超快脉冲激光干涉技术及其在冲击动力学过程诊断中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脉冲激光频域干涉技术是近10年以来国外发展起来的一种新型非接触式激光干涉测试技术,具有飞秒量级的时间分辨力和亚纳米量级的位移分辨力,结合泵浦-探测实验方法,可实现超快过程中物理参数的测量,是获得材料在飞秒或皮秒脉冲激光加载下动力学参数随时间变化历史的重要方法,目前美国、英国、法国和日本等国家的人已经建立了脉冲激光频域干涉技术。研制该技术的重要意义在于发展材料在超快脉冲激光加载下响应特性的测量手段,促进超快动力学物理机制的研究,对高能密度物理和武器物理研究具有重要的现实意义和应用前景。
     为了推动脉冲激光频域干涉技术在国内的发展和完善,使我国也具备测量飞秒脉冲激光与材料相互作用过程中冲击动力学参数的能力,本论文不但深入研究了脉冲激光频域干涉技术,可用于测量材料在平面分布冲击波或中心对称分布冲击波作用下的冲击波速度和波后粒子速度剖面,而且还研究了可测量材料在非中心对称分布冲击波作用下波后粒子速度剖面的超快显微干涉技术,对这两种技术的工作原理、设计方法、数据处理方法、调试方法和实验方法均进行了详细的分析。主要工作内容及创新点归纳如下:
     1、根据日本东京大学E.Tokunaga等人对频域干涉现象的诠释,本文对频域干涉技术的工作原理进行了深入细致的研究,得到了频域干涉的基本条件为:
     式中,T为参与频域干涉的两脉冲传输时间差,d为光谱仪的光栅常数,c为真空中光速,θ为光谱仪中特征谱线的衍射角。基于时域干涉原理和频域干涉条件,对频域干涉信号特征进行了详细分析,得到了频域干涉仪输出信号的数学表达式为:式中,f为光波频率,T为参与频域干涉的两脉冲传输时间差,φ为参与频域干涉的两脉冲传输相位差,R为参与频域干涉的两脉冲光强比值,I0(f)为脉冲激光器的光谱分布函数,I(f)为频域干涉信号的光谱分布函数。
     2、根据Michelson干涉仪的数据处理方法和频域干涉信号的数学表达式,对频域干涉技术的数据分析方法进行了深入研究,研究发现可以采用变量代换—等间隔插值—反傅立叶变换—数字滤波的计算步骤得到频域干涉仪测量的传输相位差,另外可采用变量代换—等间隔插值—数据扩展—反傅立叶变换—数字滤波的计算步骤得到频域干涉仪测量的传输时间差,如果不考虑被测物体表面光学折射率的变化,频域干涉仪测量的传输时间差或传输相位差与被测物体运动位移的关系为:
     式中,s为被测物体的运动位移,T为参与频域干涉的两脉冲传输时间差,φ为参与频域干涉的两脉冲传输相位差,λ为脉冲激光器的工作波长。分析结论表明通过计算频域干涉仪测量的传输时间差或传输相位差均可得到待测物体的运动位移历史,其区别在于传输相位差的计算精度较高,但要根据边界条件判断传输相位差是否存在π相位突变,采用传输相位差的计算方法并结合频域干涉仪的设计方法,本文研制的频域干涉仪时间测量精度优于0.001fs,位移分辨力高于0.1nm。
     3、通过对飞秒脉冲激光与物质相互作用机理的分析,提出了采用探测脉冲垂直入射被测物体表面的方式设计频域干涉仪的泵浦—探测实验光路,改进了国外探测脉冲斜入射被测物体表面的方法,并设计了新型飞秒脉冲激光频域干涉仪,与英国R.Evans等人设计的干涉仪相比,新型脉冲激光频域干涉仪具有结构简单、调试方便等优点,不但可测量金属膜在飞秒脉冲激光作用下的运动速度剖面,而且还可直接测量冲击波速度。
     4、对频域干涉仪的输出信号进行了数值模拟,研究发现:参与频域干涉的两脉冲之间的传输时间差T越小,则频域干涉条纹越稀;而时间延迟T越大,则频域干涉条纹越密,即频域干涉仪输出的条纹数目与两脉冲之间的传输时间差紧密相关,根据这种结论提出了泵浦—探测实验中泵浦脉冲和探测脉冲的同步方法,理论同步精度高于脉冲激光器脉宽,并设计了光路延迟器单步长延迟时间的标定方法。
     5、设计了光谱模式频域干涉仪和影像模式频域干涉仪,并提出了具体的调试方法,采用光谱模式频域干涉仪测量了200nm厚度铝膜在功率密度为1011W/cm2量级的飞秒脉冲激光作用下的纵波声速,实验测量数据表明具有高时空分辨力的频域干涉仪可用于探测脉冲激光作用材料诱导的超声波的波速;采用光谱模式频域干涉仪和影像模式频域干涉仪测量了200nm厚度铝膜在功率密度为1014W/cm2量级的飞秒脉冲激光作用下的冲击波速度、波后粒子速度和铝膜表面形貌变化历史,测量结果表明实测的冲击波速度和波后粒子速度满足铝材料的Hugoniot关系式。
     6、基于美国K.T.Gahagan等人对超快显微干涉技术的报道和球面波的干涉场理论,对超快显微干涉技术的工作原理、设计方法和数据处理方法进行了深入研究,提出了采用等倾干涉条纹数据分析方法处理超快显微干涉仪实验数据的思路。通过对飞秒脉冲激光超快显微干涉仪实验信号的理论分析和数值模拟,揭示了导致飞秒超快显微干涉场条纹对比度衰减的重要原因是飞秒脉冲激光器的线宽较宽。
     7、设计了一种紧凑性全光纤位移干涉仪,该干涉仪可采用Φ2.5或Φ1.25光纤探头测量金属膜在皮秒脉冲激光作用下的运动位移/速度历史,其测量结果不仅为超快显微干涉仪的实验参数设置提供依据,而且为超快显微干涉仪测量结果的可信度提供判据。
