A. Aksay. Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B, 2006,110:8535-8539.
    [78]M. J. McAllister, J.-L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso. D. L. Milius, R. Car, R. K. Prud'homme, I. A. Aksay. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater.,2007,19:4396-4404.
    [79]G. Williams, B. Serger, P. V. Kamat. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano,2008,2(7):1487-1491.
    [80]K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J, Hone, P. Kim, H. L. Storner. Ultrahigh electron mobility in suspended graphene. Solid State Commun., 2008,146:351-355.
    [81]L. Song, L. J. Ci, W. Gao, P. M. Ajayan. Transfer printing of graphene using gold film. ACS Nano,2009,3(6):1353-1356.
    [82]M. D. Stoller, S. J. Park, Y. W. Zhu, J. H. An, R. S. Ruoff. Graphene-based ultracapacitors. Nano Lett.,2008,8(10):3498-3502.
    [83]S. R. C. Vivekchand, C. S. Rout, K. S. Subrahmanyam, A. Govindaraj, C. N. R. Rao. Graphene-based electrochemical supercapacitors.J. Chem. Sci.,2008,120(1): 9-13.
    [84]D. H. Wang, D. W. Choi, J. Li, Z. G Yang, Z. M. Nie, R. Kou, D. H. Hu, C. M. Wang, L. V. Saraf, J. G. Zhang, I. A. Aksay, J. Liu. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS nano,2009,3(4): 907-914.
    [85]E. J. Yoo, J. Kin, E. Hosono, H. S. Zhou, T. Kudo, I. Honma. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett.,2008,8(8):2277-2282.
    [86]M. Khantha, N. A. Cordero, L. M. Molina, J. A. Alonso, L. A. Girifalco. Interaction of lithium with graphene:an ab initio study. Phys. Rev. B,2004,70(12):125422.
    [87]X. Wang, L. J. Zhi, K. Mullen. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett.,2008,8(1):323-327.
    [88]J. B. Wu, H. A. Becerril, Z. N. Bao, Z. F. Liu, Y. S. Chen, P. Peumans. Organic solar cells with solution-processed graphene transparent electrodes. AppL Phys. Lett,2008,92(6):263302.
    [89]Q. Liu, Z. F. Liu, X. Y. Zhang, N. Zhang, L. Y. Yang, S. Yin, Y. S. Chen. Organic photovoltaic cells based on an acceptor of soluble graphene. AppL Phys. Lett, 2008,92(22):223303.
    [90]X. L. Li, G. Y. Zhang, X. D. Bai, X. M. Sun, X. R. Wang, E. Wang, H. J. Dai. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol.,2008,3:538-542.
    [91]C. Xu, X. Wang, J. W. Zhu. Graphene-metal particle nanocomposites.J. Phys. Chem. C,2008,112(50):19841-19845.
    [92]Y. C. Si, E. T. Samulski. Exfoliated graphene separated by platinum nanoparticles. Chem. Mater.,2008,20(21):6792-6797.
    [93]B. Seger, P. V. Kamat. Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells. J. Phys. Chem. C, 2009,113(19):7990-7995.
    [94]E. J. Yoo, T. Okata, T. Akita, M. Kohyama, J. Nakamura, I. Honma. Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano Lett.,2009,9(6):2255-2259.
    [95]Y. J. Li, W. Gao, L. J. Ci, C. M. Wang, P. M. Ajayan. Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation. Carbon, 2010,48:1124-1130.
    [96]P. K. Ang, W. Chen, A. T. S. Wee, K. P. Loh. Solution-gated epitaxial graphene as pH sensor.J. Am. Chem. Soc.,2008,130(44):14392-14393.
    [97]F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, K. S. Novoselov. Detection of individual gas molecules adsorbed on graphene. Nat Mater.,2007,6:652-655.
    [98]R. S. Sundaram, C. Gomez-Navarro, K. Balasubramanian, M. Burghard, K. Kern. Electrochemical modification of graphene. Adv. Mater.,2008,20(16):3050-3053.
    [99]J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Q. Wei, P. E. Sheehan. Reduced graphene oxide molecular sensors. Nano Lett,2008,8(10):3137-3140.
    [100]李玉增。半导体碳化硅的研究现状与应用前景。稀有金属,1995,19(3):204-210。
    [101]余继红,江东亮。碳化硅陶瓷的发展与应用。陶瓷工程,1998,32(3):3-11。
    [102]李缨,黄凤萍,梁振海。碳化硅陶瓷的性能与应用。陶瓷,2007,5:36-41。
    [103]龚汩清。碳化硅加热元件的电性能和使用。微细加工技术,1996,2:71-78。
    [104]K. M. Lim, M. C. Kim, K. A. Lee, C. G Park Electromagnetic wave absorption properties of amorphous alloy-ferrite-epoxy composites in quasi-microwave band. IEEE Trans. Magn.,2003,39(3):1836-1841.
    [105]S. Sugimoto, K. Okayama, S. Kondo, H. Ota, M. Kimura, Y. Yoshida, H. Nakamura, D. Book, T, Kagotani, M. Homma. Barium M-type ferrite as an electromagnetic microwave absorbers in the GHz Range. Mater. Trans.,1998, 39(10):1080-1083.
    [106]A. N. Yusoff, M. H. Abdullah, S. H. Ahmad, S. F. Jusoh, A. A. Mansor, S. A. A. Hamid. Electromagnetic and absorption properties of some microwave absorbers. J. Appl. Phys.,2002,92(2):876-882.
    [107]J. R. Liu, M. Itoh, K. Machida. Electromagnetic wave absorption properties of aFe/-Fe3B/Y2O3 nanocomposites in gigahertz range. AppL Phys. Lett.,2003, 83(19):4017-4019.
    [108]A. N. Yusoff, M. H. Abdullah. Microwave electromagnetic and absorption propertyes of some LiZn ferrites.J. Magn. Magn. Mater.,2004,269:271-280.
