水稻籼粳交种质遗传多样性分类及其杂种优势利用分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻籼、粳两个亚种间的遗传距离较大,其杂交后代有着较大的变异和显著的超亲优势,充分利用亚种间或亚种内不同生态型间的杂种优势已成为当今育种的主要途径之一。对水稻籼粳亚种进行多样性及杂种优势分析研究,对合理利用亚种间杂种优势具有重要的理论与实践意义。本研究以39份籼粳衍生系和17份籼、粳稻亲本为材料,采用表型性状和SSR分子标记两种聚类分析方法,对试验材料进行类群划分、比较研究和遗传多样性分析,探讨水稻籼粳亚种的遗传多样性及其籼粳分类属性。同时,选取其中12个有代表性籼粳交材料与8个生产上应用广泛的两系、三系不育系配组,利用SSR标记分析亲本间的遗传多样性与亲缘关系,计算所配组合亲本间的遗传距离,进而分析遗传距离与其杂种优势表现之间的相关性。以期为育种亲本的选择,减少配组的盲目性,提高籼粳交杂种优势利用的有效性,以及改善杂交水稻育种工作效率等方面提供借鉴意义。主要研究结果如下:
     1、表型聚类分析结果表明,尽管该聚类不能准确反映所有材料之间的亲缘关系,但能准确揭示亲本材料间在形态上的差异,并较准确的将优势类群聚在一起,对于研究不同材料的杂种优势配组具有重要参考价值。试验中发现,表型聚类的第3类群为优势类群,可以重点把握并进行广泛配组,其第1亚群为籼型和偏籼型亲本材料,它们一般有较好的配合力,选用不育系配组均能产生优势组合;其第2亚群为籼粳中间型材料,既具有一般籼稻特征,又有一定粳稻特性,有较好的特殊配合力,选用分蘖力较好、株型较矮、亲和力较好的籼型、粳型不育系配组,更容易出现强优势组合。
     2、SSR分子标记聚类分析结果表明,该聚类分类结果与表型聚类结果较吻合,通过查阅供试材料系谱,比较分子聚类结果,可以看出它能从分子水平上反映各品种间的差异,并能较准确地了解供试材料的亲缘关系,说明SSR分子聚类可以用于未知材料亲缘关系以及优势类群的划分。
     3、SSR分子标记遗传多样性分析表明,在Nei基因多样性指数、Shannon多样性指数及多态信息含量指数(PIC)方面,籼粳交品系最大值均大于亲本,其Nei基因多样性指数最大值为0.819,亲本为0.796;籼粳交品系Shannon多样性指数最大值为1.856,亲本为1.677;籼粳交品系多态信息含量(PIC)最大值为0.796,亲本为0.766;说明经过多年世代更替选择,籼粳交品系存在比亲本更丰富的等位基因变异。
     4、本研究提出两种DNA水平上籼粳分类的划分标准:①85%分类标准:粳(85%-100%)、偏粳(50%-85%)、偏籼(15%-50%)、籼(0%-15%)。②70%分类标准:粳(70%-100%)、偏粳(30%-70%)、偏籼(15%-30%)、籼(0%-15%)。从试验分析可以看出,两种分子标记分类方法与程式分类法相关性均表现显著,85%分类标准与程氏形态指数分类方法极显著相关(r=0.96**),70%分类标准与程式形态指数分类方法显著相关(r=0.89*),说明两种分子标记分类方法均能有效划分品种的籼粳分类,相对于后者,前者更适合。从亲本与籼粳交品系角度来分析,85%分类标准在亲本及籼粳交品系分类上均小于70%分类标准(与形态指数分类相比),亲本不一致性分别为5.88%、11.76%,籼粳交品系不一致性分别为20.51%、25.64%。可以看出籼粳交品系的形态分类与DNA分类不一致性明显高于亲本的;同时,籼粳交品系的形态指数总积分与粳稻的基因频率相关程度(r=0.65**)低于亲本的形态指数总积分与粳稻的基因频率相关程度(r=0.89**),再次验证了判断籼粳交品系分类的复杂性,说明籼粳交品系的籼粳地位较难确定,它们大部分为中间型,介于籼稻与粳稻之间,其兼具有籼稻与粳稻的特征特性。因此,笔者认为,在籼粳交品系分类上,应以形态指数分类为主,分子标记分类为辅;在籼稻或粳稻分类上,应以分子标记分类为主,形态指数分类为辅。
     5、籼粳交品系配组的杂种优势分析表明,明恢系列籼粳交品系具有以下特点:株高为明显的正向优势,变异幅度较小,96个组合中仅1个组合表现为负向优势;穗长表现为正向超亲优势,变异幅度较小;千粒重表现为一定的正向中亲优势,变异幅度也不大;每穗实粒数和结实率表现出较强的正向优势,籼粳亚种杂交后代结实率低下的难题已基本克服,但其变幅均相对较大,说明明恢系列籼粳交品系杂种后代间表现还是有一定的差异;有效穗数表现为负向中亲优势,说明籼粳交品系杂种F1在分蘖方面相对较弱,有待提高。可以看出,虽然明恢系列籼粳交品系杂种F,在有效穗数、每穗实粒数和千粒重间表现相对不平衡,个别主要产量性状要素正向杂种优势不明显,但由于配组父母本亲本之间性状互补,因而所选组合也表现出较强的产量优势。
     6、分子遗传距离与杂种优势分析结果表明,96个组合在0.2547-0.5660遗传距离范围内,遗传距离对F1结实率、千粒重的杂种优势影响很小,可以忽略不计,对有效穗数的杂种优势有一定影响,也未达到显著水平,且相关系数很小(r=011,r=0.14),但在株高、穗长、每穗总粒数、每穗实粒数、单株产量等方面,株高中亲优势与超亲优势与遗传距离表现出极显著相关(r=0.44**、r=0.45**),穗长中亲优势与超亲优势与遗传距离呈极显著正相关(r=0.39**、r=0.29**),每穗总粒数中亲优势与超亲优势与遗传距离呈极显著正相关(r=0.30**、r=0.32**),每穗实粒数中亲优势与遗传距离呈显著相关(r=0.23*),超亲优势与遗传极显著正相关(r=0.37**),单株产量中亲优势与遗传距离呈显著相关(r=0.23*),超亲优势与遗传极显著正相关(r=0.34**)。由此可以说明,在0.2547-0.5660遗传范围内,遗传距离能反映单株产量大小,并且,在保证大田亩有效穗数,结实不受低温或恶劣条件影响,下,可以利用SSR标记分析亲本遗传距离进行杂种优势预测。