The pulse frequency-domain interferometry, developed ten years ago, is an advanced noncontact laser interferometric instrument with fs time resolution and nm displacement resolution.By adopting pump-probe technology,the interferometry can capture the physics parameters changed to time during the ultrafast dynamic process. As a important instrument,the frequency-domain interferometry is used widely to measure the dynamic paraments of experimental sample loaded by fs laser or ps laser.Nowadays,the frequency-domain interferometric technology has been developed in America、Britain、France and Japan.The significance to develop frequency-domain interferometry is to provide a method for investigating dynamic response character of material loaded by ultrafast pulse laser and accelerating the development of ultrafast dynamics physics.
     In order to promote the development of pulse frequency-domain interferometry in china, the author has carried out a systematic investigation for the pulse frequency-domain interferometry during the past years which can be used to measure the dynamic parameters during these experiments in which the sample is loaded by plane-distributed or centrosymmetric-distributed shock wave.In addition,the interferometric microscopy has also been investigated to measure the dynamic parameters during those experiments in which the sample is loaded by non-centrosymmetric-distributed shock wave.The dissertation introduces the work principle、design method、data processing method and experiment method for the above two interferometrys in detail.The primary content and innovation is as follow.
     1、On the basis of the illumination proved by E.Tokunaga in university of Tokyo,the author has studied the work principle of frequency-domain interferometry carefully.It is found that the condition for two laser pulses interfering in frequency domain is as follows Where c is the velocity of light.θis the diffraction angle of characteristic spectrum.d is the grating and T is the delay time between the two pulses came from one laser.By analyzing the character of frequency-domain interference,it is found that the light intensity equation I(f) of frequency-domain interference can be expressed as follows Where f is the frequency of light.T is the delay time between the two laser pulses.Φis the phase between the two laser pulses. R is the intensity ratio of the two laser pulses. I0(f) is the spectrum function of the laser.