    [109]M. Porcelli, G Cacciapuoti, S. Fusco, R. Massa, G. d'Ambrosio, C. Bertoldo, M. De Rosa, V. Zappia. Non-thermal effects of microwave on proteins:thermophilic enzymes as model system. FEBS Lett.,1997,402(2-3):102-106.
    [110]J. R. Jauchem, K. L. Ryan, M. R. Frei. Cardiovascular and thermal effects of microwave irradiation at 1 and/or 10 GHz in anesthetized rats. Bioelectromagnetics,2000,21:159-166.
    [111]H. Lai, N. P. Singh. Melatonin and a spin-trap compound block radiofrequency electromagnetic radiation-induced DNA strand breaks in rat brain cells. Bioelectromagnetics,1997,18:446-454.
    [112]B. Veyret, C. Bouthet, P. Deschaux, R. de Seze, M.Geffard, J. Joussot-Dubien, M. le Diraison, J.-M. Moreau, A. Caristan. Antibody responses of mice exposed to low-power microwaves under continued, pulse-and-amplitude modulation. Bioelectromagnetics,1991,12 (1):47-56
    [113]E. Richter, T. Berman, E. Ben-Michael, R. Laster, J. B. Westin. Cancer in radar technicians exposed to radiofrequency/microwave radiation:sentinel episodes. Int.J. Occup. Environ. Health,2000,6(3):187-193.
    [114]曹茂盛,高正娟,朱静。CNTs/Polyester复合材料的微波吸收特性研究。材料工程,2003,2:34-36。
    [115]刘云芳,沈曾民,于建民。活性碳纳米管的孔结构及微波吸收性能的研究。炭素,2005,121:3-6。
    [116]封伟,易文辉,徐友龙,连彦青,王晓工,吉野胜美。聚苯胺-碳纳米管复合体的制备及其光响应。物理学报,2003,52(5):1272-1277。
    [117]杨杰,沈曾民,熊涛。聚苯胺原位包覆碳纳米管材料的制备及性能。新型炭材料,2003,18(2):95-100。
    [118]李宏建,彭景翠,陈小华,夏辉,胡艾希。填充碳纳米管/石墨的复合型电磁波屏蔽膜。化学物理报,2001,14(2):211-215。
    [119]沈曾民,杨子芹,赵东林,陈晓红,赫宁。碳纳米管/ABS树脂基复合材料的力学性能和雷达波吸收性能的研究。复合材料学报,2003,20(2):25-29。
    [120]Z. J. Fan, G H. Luo, Z. F. Zhang, L. Zhou, F. Wei. Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites. Mater. Sci. Eng. B,2006,132:85-89.
    [121]C. S. Zhang, Q. Q. Ni, S. Y. Fu, K. Kurashiki. Electromagnetic interference shielding effect of nanocomposites with carbon nanotube and shape memory polymer. Compos. Sci. Technol.,2007,67:2973-2980.
    [122]P. M. Ajayan, S. Iijima. Capillarity-induced filling of carbon nanotubes. Nature, 1993,361:333-334.
    [123]P. M. Ajayan, O. Stephan, Ph. Redlich, C. Colliex. Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures. Nature, 1995,375:564-567.
    [124]廖宇涛,张兴华。多壁碳纳米管电磁参数的研究和吸波性能模拟。材料导报,2006,20(3):138-140。
    [125]杜光旭,王旭辉,涂国荣,周晓华,赫文祈。Ni-Co化学镀制备陶瓷基吸波材料。无机化学学报,2006,22(2):281-286.
    [126]C. Lamy, J.M. leger, S. Srinivasan. Direct methanol fuel cells:from twentieth century electrochemist's dream to twenty-first century emerging technology, kluwer Academic/Plenum publishers, New York,2001,34:53-138.
    [127]衣宝廉。燃料电池。中国科学基金,1994,3:186-189。
    [128]J. H. irschemhofer, D. B. Stauffer, R. R. Engleman, M. G. Klett, Fuel Cell Handbook, Fourth Edition,1998.
    [129]查全性。燃料电池技术的发展与我国应用化学,1993,10(5):38-42。
    [130]S. J. Kang, J. Y. Lee, J. K. Lee, S. Y. Chung, Y. Tak. Influence of Bi modification of Pt anode catalyst in direct formic acid fuel cells. J. Phys. Chem. B,2006, 110(14):7270-7274.
    [131]K. Y. Chan, J. Ding, J. W. Ren, S. Cheng, K. Y. Tsang. Supported mixed metal nanoparticles as electrocatalysts in low temperature fuel cells.J. Mater. Chem., 2004,14:505-516.
    [132]W. J. Zhou, Z. H. Zhou, S. Q. Song, W. Z. Li, G Q. Sun, P. Tsiakaras, Q. Xin. Pt based anode catalyst for direct ethanol fuel cells. AppL Catal. B-Environ.,2003, 46(2):273-285.
    [133]W. J. Zhou, B. Zhou, W. Z. Li, Z. H. Zhou, S. Q. song, G Q. Sun, Q. Xin, S. Douvartzides, M. Goula, P. Tsiakaras. Performance comparison of low-temperature direct alcohol fuel cells with different anode catalysts. J. Power Sources,2004,126(1/2):16-22.
    [134]W. J. Zhou, W. Z. Li, S. Q. Song, Z. H. Zhou, L. H. Jiang, G Q. Sun, Q. Win, K. Poulianitis, S. Kontou, P. Tsiakaras. Bi-and tri-metallic Pt-based anode catalysts for direct ethanol fuel cells.J. Power Sources,2004,131(1/2):217-223.
    [135]V. Georgakilas, D. Gournis, V. Tzitzios, L. Pasquato, D. M. Guldi, M. Prato. Decorating carbon nanotubes with metal or semiconductor nanoparticles. J. Mater. Chem.,2007,17:2679-2794.
    [136]Y. C. Xing. Synthesis and electrochemical characterization of uniformly-dispersed high loading Pt nanoparticles on sonochemically-treated carbon nanotubes.J. Phys. Chem. B,2004,108(50):19255-19259.