The genetic distance of indica and japonica subspecies of rice is larger, and the progenies of inter-subspecies hybrid have great genetic variation and transgressive heterosis. So to make full use of the different ecotype heterosis in inter-and intra-subspecies has been to become one of the main ways in hybrid rice breeding today. Study on analysis of diversity and heterosis is of important theoretical and practical significance for rational utilization of the heterosis between rice subspecies.
     Therefore, with 39 derivative lines of indica-japonica hybrid rice and 17 indica and japonica parents as materials, the heterotic grouping, the comparative study and the genetic diversity analysis were researched, and the genetic diversity and indica-japonica categorical attributes of indica and japonica subspecies of rice were also discussed in this paper, by the cluster analysis of phenotypic traits and SSR molecular markers.Meanwhile, using 12 representative rice of indica-japonica cross and 8 widely applied two-and three-line male sterile in production as parents, hybrid rice combinations were established and the genetic distance was calculated by the molecular genetic diversity analyzed by SSR molecular markers, then the correlation between the genetic distance and their heterosis performance was analyzed. The aim was to provide reference meaning for parent selection in breeding, reducing blindness of combining, improving validity of the heterosis of indica-japonica cross, enhancing the work efficiency in hybrid rice breeding and so on several aspects. The main results were as follows:
     1、The results showed that, though the cluster analysis of phenotypic traits failed to accurately reflect the relationship among the materials, it could more accurately reveal the phenotypic differences and cluster dominant groups. It was of important reference value for the combination of heterosis in different materials. In this test, we found that the third group was the dominant group in the cluster of phenotypic traits, and should be emphatically studied and extensively combined in breeding. The first subgroup in the third group was indica and indica-clinous rice and had good combining ability. The heterosis combinations could be established using the sterile lines and the first subgroup as parents. The second subgroup in the third group was intermediate type of indica-japonica rice and had the characteristics of indica and japonica rice, good combining ability. The strong heterotic combinations could be easily established using the sterile lines of good tillering ability, dwarf plant type, good compatibility and the second subgroup as parents.