     2、After analyzing the data processing method of Michelson interferometer,the author has brought forward a unique data processing method for frequency-domain interferometry. By adopted the Fourier transform arithmetic,it is easy to calculate the transfers-phase difference or transfers-time difference between the two laser pulses.In addition,the author has deduced the relation between the transfers-time difference or transfers-phase difference measured by fequency-domain interferometry,which is expressed as follows Where s is the dynamic displacement of moving surface. T is the transfers-time difference between the two laser pulses.Φis the transfers-phase difference between the two laser pulses.λis the work wavelength of the pulse laser.From the above formula,it is easy to be found that the movement displacement can be got by calculating the transfers-time difference or transfers-phase difference measured by frequency-domain interferometry.By Adopting the data processing method for transfers-phase difference,we can get 0.001fs time resolution and 0.1nm displacement resolution which is more high than by the one for transfers-time difference.
     3、By irradiated the probe light to the target surface slantways, a new frequency-domain interferometry, different with foreign ones,has been developed to conduct the parameters measurement for ultrafast physics process taking place within tens of picoseconds.Compared with the frequency-domain interferometry designed by R.Evans, the unique interferometry designed by the author is of more advanges such as easy to debugging and can be used to measure the shock wave velocity and free-surface velocity profile at the same time.
     4、After investigating the output character of frequency-domain interferometry in detail, it came to a conclusion that the stripe number will become more and more with the transfers-time difference increasing.On the other hand, the stripe number will become less and less with the transfers-time difference decreasing. By means of the phenomenon, we can make the pump pulse and probe pulse arrive at the measured target synchronously when only one stripe is appear in frequency-domain interferometry.
     5、On the basis of elaborate investigation to the work principle,the author has improved the frequency-domain interferometry which can work on spectrum mode and image mode.The viability of frequency-domain interferometry was demonstrated by measuring the shock wave velocity、variety of surface shape and free-surface moving velocity of 200nm-thickness aluminium foil load by pulse lase.
     6、To measure the three-dimensional shape,the author has constructed a interferometric microscopy and given a detailed illustration for it's work principle、data processing method and design method.After elaborate analyzing for femtosecond-pulse interferometric microscopy in theory,it came to a conclusion that very wide spectrum is the result in the decreace of interference fringe visibility.
     7、By adopting theΦ2.5 orΦ1.25 measurement head and using the currently available conventional telecommunications elements,the authors have constructed a compact velocimeter called all-fiber displacement interferometry(AFDI). The velocimeter can measure the movement displacement profile of target loaded by picosecond pulse laser.Depend on the measurement result of AFDI,it is not only easy for us to set the parameters in those experiments using interferometric microscopy,but also help us to verify the viability of the interferometric microscopy.