    [137]A. Kongkanand, K. Vinodgopal, S. Kuwabata, P. V. Kamat. Highly diepersed Pt catalysts on single-walled carbon nanotubes and their role in methanol oxidation. J. Phys. Chem. B,2006,110(33):16185-16188.
    [138]L. Li, Y. C. Xing. Pt-Ru nanoparticles supported on carbon nanotubes as methanol fuel cell catalysts. J. Phys. Chem. C,2007,111(6):2803-2808.
    [139]Y. L. Hsin, K. C. Hwang, C. T. Yeh. Poly(vinylpyrrolidone)-modified graphite carbon nanofibers as promising supports for PtRu catalysts in direct methanol fuel cells.J. Am. Chem. Soc.,2007,129(32):9999-10010.
    [140]S. J. Liao, K. A. Holmes, H. Tsaprailis, V. I. Birss. High performance PtRuIr catalysts supported on carbon nanotubes for the anodic oxidation of methanol. J. Am. Chem. Soc.,2006,128(11):3504-3505.
    [141]W. Z. Li, X. Wang, Z. W. Chen, M. Waje, Y. S. Yan. Pr-Ru supported on double-walled carbon nanotubes as high-performance anode catalysts for direct methanol fuel cells.J. Phys. Chem. B,2006,110(31):15353-15358.
    [142]C. C. Chien, K. T. Jeng. Effective preparation of carbon nanotube-supported Pt-Ru electrocatalysts. Mater. Chem. Phys.,2006,99:80-87.
    [143]Y. H. Lin, X. L. Cui, C. H. Yen, C. M. Wai. PtRu/carbon nanotubes nanocomposite synthesized in supercritical fluid:a novel electrocatalyst for direct methanol fuel cells. Langmuir,2005,21(24):11474-11479.
    [144]J. Zhu. Graphene production:New solutions to a new problem. Nat. NanotechnoL,2008,3:528-529.
    [145]D. Li, R. B. Kaner. Graphene-based materials. Science,2008,320:1170-1171.
    [146]S. J. Park, J. H. An, R. D. Piner, I. Jung, D. X. Yang, A. Velamakanni, S. T. Nguyen, R. S. Ruoff. Aqueous suspension and characterization of chemically modified graphene sheets. Chem. Mater.,2008,20(21):6592-6594.
    [147]S. J. Park, R. S. Ruoff. Chemical methods for the production of graphenes. Nat. NanotechnoL,2009,4:217-224.
    [148]A, K. Geim. Graphene:status and prospects. Science,2009,324:1530-1534.
    [1]K. M. Lim, M. C. Kim, K. A. Lee, C. G. Park. Electromagnetic wave absorption properties of amorphous alloy-ferrite-epoxy composites in quasi-microwave band. IEEE Trans. Man.,2003,39(3); 1836-1841.
    [2]S. Sugimoto, K. Okayama, S. I. Kondo, H. Ota, M. Kimura, Y. Yoshida, H. Nakamura, D. Book, T. Kagotani, M. Homma. Barium M-type ferrite as an electromagnetic microwave absorber in the GHz range. Mater, Trans. JIM,1998,
    39(10):1080-1083.
    [3]A. N. Yusoff, M. H. Abdullah, S. H. Ahmad, S. F. Jusoh, A. A. Mansor, S. A. A. Hamid. Electromagnetic and absorption properties of some microwave absorbers. J. Appl. Phys.,2002,92(2):876-882.
    [4]A. N. Yusoff, M. H. Abdullah. Microwave electromagnetic and absorption properties of some LiZn ferrites.J. Magn. Magn. Mater.,2004,269:271-280.
    [5]M. Porcelli, G Cacciapuoti, S. Fusco, R. Massa, G d'Ambrosio, C. Bertoldo, M. De Rosa, V. Zappia. Non-thermal effects of microwaves on proteins:thermophilic enzymes as model system. FEBS Lett.,1997,402:102-106.
    [6]J. R. Jauchem, K. L. Ryan, M. R. Frei. Cardiovascular and thermal effects of microwave irradiation at 1 and/or 10 GHz in anesthetized rats. Bioelectromagnetics, 2000,21:159-166.
    [7]H. Lai, N. P. Singh. Melatonin and a spin-trap compound block radiofrequency electromagnetic radiation-induced DNA strand breaks in rat brain cells. Bioelectromagnetics,1997,18:446-454.
    [8]B. Veyret, C. Bouthet, P. Deschaux, R. de Seze, M. Geffard, J. Joussot-Dubien, M. le Diraison, J.-M. Moreau,A. Caristan. Antibody responses of mice exposed to low-power microwaves under combined, pulse-and-amplitude modulation. Bioelectromagnetics,1991,12(1):47-56.
    [9]E. Richter, T. Berman, E. Ben-Michael, R. Laster, J. B. Westin. Cancer in radar technicians exposed to radiofrequency/microwave radiation:sentinel episodes. Int. J. Occup. Environ. Health,2000,6(3):187-193.
    [10]M. R. Meshram, N. K. Agrawal, B. Sinha, P. S. Misra. Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber. J. Magn. Magn. Mater.,2004,271(2-3):207-214.
    [11]G Z. Shen, Z. Xu, Y. Li. Absorbing properties and structural design of microwave absorbers based on W-type La-dope ferrite and carbon fiber composites. J. Magn. Magn. Mater.,2006,301(2):325-330.
    [12]J. R. Liu, M. Itoh, K. Machida. Electromagnetic wave absorption properties of nanocomposites in gigahertz range. Appl. Phys. Lett.,2003,
    83(19):4017-4019.
    [13]K. Miura, M. Masuda, M. Itoh, T. Horikawa and K.-I. Machida. Microwave absorption properties of the nano-composite powders recovered from Nd-Fe-B bonded magnet scraps.J. Alloy. Compd.,2006,408-412:1391-1395.
    [14]B. S. Zhang, G. Lu, Y. Feng, J. Xiong, H. X. Lu. Electromagnetic and microwave absorption properties of alnico powder composites.J. Magn. Magn. Mater.,2006, 299:205-210.