     2、And the results showed that, the result of the cluster analysis of SSR molecular markers was similar with the one of the cluster analysis of phenotypic traits. The differences could be reflected among the strain at the molecular level, and the relationship could be more accurately revealed among the materials, by comparing of the result of the molecular cluster with the pedigree of the test materials. It showed that the cluster analysis of SSR molecular markers could be used to group for the relationship and the heterotic for unknown materials.
     3、The results showed that, the maximum values of Nei gene diversity index, Shannon diversity index and polymorphism information content (PIC) of strain of indica-japonica cross were all more than the parents'values. The maximum value of Nei gene diversity index of strain of indica-japonica cross was 0.819 and the one of their parents'was 0.796. The maximum value of Shannon diversity index of strain of indica-japonica cross was 1.856 and the one of their parents' was 1.677. The maximum value of polymorphism information content (PIC) of strain of indica-japonica cross was 0.796 and the one of their parents'was 0.766. It indicated that, there was more abundant allelic variations in strain of indica-japonica cross than that of their parents by generation selection of many years.
     4、Two division standards were proposed to classify indica and japonica rice in DNA level in this paper. The classification method of standard of 85% DNA japonica components, mainly divided strain of indica-japonica cross into four groups:japonica rice (85%-100%), japonica-clinous rice (50%-85%), indica-clinous rice (15%-50%) and indica rice (0%-15%). And the classification method of standard of 70% DNA japonica components, mainly divided strain of indica-japonica cross into four groups:japonica rice (70%-100%), japonica-clinous rice (30%-70%), indica-clinous rice (15%-30%) and indica rice (0%-15%).From the experimental analysis we could see that the correlations of the two classification methods'and Cheng's classification method's displayed remarkably. The highly significant correlation between the classification method of standard of 85% DNA japonica components and Cheng's morphological classification method (r=0.96**) was observed. And the significant correlation were found between the classification method of standard of 70% DNA japonica components and Cheng's morphological classification method (r=0.89*). It indicated that, the two classification methods effectively classified strain of indica-japonica cross, and compared with the latter, the former was more suitable for classifying. Starting from the angle of the parents and the strain of indica-japonica cross, the inconsistency values of the classification method of standard of 85% DNA japonica components were all less than the one of the classification method of standard of 70% DNA japonica components as compared with the morphological classification method. The inconsistency values of the parents were 5.88% and 11.76% respectively, and the one of the strain of indica-japonica cross were 20.51% and 25.64% respectively.The inconsistency values of the two methods, the morphological classification method and the classification method of DNA molecular markers, for classifying strain of indica-japonica cross was obviously higher than that of the parents. At the same time, the total score of the morphological index of the strain of indica-japonica cross was lower than that of the parents, and the correlation degree of gene frequency for japonica (r=0.65**) was lower than that of the parents (r=0.89**). It verified complexity of classification of strain of indica-japonica cross again. For strain of indica-japonica cross, it was comparatively difficult in determining the position of indica and japonica because most of strain of indica-japonica cross were intermediate type, lay between indica and japonica, and possessed characteristics of indica and japonica.So it is considered that, for strain of indica-japonica cross, it should be advocated the dominant role of the classification method of the morphological index and the subsidiary role of the classification method of the molecular markers, and in the meantime for indica and japonica, it should be advocated the dominant role of the classification method of the molecular markers and the subsidiary role of the classification method of the morphological index.