引文
1. 谭华.实验冲击波物理导引[M].北京:国防工业出版社,2007
    2. Barker L M, Hollenback R E. Laser Interferometer for Measuring High Velocities of Any Reflecting Surface [J]. J Appl Phys,1972; 43(11):4669-4675.
    3. 胡绍楼,王文林,俞诚.冲击波研究中运用的激光差分混频技术[J].爆炸与冲击,1983;3(3):31-35
    4. Chhabildas L C, Asay J R.Rise-time measurements of shock transitions in aluminum, copper, and steel [J]. J. Appl. Phys,1979; 50(4):2749-2756
    5. Asay J R. Thick-plate technique for measuring ejecta from shocked surfaces[J].J Appl Phys,1978; 49(12):6173-6175
    6. 翁继东.全光纤速度干涉技术及其在冲击波物理中的应用[D].硕士论文.长沙:国防科学技术大学,2004
    7. Jidong Weng, Hua Tan, Shaolou Hu, et al. New all-fiber velocimeter [J]. Rev. Sci. Instrum, 2005; 76(9):093301
    8. Weng J D, Tan H, Wang X, et al. Optical-fiber interferometer for velocity measurements with picosecond resolution[J]. Appl. Phys. Lett,2006; 89(11):111101
    9. Ng A, Parfeniuk D, DaSilva L. Hugoniot Measurements for Laser-Generated Shock Waves in Aluminum[J]. Physical Review Letters,1985; 54(24):2604-2607
    10. Ng A, Forsman A. Heat front propagation in femtosecond-laser-heated solids[J]. Physical Review E,1995; 51(6):5208-5211
    11. Resseguier T D, Signor L, Dragon A. Experimental investigation of liquid spall in laser shock-loaded tin[J]. Journal of Applied physics,2007; 101(1):013506
    12. Tokunaga E, Terasaki A, Kobayashi T. Frequency-domain interferometer for femtosecond time-resolved phase spectroscopy[J]. Opt. Lett,1992; 17(16):1131-1133
    13. Evans R, Badger A D, Fallies F, et al. Time-and space-resolved optical probing of femtosecond-laser-driven shock waves in aluminum[J]. Phys. Rev. Lett,1996; 77(16): 3359-3362
    14. Salieres P, Deroff L L, Auguste T, et al. Frequency-domain interferometry in the XUV with high-order harmonics[J]. Phys. Rev. Lett,1999; 83(26):5483-5486
    15. Moore D S, Gahagan K T, Buelow S T, et al. Time-and space-resolved optical probing of the shock rise time in thin aluminum films[J].Shock compression of condensed matter,1999; 1003-1006
    16. Funk D J, Moore D S, Gahagan K T, et al. Ultrafast measurement of the optical properties of aluminum during shock-wave breakout[J]. Phys. Rev. B,2001; 64(11):115114
    17. Gahagan K T, Moore D S, Funk D J, et al. Measurement of shock wave rise times in metal thin films [J]. Phys. Rev. Lett,2000; 85(15):5205-3208
    18. Moore D S, Gahagan K T, Reho J H, et al. Ultrafast nonlinear optical method for generation of planar shocks[J]. Appl. Phys. Lett,2001; 78(1):40-42
    19. Chen J P,Li R X, Zeng Z N, et al. Simultaneous measurement of laser-induced shock wave and released particle velocities at Mbar pressure [J]. J. Appl. Phys,2003; 94(2):858-862
    20. Chen J P, Li R X, Zeng Z N, et al. Shock-Accelerated Flying Foil Diagnostic with a Chirped Pulse Spectral Interferometry[J]. Chin. Phys. Lett,2003; 20(4):541-543
    21. Bloomquist D D,Sheffield S A. Optically recording interferometer for velocity measurements with subnanosecond resolution[J]. J Appl Phys,1983; 54(4):1717-1722
    22. Ludmirsky A, Moshe E, Horovitz Y, et al. High power solid state single-frequency pulsed laser for Doppler velocimeters[J]. Rev. Sci. Instrum,2000; 71(8):2992-2994