    [15]Z. J. Fan, G H. Luo, Z. F. Zhang, L. Zhou, F. Wei. Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites. Mater. Sci. Eng. B-Solid State Mater. Adv. Technol.,2006,132:85-89.
    [16]R. C. Che, L. M. Peng, X. F. Duan, Q. Chen, X. L. Liang. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater.,2004,16(5):401-405.
    [17]R. F. Service. Superstrong nanotubes show they are smart, too. Science,1998, 281(5379):940-942.
    [18]H. J. Dai, E. W. Wong, C. M. Lieber. Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science,1996,272(5261):523-526.
    [19]B. Coq, J. M. Planeix, V. Brotons. Fullerene-based materials as new support media in heterogeneous catalysis by metals. Appl. Catal.A-Gen.,1998,173(2):175-183.
    [20]Z. J. Liu, Z. D. Xu, Z. Y. Yuan, D. Y. Lu, W. X. Chen, W. Z. Zhou. Cyclohexanol dehydrogenation over Co/carbon nanotubes catalysts and the effect of promoter K on performance. CataL Lett.,2001,72(3-4):203-206.
    [21]E. S. Steigerwalt, G. A. Deluga, C. M. Lukehart. Pt-Ru/carbon fiber nanocomposites:synthesis, characterization, and perfoemance as anode catalysts of direct methanol fuel cells. A search for exceptional performance.J. Phys. Chem. B, 2002,106(4):760-766.
    [22]G. L. Che, B. B. Lakshmi, C. R. Martin C. R, E. R. Fisher. Metal-nanocluster-filled carbon nanotubes:catalytic properties and possible applications in electrochemical energy storage and production. Langmuir,1999,15(3):750-758.
    [23]Z. J. Liu, Z. D. Xu, Z. Y. Yuan, W. X. Chen, W. Z. Zhou, L. M. Peng. A simple method for coating carbon nanotubes with Co-B amorphous alloy. Mater. Lett., 2003,57(7):1339-1344.
    [24]Q. Xu, L. Zhang, J. Zhu. Controlled growth of composite nanowires based on coating Ni on carbon nanotubes by electrochemical deposition method.J. Phys. Chem. B,2003,107:8294-8296.
    [25]L. M. Ang, T. S. A. Hor, G Q. Xu, C. H. Tung, S. P. Zhao, J. L. S. Wang. Decoration of activated carbon nanotubes with copper and nickel. Carbon,2000, 38:363-372.
    [26]H. Q. Wu, Y. J. Cao, P. S. Yuan, H. Y. Xu, X. W. Wei. Controlled synthesis, structure and magnetic properties of Fe1-xNix alloy nanoparticles attached on carbon nanotubes. Chem. Phys. Lett.,2005,406:148-153.
    [27]H. Q. Wu, P. S. Yuan, H. Y. Xu, D. M. Xu, B. Y. Geng, X. W. Wei. Controllable synthesis and magnetic properties of Fe-Co alloy nanoparticles attached on carbon nanotubes.J. Mater. Sci.,2006,41:6889-6894.
    [28]J. Kong, M. G. Chapline, H. J. Dai. Functionalized carbon nanotubes for molecular hydrogen sensors. Adv. Mater.,2001,13(18):1384-1386.
    [29]B. Xue, P. Chen, Q. Hong, J. Y. Liu, K. L. Tan. Growth of Pd, Pt, Ag and Au nanoparticles on carbon nanotubes.J. Mater. Chem.,2001,11:2378-2381.
    [30]X. R. Ye, Y. H. Lin, C. M. Wai. Decorating catalytic palladium nanoparticles on carbon nanotubes in supercritical carbon dioxide. Chem. Commun.,2003,5: 642-643.
    [31]B. C. Satishkumar, E. M. Vogl, A. Govindaraj, C.N.R. Rao. The decoration of carbon nanotubes by metal nanoparticles.J. Phys. D:AppL Phys.,1996,29: 3173-3176.
    [32]Y. Huang, K. Shi, Z. J. Liao, Y. L. Wang, L. Wang, F. Zhu. Studies of electroless Ni-Co-P ternary alloy on glass fibers. Mater. Lett.,2007,61(8-9),1742-1746.
    [33]H. Q. Wu, M. W. Shao, J. S. Gu, X. W. Wei. Microwave-assisted synthesis of fibre-like Mg(OH)2 nanoparticles in aqueous solution at room temperature. Mater. Lett.,2004,58:2166-2169.
    [34]C. C. Chien, K. T. Jeng. Effective preparation of carbon nanotubes-supported Pt-Ru electrocatalysts. Mater. Chem. Phys.,2006,99(1):80-87.
    [35]F. Caturla, F. Molina, M. Moline-Sabio, F. Rodriguez-Reinoso, A. Esteban. Electroless plating of graphite with copper and nickel.J. Electrochem. Soc.,1995, 142(12):4084-4090.
    [36]N. E. Fenineche, R. Hamzaoui, O. El Kedim. Structure and magnetic properties of nanocrystalline Co-Ni and Co-Fe mechanically alloyed. Mater. Lett.,2003,57: 4165-4169.
    [37]O. M. Glenn, B. H. Juan. Electroless plating:Fundamentals, Applications (Orlando, FL:American Electroplaters and Surface Finishers Society),1990.
    [38]H. H. Chiang, W. Shen, The Fundamentals and Practice of Electroless Plating (,Bejing:National Defense Industry Publisher),2001.
    [39]G. Rivero, M. Multigner, J. M. Garcia, P. Crespo, Hernando. Magnetic and structural properties of electrodeposited Co-Ni-P amorphous ribbons. J. Magn. Magn. Mater.,1998,177-181:119-120.
    [40]H. Matsubara, A. Yamada. Control of magnetic properties of chemically deposited cobalt nickel phosphorus films by electrolysis. J. Electrochem. Soc.,1994,141(9): 2386-2390.
    [41]M. Z. Wu, H. H. He, Z. S. Zhao, X. Yao. Preparation of magnetic cobalt fibres and their microwave properties.J. Phys. D:Appl. Phys.,2000,33(22):2927-2930.
    [42]M. Z. Wu, H. H. He, Z. S. Zhao, X. Yao. Electromagnetic and microwave absorbing properties of iron fibre-epoxy resin composites.J. Phys. D:Appl. Phys., 2000,33:2398-2401.
    [43]P. Chen, R. X. Wu, T. E. Zhao, F. Yang, J. Q. Xiao. Complex permittivity and permeability of metallic magnetic granular composites at microwave frequencies. J. Phys. D:Appl. Phys.,2005,38:2302-2305.
    [44]A. Verma, A. K. Saxena, D. C. Dube. Microwave permittivity and permeability of ferrite-polymer thick films.J. Magn. Magn. Mater.,2003,263:228-234.
    [45]M. Matsumoto, Y. Miyata. Thin electromagnetic wave absorber for quasi-microwave band containing aligned thin magnetic metal particles. IEEE Trans. Magn.,1997,33(6):4459-4464.
    [46]M. Z. Wu, X. Yao, J. W. Zhai, L.Y. Zhang. Determination of microwave complex permittivity of particulate materials. Meas. Sci. Technol.,2001,12:1932-1937.
    [47]S. S. Kim, Y. C. Yoon, K. H. Kim. Electromagnetic wave absorbing properties of high-permittivity ferroelectric coated with ITO thin films of 399 Q. J. Electroceramics.,2003,10:95-101.
    [48]S.S. Kim, S. B. Jo, K. I. Gueon, K. K. Choi, J. M. Kim, K. S. Churn. Complex permeability and permittivity and microwave absorption of ferrite-rubber composite in X-band frequencies. IEEE Trans. Magn.,1991,27(6):5462-5464.
    [1]R. C. Che, L.-M. Peng, X. F. Duan, Q. Chen, X. L. Liang. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater.,2004,16(5):401-405.
    [2]A. Wadhawan, D. Garrett, J. M. Perez. Nanoparticle-assisted microwave absorption by single-wall carbon nanotubes. Appl. Phys. Lett.,2003,83(13):2683-2685.
    [3]K. Hatakeyama, T. Inui. Electromagentic wave absorber using ferrite absorbing material dispersed with short metal fibers. IEEE Trans. Magn.,1984,20(5): 1261-1263.
    [4]J. Smit, H.P.J. Wijn. Ferrites, Phillips Technical Library, Eindhoven,1959, p.271.
    [5]D. Rousselle, A. Berthault, O. Acher, J. P. Bouchaud, P. G. Zerah. Effective medium at finite frequency:theory and experiment.J. Appl. Phys.,1993,74(1):475-479.
    [6]G O. Mallory, J. R. Hajdu. Electroless Plating, AESF, USA,1990.
    [7]E. A. Pavlatou, M. Stroumbouli, P. Gyftou, N. Spyrellis. Hardening effect induced by incorporation of SiC particles in nickel electrodeposits.J. AppL Electrochem., 2006,36:385-394.
    [8]P. Gyftou, M. Stroumbouli, E. A. Pavlatou, P. Asimidis, N. Spyrellis, Tribological study of Ni matrix composite coatings containing nano and micro SiC particles. Electrochim. Acta,2005,50:4544-4550.
    [9]N. K. Shrestha, M. Masuko, T. Saji. Composite plating of Ni/SiC using azo-cationic surfactants and wear resistance of coationgs. Wear,2003,254:555-564.
    [10]K. H. Hou, M. D. Ger, L. M. Wang, S. T. Ke. The wear behavior of electro-codeposited Ni-SiC composites. Wear,2002,253:994-1003.
    [11]H. Morkoc, S. Strite, G B. Gao, M. E. Lin, B. Sverdlov, M. Burns. Large-band-gap SiC, Ⅲ-Ⅴ nitride, and Ⅱ-Ⅵ ZnSe-based semiconductor device technologies. J. Appl. Phys.,1994,76(3):1363-1398.
    [12]R. Asthana. Reinforced cast metals:part Ⅱ evolution of the interface.J. Mater. Sci., 1998,33(8):1959-1980.
    [13]R. Tarozaite, M. Kurtinaitiene, A. Dziuve, Z. Jusys. Composition, microstructure and magnetic properties of electroless-plated thin Co-P films. Surf. Coat. TechnoL, 1999,115:57-65.
    [14]L. Shi, C. F. Sun, P. Gao, F. Zhou, W. M. Liu. Mechanical properties and wear and corrosion resistance of electrodeposited Ni-Co/SiC nanocomposite coating. AppL Surf. Sci.,2006,252:3591-3599.
    [15]S.-S. Kim, S.-T. Kim, J.-M. Ahn, K.-H. Kim. Magnetic and microwave absorbing properties of Co-Fe thin films plated on hollow ceramic microspheres of low density. J. Magn. Magn. Mater.,2004,271:39-45.
    [16]R. Wang, W. C. Ye, C. L. Ma, C. M. Wang. Preparation and characterization of nanodiamond cores coated with a thin Ni-Zn-P alloy film. Mater. Charact.,2008, 59:108-111.
    [17]O. M. Glenn, B. H. Juan. Electroless plating:Fundamentals, Applications, American Electroplaters and Surface Finishers Society, Orlando,1990.
    [18]H. H. Chiang, W. Shen. The Fundamentals and Practice of Electroless Plating, National Defense Industry Publisher, Bejing,2001.
    [19]T. S. N. Sankara Narayanan, S. Selvakumar, A. Stephen. Electroless Ni-Co-P ternary alloy deposits:preparation and characteristics. Surf. Coat. TechnoL,2003, 172:298-307.
    [20]K.-H. Hur, J.-H. Jeong, D. N. Lee. Effect of annealing on magnetic properties and microstructure of electroless nickel-copper-phosphorous alloy deposits.J. Mater. Sci.,1991,26:2037-2044.