    23. Levin L, Tzach P, Shamir J. Fiber optical velocity interferometer with very short coherence length light source [J]. Rev. Sci. Instrum,1996; 67(4):1434-1437
    24.辛建婷,祝文军,刘仓理.飞秒激光辐照铝材料的分子动力学数值模拟[J].爆炸与冲击,2004;24(3):207-211
    25.徐世珍,贾天聊,徐至展等.飞秒激光脉冲作用下氧化镁的烧饰及其超快动力学过程[J].光子学报,2006;35(8):1126-1129
    26.徐世珍,贾天聊,孙海铁等.飞秒激光作用下透明介质材料的反射率演华[J].中国激光,2006;33(1):53-56
    27.李成斌,贾天聊,孙海铁等.飞秒激光对高反膜的破坏及其超快动力学过程[J].光学学报,2006;26(3):458-462
    28.孙海铁,贾天聊,李晓溪等.飞秒激光作用下全向高反膜破坏的激光过程[J].物理学报,2005;54(10):4736-4740
    29.韩鹏.飞秒激光抽运—探测热反射系统建立及金属薄膜热输运过程研究[D].博士学位论文.北京:中国科学院:2008
    30. Geindre J P, Audebert P,Rousse A,et al. Frequency-domain interferometer for measuring the phase and amplitude of a femtosecond pulse probing a laser-produced plasma[J]. Opt. Lett,1994; 19(23):1997-1999
    31. Mounaix A B, Koenig M, Boudenne J M. Chirped pulse reflectivity and frequency domain interferometry in laser driven shock experiments [J]. Phys. Rev. E,1999; 60(3):2488-2489
    32. Chien C Y, Fontaine B La, Desparois A, et al. Single-shot chirped-pulse spectral interferometry used to measure the femtosecond ionization dynamics of air[J]. Optics Letters,2000; 25(8):578-580
    33. Scherer N F, Carlson R J,Matro A, et al. Fluorescence-detected wave packet interferometry:Time resolved molecular spectroscopy with sequences of femtosecond phase-locked pulses[J]. J. Chem. Phys,1991; 95(3):1487-1511
    34. Guttner A, Welling H, Gericke K H, et al. Fine structure of the field autocorrelation function of a laser in the threshold region[J]. Phys. Rev. A,1978; 18(3):1157-1168
    35. Sullivan A, White W F. Phase control for production of high-fidelity optical pulses for chirped-pulse amplification[J]. Optics Letters,1995; 20(2):192-194
    36.徐斌,郭光灿.频域干涉及调制光谱的可能性[J].物理学报,1996;45(9):1450-1456
    37. Nellis W J,Dlott D. Future directions in dynamic high pressure research. [J]. Shock compression of condensed matter,2007; 12-16
    38.刘天夫,佘卫龙,丘志仁等.超短脉冲激光测量的标定方法[J].中国激光,2004;31(1):111-114
    39.李旭,朱振和。测量飞秒光参量产生器输出光脉冲脉宽的自相关仪的设计[J]。中国民族大学学报,2006;15(4):339-345
    40.李健,陈毓川,房晓俊等.高能量低重复频率超短激光脉冲的测量[J].光电子.激光,2000;11(2):183-185
    41.贺俊芳,王水才,杨鸿儒.飞秒激光扫描自相关仪[J].光子学报,1998;27(3):220-222
    42. Armstrong M, Crowhurst J, Zaug J. Ultrafast high strain rate acoustic wave measurements at high static pressure in a diamond anvil cell[J]. LLNL-PROC-410217.2009
    43. Murray T W, Bramhavar S, Pouet B.Theory and application of frequency domain laser ultrasonics [J].1st international symposium on laser ultrasonics:science, technology and applications.2008
    44. Centurion M, Pu Y, Psaltis D. Holographic capture of femtosecond pulse propagation[J]. J. Appl. Phys,2006; 200(6):063104
    45. Gahagan K T, Moore D S, Funk D J,et al. Ultrafast interferometric microscopy for laser-driven shock-wave characterization[J]. J. Appl. Phys,2002; 92(7):3679-3682
    46. Funk D J, Moore D S,Mcgrane S D, et al. Ultrafast studies of shock waves using interferometric methods and transient infrared absorption spectroscopy [J]. Thin Solid Films,453-454(2004)542-549
    47. Mcgrane S D, Moore D S, Funk D J. Sub-picosecond shock interferometry of transparent thin films[J]. J. Appl. Phys,2003; 93(9):5063-5068
    48. Grigsby W, Bowes B T, Dalton D A, et al. Diagnosis of mbar laser produced shocks in tin using short pulse probes[J]. Shock compression of condensed matter,2005; 1337-1340.