    [21]M. R. Khan, E. L. Nicholsan. Magnetic properties and microstructure of electroless plated Co-Ni-P and Co-P thin films for longitudinal recording.J. Magn. Magn. Mater.,1996,54-57(3):1654-1656.
    [22]N. Fenineche, A. M. Chaze, C. Coddet. Effect of pH and current density on the magnetic properties of electrodeposited Co-Ni-P alloys. Surf. Coat. TechnoL, 1996,88:264-268.
    [23]K. Huller, M. Sydow, G. Dietz. Magnetic anisotropy, magnetostriction and intermediate renge order in Co-P alloys.J. Magn. Magn. Mater.,1985,53(3): 269-274.
    [24]R. Tarozaite, G. Stalnionis, A. Sudavicius, M. Kurtinaitiene. Change of magnetic properties of autocatalytically deposited CoNiP films by electrolysis simultaneously applied. Surf. Coat. Technol.,2001,138:61-70.
    [25]G. Rivero, M. Multigner, J. M. Garcia, P. Crespo, A. Hernando. Magnetic and structural properties of electrodeposited Co-Ni-P amorphous ribbons.J. Magn. Magn. Mater.,1998,177-181:119-120.
    [26]H. Matsubara, A. Yamada. Control of magnetic properties of chemically deposited cobalt nickel phosphorus fimls by electrolysis. J. Electrochem. Soc.,1994,141(9): 2386-2390.
    [27]M. Z. Wu, H. H. He, Z. S. Zhao, X. Yao. Preparation of magnetic cobalt fibres and their microwave properties. J. Phys. D:Appl. Phys.,2000,33(22):2927-2930.
    [28]M. Z. Wu, H. H. He, Z. S. Zhao, X. Yao. Electromagnetic and microwave absorbing properties of iron fibre-epoxy resin composites.J. Phys. D:Appl. Phys., 2000,33(19):2398-2401.
    [29]P. Chen, R. X. Wu, T. E. Zhao, F. Yang, J. Q. Xiao. Complex permittivity and permeability of metallic magnetic granular composites at microwave frequencies. J. Phys. D:Appl. Phys.,2005,38(14):2302-2305.
    [30]A. Verma, A. K. Saxena, D. C. Dube. Microwave permittivity and permeability of
    ferrite-polymer thick films.J. Magn. Magn. Mater.,2003,263:228-234.
    [31]D. Wan, X. Ma. Physics of Magnetism. Press of University of Electric Science and Technology of China, Chengdu,1994, pp.406-459.
    [32]T. Tsutaoka. Frequency dispersion of complex permeability in Mn-Zn and Ni-Zn spinel ferrites and their composite materials.J. Appl. Phys.,2003,93(5): 2789-2796.
    [33]L. Olmedo, G. Chateau, C. Deleuze, J. L. Forveille. Microwave characterization and modelization of magnetic granular materials.J. Appl. Phys.,1993,73(10): 6992-6994.
    [34]G. Viau, F. Ravel, O, Acher, F. Fievet-Vincent, F. Fievet. Preparation and microwave characterization of spherical and monodisperse Co20Ni80 particles.J. Appl. Phys.,1994,76(10):6570-6572.
    [35]G. Viau, F. Ravel, O. Acher, F. Fievet-Vincent, F. Fievet. Preparation and microwave characterization of spherical and monodisperse Co-Ni particles.J. Magn. Magn. Mater.,1995,140-144:377-378.
    [36]S. S. Kim, S. B. Jo, K. I. Gueon, K. K. Choi, J. M. Kim, K. S. Churn. Complex permeability and microwave absorption of ferrite-rubber composite at X-band frequencies. IEEE Trans Man.,1991,27(6):5462-5464.
    [1]A. K. Geim, K. S. Novoselov. The rise of graphene. Nat. Mater.,2007,6:183-191.
    [2]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Dubonos, I. V. Grigorieva, A. A. Firsov. Electric field effect in atomically thin carbon films. Science,2004,306:666-669.
    [3]S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff. Graphene-based composite materials. Nature,2006,442:282-286.
    [4]J. Zhu. Graphene production:new solutions to a new problem. Nat. NanotechnoL, 2008,3:528-529.
    [5]L. Song, L. J. Ci, W. Gao, P. M. Ajayan. Transfer printing of graphene using gold film. ACS Nano,2009,3(6):1353-1356.
    [6]M. D. Stoller, S. J. Park, Y. W. Zhu, J. H. An, R. S. Ruoff. Graphene-based ultracapacitors. Nano Lett.,2008,8(10):3498-3502.
    [7]S. R. C. Vivekchand, C. S. Rout, K. S. Subrahmanyam, A. Govindaraj, C. N. R. Rao. Graphene-based electrochemical supercapacitors.J. Chem. Sci.,2008, 120(1):9-13.
    [8]D. H. Wang, D. W. Choi, J. Li, Z. G Yang, Z. M. Nie, R. Kou, D. H. Hu, C. M. Wang, L. V. Saraf, J. G Zhang, I. A. Aksay, J. Liiu. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS nano,2009,3(4): 907-914.
    [9]E. J. Yoo, J. Kin, E. Hosono, H. S. Zhou, T. Kudo, I. Honma. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett.,2008,8(8):2277-2282.
    [10]M. Khantha, N. A. Cordero, L. M. Molinal, J. A. Alonso, L. A. Girifalco. Interaction of lithium with graphene:an ab initio study. Phys. Rev. B,2004,
    70(12):125422.
    [11]X. Wang, L. J. Zhi, K. Mllen. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett,2008,8(1):323-327.
    [12]J. B. Wu, H. A. Becerril, Z. N. Bao, Z. F. Liu, Y. S. Chen, P. Peumans. Organic solar cells with solution-processed graphene transparent electrodes. AppL Phys. Lett,2008,92(6):263302.
    [13]Q. Liu, Z. F. Liu, X. Y. Zhang, N. Zhang, L. Y. Yang, S. Yin, Y. S. Chen. Organic photovoltaic cells based on an acceptor of soluble graphene. AppL Phys. Lett, 2008,92(22):223303.