    49.宋庆和,李俊昌.球面波照相的同轴数字全息干涉图像模拟及应用研究[J].激光杂志,2006;27 (1):53-54
    50.罗振雄,李泽仁,郑贤旭等.高速粒子场同轴Fraunhofer全息数据处理系统研究[J].光子学报,2005;34(11):1710-1713
    51.叶雁,郑贤旭,李作友等.用脉冲激光同轴全息技术测量微射流[J].强激光与粒子束,2004;16(2):159-162
    52.陈鹏飞,李泽仁,赵建林等.同轴全息术用于粒子场测量的数值模拟[J].强激光与粒子束,2005;17(9):1294-1298
    53. Etienne C, Frederic B, Christian D. Digital holography for quantitative phase-contrast imaging[J]. Optics Letters,1999; 24(5):291-293
    54.冯伟.等离子体羽流场的光学全息干涉度量技术研究[D].硕士学位论文.西安:西北工业大学,2004
    55.王晓雷,翟宏琛,王毅.超短脉冲数字全息术中的立体角分复用技术[J].物理学报,2006;55(3):1137-1142
    56.陈晓梅.球形表面粗糙度测量中两种干涉图像处理方法[J].航空检测技术,2002;22(4):13-17
    57.许谊,徐毓娴,蔡昕.图像处理技术在形貌测量中的应用[J].仪器仪表学报,2001;22(3):217-218
    58.李朝辉,井文才,周革等.相移干涉三维形貌纳米检测及算法研究[J].纳米技术与精密工程,2004;2(3):217-220
    59.李国栋,韦春龙,于瀛洁.圆形域干涉图中的相位解包裹[J].光学精密工程,2000;8(5):473-477
    60. Peng X Y, Zhang J, Zheng J, et al. Proton acceleration from microdroplet spray by weakly relativistic femtosecond laser pulses[J]. Phys. Rev. E,2006; 74(3):036405
    61.袁博宇,吴晓娟,陈慎毫等.基于干涉原理和图像处理方法的浓度变化分布测量[J].中国激光,2007;34(1):80-86
    62.计欣华,许方宇,陈金龙等.数字图像频域相关分析法及其应用[J].光学技术,2006;32(3):462-467
    63.何小元,衡伟,徐铸.数字散斑条纹处理的频域法和空域法[J].实验力学,1995;10(4):302-308
    64.刘延禹,沈建琪,陈家壁.等厚干涉条纹的数据处理[J].上海理工大学学报,1999;21(1):77-80
    65.王海珊,史铁林,廖广兰等.基于干涉显微原理的表面形貌测量系统[J].光电工程,2008;35(7):84-89
    1. Geindre J P, Audebert P, Rousse A, et al. Frequency-domain interferometer for measuring the phase and amplitude of a femtosecond pulse probing a laser-produced plasma[J]. Opt. Lett,1994; 19(23):1997-1999
    2. Tokunaga E, Terasaki A, Kobayashi T. Frequency-domain interferometer for femtosecond time-resolved phase spectroscopy[J]. Opt. Lett,1992; 17(16):1131-1133
    3. Gahagan K T, Moore D S, Funk D J, et al. Measurement of shock wave rise times in metal thin films [J]. Phys. Rev. Lett,2000; 85(15):5205-3208
    4. Moore D S, Gahagan K T, Reho J H, et al. Ultrafast nonlinear optical method for generation of planar shocks[J]. Appl. Phys. Lett,2001; 78(1):40-42
    5. Chen J P, Li R X, Zeng Z N, et al. Simultaneous measurement of laser-induced shock wave and released particle velocities at Mbar pressure [J]. J. Appl. Phys,2003; 94(2):858-862.
    6. Chen J P, Li R X, Zeng Z N, et al. Shock-Accelerated Flying Foil Diagnostic with a Chirped Pulse Spectral Interferometry[J]. Chin. Phys. Lett,2003; 20(4):541-543
    7. Evans R, Badger A D, Fallies F, et al. Time-and space-resolved optical probing of femtosecond-laser-driven shock waves in aluminum[J]. Phys. Rev. Lett,1996; 77(16): 3359-3362
    8. Chien C Y, Fontaine B L, Desparois A, et al. Single-shot chirped-pulse spectral interferometry used to measure the femtosecond ionization dynamics of air[J]. Optics Letters,2000; 25(8):578-580
    9. Mounaix A B, Koenig M, Boudenne J M. Chirped pulse reflectivity and frequency domain interferometry in laser driven shock experiments [J]. Phys. Rev. E,1999; 60 (3):2488-2489
    10. Takeda M, Ina H, Kobayashi S J. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry[J]. J. Opt. Soc. Am,1982; 72(1):156-160
    11. Edwards M J, MacKinnon A J, Zweiback J, et al. Investigation of ultrafast laser-driven radiative blast waves[J]. Phys. Rev. Lett,2001; 87(8):085004