    [14]P. K. Ang, W. Chen, A. T. S. Wee, K. P. Loh. Solution-gated epitaxial graphene as pH sensor.J. Am. Chem. Soc.,2008,130(44):14392-14393.
    [15]F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, K. S. Novoselov. Detection of individual gas molecules adsorbed on graphene. Nat Mater.,2007,6:652-655.
    [16]R. S. Sundaram, C. Gomez-Navarro, K. Balasubramanisn, M. Burghurd, K. Kern. Electrochemical modification of graphene. Adv. Mater.,2008,20(16): 3050-3053.
    [17]J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Q. Wei, P. E. Sheehan. Reduced graphene oxide molecular sensors. Nano Lett.,2008,8(10):3137-3140.
    [18]C. Xu, X. Wang, J. W. Zhu. Graphene-metal particle nanocomposites. J. Phys. Chem. C,2008,112(50):19841-19845.
    [19]Y. C. Si, E. T. Samulski. Exfoliated graphene separated by platinum nanoparticles. Chem. Mater.,2008,20(21):6792-6797.
    [20]B. Seger, P. V. Kamat. Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells. J. Phys. Chem. C,2009,113(19):7990-7995.
    [21]E. J. Yoo, T. Okata, T. Akita, M. Kohyama, J. Nakamura, I. Honma. Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano Lett,2009,9(6):2255-2259.
    [22]Y. J. Li, W. Gao, L. J. Ci, C. M. Wang, P. M. Ajayan. Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation. Carbon, 2010,48:1124-1130.
    [23]K. Nakada, M. Fujita, G Dresselhaus, M. S. Dresselhaus. Edge state in graphene ribbons:nanometer size effect and edge shape dependence. Phys. Rev. B,1996, 54(24):17954-17961.
    [24]S. Okada, A. Oshiyama. Magnetic ordering in hexagonally bonded sheets with first-row elements. Phys. Rev. Lett.,2001,87(14):146803.
    [25]H. Winnischofer, T. C. R. Rocha, W. C. Nunes, L. M. Socolovsky, M. Knobel, D. Zanchet. Chemical synthesis and structural characterization of highly disordered Ni colloidal nanoparticles. ACS nano,2008,2(6):1313-1319.
    [26]W. S. Hummers, R. E. Offeman. Preparation of graphitic oxide.J. Am. Chem. Soc.,1958,80:1339.
    [27]S. Gilje, S. Han, M. S. Wang, K. L. Wang, R. B. Kaner. A chemical route to graphene for device applications. Nano. Lett.,2007,7(11):3394-3398.
    [28]Z. S. Wu, W. C. Ren, L. B. Gao, J. P. Zhao, Z. P. Chen, B. L. Liu, D. M. Tang, B. Yu, C. B. Jiang, H. M. Cheng. Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano,2009,3(2):411-417.
    [29]A. Lerf, H. Y. He, M. Forster, J. Klinowski. Structure of graphite oxide revisited. J. Phys. Chem. B,1998,102:4477-4482.
    [30]D. Li, M. B. Muller, S. Gilje, R. B. Kaner, G. G. Wallace. Processsable aqueous dispersions of graphene nanosheets. Nat. NanotechnoL,2008,3:101-105.
    [31]H. K. Jeong, Y. P. Lee, R. G. W. E. Lahaye, M. H. Park, K. H. An, I. J. Kim, C. W. Yang, C. Y. Park, R. S. Ruoff, J. H. Lee. Evidence of graphitic AB stacking order of graphite oxides. J. Am. Chem. Soc.,2008,130(4):1362-1366.
    [1]A. K. Geim, K. S. Novoselov. The rise of graphene. Nat. Mater.,2007,6:183-191.
    [2]J. Zhu. Graphene production:New solutions to a new problem. Nat. Nanotechnol., 2008,3:528-529.
    [3]D. Li, R. B. Kaner. Graphene-based materials. Science,2008,320:1170-1171.
    [4]S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, A. T. Nguyen, R. S. Ruoff. Graphene-based composite materials. Nature,2006,442:282-286.
    [5]C. Xu, X. Wang, J. W. Zhu. Graphene-metal particle nanocomposites.J. Phys. Chem. C,2008,112(50):19841-19845.
    [6]Y. C. Si, E. T. Samulski. Exfoliated graphene separated by platinum nanoparticles. Chem. Mater.,2008,20(21):6792-6797.
    [7]B. Seger, P. V. Kamat. Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells. J. Phys. Chem. C, 2009,113(19):7990-7995.
    [8]E. J. Yoo, T. Okata, T. Akita, M. Kohyama, J. Nakamura, I. Honma. Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano Lett.,2009,9(6):2255-2259.
    [9]M. S. Dresselhaus, G. Dresselhaus, P. Avouris. Carbon Nanotubes:Synthesis, Structure, Properties and Applications; Springer-Verlag:New York,2001.
    [10]V. Georgakilas, D. Gournis, V. Tzitzios, L. Pasquato, D. M. Guldi, M. Prato. Decorating carbon nanotubes with metal or semiconductor nanoparticles.J. Mater. Chem.,2007,17:2679-2694.
    [11]Y. C. Xing. Synthesis and electrochemical characterization of uniformly-dispersed high loading Pt nanoparticles on sonochemically-treated carbon nanotubes.J. Phys. Chem. B,2004,108(50):19255-192559.
    [12]G. Girishkumar, T. D. Hall, K. Vinodgopal, P. V. Kamat. Single wall carbon nanotube supports for portable direct methanol fuel cells. J. Phys. Chem. B,2006, 110(1):107-114.
    [13]A. Kongkanand, K. Vinodgopal, S. Kuwabata, P. V. Kamat. Highly diepersed Pt catalysts on single-walled carbon nanotubes and their role in methanol oxidation.J. Phys. Chem. B,2006,110(33):161851-161858.
    [14]L. Li, Y. C. Xing. Pt-Ru nanoparticles supported on carbon nanotubes as methanol fuel cell catalysts. J. Phys. Chem. C,2007,111(6):2803-2808.
    [15]Y. L. Hsin, K. C. Hwang, C. T. Yeh. Poly(cinylpyrrolidone)-modified graphite carbon nanofibers as promising supports for PtRu catalysts in direct methanol fuel cells. J. Am. Chem. Soc.,2007,129(32):9999-10010.
    [16]S. J. Liao, K. A. Holmes, H. Tsaprailis, V. I. Birss. High performance PtRuIr catalysts supported on carbon nanotubes for the anodic oxidation of methanol.J. Am. Chem. Soc.,2006,128(11):3504-3505.
    [17]W. Z. Li, X. Wang, Z. W. Chen, M. Waje, Y. S. Yan. Pr-Ru supported on double-walled carbon nanotubes as high-performance anode catalysts for direct methanol fuel cells.J. Phys. Chem. B,2006,110(31):15353-15358.
    [18]S. Niyogi, E. Bekyarova, M. E. Itkis, J. L. McWilliams, M. A. Hamon, R. C. Haddon. Solution properties of graphite and graphene. J. Am. Chem. Soc.,2006, 128(24):7720-7721.
    [19]D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, R. S. Ruoff. Preparation and characterization of graphene oxide paper. Nature,2007,448:457-460.
    [20]Y. X. Xu, H. Bai, G. W. Lu, C. Li, G. Q. Shi. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc.,2008,130(18):5856-5857.
    [21]D. Li, M. B. Muller, S. Gilje, R. B. Kaner, G. G. Wallace. Processable aqueous dispersions of graphene nanosheets. Nat. NanotechnoL,2008,3:101-105.
    [22]S. J. Park, J. H. An, R. D. Piner, I. Jung, D. X. Yang, A. Velamakanni A, S. T. Nguyen, R. S. Ruoff. Aqueous suspension and characterization of chemically modified graphene sheets. Chem. Mater.,2008,20(21):6592-6594.
    [23]X. B. Fan, W. C. Peng, Y. Li, X. Y. Li, S. L. Wang, G. L. Zhang, F. B. Zhang. Deoxygenation of exfoliated graphite oxide under alkaline conditions:a green route to graphene preparation. Adv. Mater.,2008,20:4490-4493.
    [24]S. J. Park, J. H. An, I. Jung, R. D. Piner, S. J. An, X. S. Li, A. Velamakanni, R. S. Ruoff. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano. Lett.,2009,9(4):1593-1597.
    [25]C. C. Chien, K. T. Jeng. Effective preparation of carbon nanotube-supported Pt-Ru electrocatalysts. Mater. Chem. Phys.,2006,99:80-87.
    [26]S. Gilje, S. Han, M. S. Wang, K. L. Wang, R. B. Kaner. A chemical route to graphene for device applications. Nano. Lett.,2007,7(11):3394-3398.
    [27]N. L. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. E. V. Buzaneva, A. D. Gorchinskiy. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem. Mater.,1999,11(3):771-778.
    [28]W. S. Hummers, R. E. Offeman. Preparation of graphitic oxide.J. Am. Chem. Soc., 1958,80:1339.
    [29]R. Yuge, M. F. Zhang, M. Tomonari, T. Yoshitake, S. Iijima, M. Yudasaka. Site identification of carboxyl groups on graphene edges with Pt derivatives. ACS Nano 2008,2(9):1865-1870.
    [30]R. Muszynski, B. Seger, P. V. Kamat. Decorating graphene sheets with gold nanoparticles.J. Phys. Chem. C,2008,112(14):5263-5266.
    [31]R. S. Sundaram, C. Gomez-Navarro, K. Balasubramanian, M. Burghard, K. Kern. Electrochemical modification of graphene. Adv. Mater.,2008,20:3050-3053.
    [32]H. K. Jeong, Y. P. Lee, R. G. W. E. Lahaye, M. H. Park, K. H. An, I. J. Kim, C. W. Yang, C. Y. Park, R. S. Ruoff, J. H. Lee. Evidence of graphitic AB stacking order of graphite oxides.J. Am. Chem. Soc.,2008,130(4):1362-1366.
    [33]J. J. Niu, J. N. Wang. Activated carbon nanotubes-supported catalyst in fuel cells. Electrochimica Acta,2008,53:8058-8063.
    [34]G. Eda, G. Fanchini, M. Chhowalla. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol.,2008,3: 270-274.
    [35]G. X. Wang, J. Yang, J. S. Park, X. L. Gou, B. Wang, H. Liu, J. Yao. Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C,2008, 112(22):8192-8195.
    [36]G. Girishkumar, M. Rettker, R. Underhile, D. Binz, K. Vinodgopal, P. Mcginn, P. V. Kamat. Single-wall carbon nanotube-based proton exchange membrane assembly for hydrogen fuel cells. Langmuir,2005,21(18):8487-8494.
    [37]Y. H. Lin, X. L. Cui, C. Y. Yen, C. M. Wai. PtRu/carbon nanotubes nanocomposite synthesized in supercritical fluid:a novel electrocatalyst for direct methanol fuel cells. Langmuir,2005,21(24):11474-11479.
    [38]J. H. Chen, M. Y. Wang, B. Liu, Z. Fan, K. Z. Cui, Y. F. Kuang. Platinum catalysts prepared with functional carbon nanotube defects and its improved catalytic performance for methanol oxidation.J. Phys. Chem. B,2006,110(24): 11775-11779.
    [39]J. Kua, W. A. Goddard III. Oxidation of methanol on 2nd and 3rd row group Ⅷ transition metals (Pt, Ir, Os, Pd, Rh and Ru):Application to direct methanol fuel cells.J. Am. Chem. Soc.,1999,121(47):10928-10941.
    [40]A. Halder, S. Sharma, M. S. Hegde, N. Ravishankar. Controlled attachment of ultrafine platinum nanoparticles on functionalized carbon nanotubes with high electrocatalytic activity for methanol oxidation. J. Phys. Chem. C,2009,113(4): 1466-1473.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700