    12. Scherer N F, Carlson R J, Matro A, et al. Fluorescence-detected wave packet interferometry:Time resolved molecular spectroscopy with sequences of femtosecond phase-locked pulses[J]. J. Chem. Phys,1991; 95(3):1487-1511
    13.李旭,朱振和.测量飞秒光参量产生器输出光脉冲脉宽的自相关仪的设计[J].中国民族大学学报,2006;15(4):339-345
    14.李健,陈毓川,房晓俊等。高能量低重复频率超短激光脉冲的测量[J].光电子.激光,2000;11 (2):183-185
    15.贺俊芳,王水才,杨鸿儒.飞秒激光扫描自相关仪[J].光子学报,1998;27(3):220-222
    16. Sullivan A, White W F. Phase control for production of high-fidelity optical pulses for chirped-pulse amplification[J]. Optics Letters,1995; 20(2):192-194
    1. Gahagan K T,Moore D S,Funk D J,et al.Ultrafast interferometric microscopy for laser-driven shock-wave characterization[J]. J. Appl. Phys,2002; 92(7):3679-3682
    2. Funk D J,Moore D S,McGrane S D, et al.Ultrafast studies of shock waves using interferometric methods and transient infrared absorption spectroscopy[J]. Thin Solid Films,453-454(2004)542-549
    3. McGrane S D, Moore D S, Funk D J. Sub-picosecond shock interferometry of transparent thin films[J]. J. Appl. Phys,2003; 93(9):5063-5068
    4. Grigsby W, Bowes B T, Dalton D A, et al. Diagnosis of mbar laser produced shocks in tin using short pulse probes[J]. Shock compression of condensed matter,2005; 1337-1340
    5. Barker L M, Hollenback R E. Laser Interferometer for Measuring High Velocities of Any Reflecting Surface [J]. J Appl Phys,1972; 43 (11):4669-4675
    6. 宋庆和,李俊昌.球面波照相的同轴数字全息干涉图像模拟及应用研究[J].激光杂志,2006;27(1):53-54
    7. 罗振雄,李泽仁,郑贤旭等.高速粒子场同轴Fraunhofer全息数据处理系统研究[J].光子学报,2005;34(11):1710-1713
    8. Takeda M, Ina H, Kobayashi S j. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry[J]. J. Opt. Soc. Am,1982; 72(1):156-160
    9. Edwards M J, MacKinnon A J, Zweiback J, et al. Investigation of ultrafast laser-driven radiative blast waves[J]. Phys. Rev. Lett,2001; 87(8):085004
    10. Cuche E, Bevilacqua F, Depeursinge C. Digital holography for quantitative phase-contrast imaging[J]. Optics Letters,1999; 24(5):291-293
    11.冯伟.等离子体羽流场的光学全息干涉度量技术研究[D].硕士学位论文.西安.西北工业大学,2004
    12.李朝辉,井文才,周革等.相移干涉三维形貌纳米检测及算法研究[J].纳米技术与精密工程,2004;2(3):217-220
    13.袁博宇,吴晓娟,陈慎毫等.基于干涉原理和图像处理方法的浓度变化分布测量[J].中国激光,2007;34(1):80-86
    14. Peng X Y, Zhang J, Zheng J, et al. Proton acceleration from microdroplet spray by weakly relativistic femtosecond laser pulses[J]. Phys. Rev.E,2006; 74(3):036405
    15.陈晓梅.球形表面粗糙度测量中两种干涉图像处理方法[J].航空检测技术,2002;22(4):13-17
    16.许谊,徐毓娴,蔡昕.图像处理技术在形貌测量中的应用[J].仪器仪表学报,2001;22(3):217-218
    17.李国栋,韦春龙,于瀛洁.圆形域干涉图中的相位解包裹[J].光学精密工程,2000;8(5):473-477
    18. Peng X Y, Zhang J, Zheng J, et al. Proton acceleration from microdroplet spray by weakly relativistic femtosecond laser pulses[J]. Phys. Rev. E,2006; 74(3):036405
    19. Weng J D, Wang X,Ma Y,et al.A compact all-fiber displacement interferometer for measuring the foil velocity driven by laser[J]. Rev. Sci. Instrum,2008; 79(11):113101
    20.申铉国,张铁强等.光电子学[M].北京:兵器工业出版社,1994
    21.季家熔.高等光学[M].湖南长沙:国防科学技术大学出版社,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700