     5、The analysis of heterosis for combinations of strain of indica-japonica cross showed that, the characteristics of MingHui series strain of indica-japonica cross were as follows:The plant height showed obvious positive heterosis with less variation range, only 1 combination expressed negative heterosis in the 96 combinations. The panicle length showed positive transgressive heterosis with less variation range. The 1000-grain weight showed positive mid-parent heterosis with little variation range. The grain number per panicle and the seed setting rate showed positive heterosis with relatively larger variation range, and the problem of the low seed setting rate for the progenies of inter-subspecies cross basically overcome. Certain-difference existed in the progenies of inter-subspecies cross in the MingHui series stains. The effective panicle number showed negative mid-parent heterosis, and this showed that the tillering ability was relatively weaker in the Fl progenies of inter-subspecies cross and should be improved.lt could be seen that, the unbalance existed in the effective panicle number, the grain number per panicle and the 1000-grain weight in the F1 progenies of inter-subspecies cross in the MingHui series stains, and individual main yield characters showed no obvious positive heterosis, but there were strong yield heterosis in the the choised combinations because complementarity of characters existed in their parents.
     6、The results of analysis on correlation between heterosis and the genetic distance based on simple sequence repeat markers indicated, the parental of 96 F1 hybrid at the genetic distance for 0.2547-0.5660, the correlation between heterosis of F1 seed setting rate,1000-grain weight and GD has negligible effect, the correlation between heterosis of effective panicles and GD has no significant correlation (r=011. r=0.14), However the correlation between heterosis of plant height and GD appeared to be significant at P<0.01 (r=0.44**、r=0.45**), the correlation between heterosis of panicle length and GD appeared to be significant at P<0.01 (r=0.39**、r=0.29**), the correlation between heterosis of total spikelets per panicle and GD appeared to be significant at P<0.01 (r=0.30**、r=0.32**), the correlation between mid-parent heterosis of spikelets per panicle and GD appeared to be significant at P<0.05(r=0.23*), and the heterobeltiosis appeared to be significant at P<0.01 (r=37**), the correlation between Yield per plant of spikelets per panicle and GD appeared to be significant at P<0.05 (r=0.23*), and the heterobeltiosis appeared to be significant at P<0.01 (r=34**). Therefore, at the parental genetic distance of 96 F1 hybrid for 0.2547-0.5660,the yield per plant can be predicted on simple sequence repeat markers, In ensuring the panicles per mu and setting rate to be stable。
引文
[1]袁隆平.杂交水稻超高产育种[J].杂交水稻[J],1997,12(6):1-6.
    [2]程式华,廖西元,闵绍楷.中国超级稻研究:背景、目标和有关问题的思考[J].中国稻米,1998,(1):3-5
    [3]程侃声.亚洲稻籼粳亚种的鉴别[M].昆明:云南科学技术出版社1993,6-15.
    [4]孙传清,吉村淳.普通野生稻和亚洲栽培稻核基因组的RFLP分析[J].中国农业科学,1997,30(4):37-44
    [5]陈成斌,李远到,林登豪,等.普通野生稻性状籼粳分化观察[J].西南农业学报,1994,7(2):1-6.
    [6]孙传清,袁平荣.亚洲栽培稻的核DNA,线粒体DNA和叶绿体DNA籼粳分化的比较研究[J].作物学报,1998,24(6):677-686.
    [7]钱惠荣,沈波,林鸿宣,等.水稻籼粳特异性RFLP标记及广亲和品种亲缘关系分析[J].中国水稻科学,1994,8(2):65-71.
    [8]赵建亚,张瑛英,梁康迳.利用I LP分子标记分析籼粳杂交水稻的遗传多样性[J].石河子大学学报(自然科学版),2009,27(3):291-294.
    [9]张尧忠,徐宁生.酯酶酶带籼粳分类法及稻种籼粳分类体系的讨论[J].西南农业学报,1998,11(3):88-93.
    [10]陈跃进,丁效华,杨长寿,等.水稻粳型亲籼系籼粳型属性的程氏指数鉴定[J].湖南农业大学学报(自然科学版),2002,28(4):284-286.
    [11]程新奇,严钦泉,周清明,等.籼、粳稻及其杂种谷粒苯酚染色反应研究[J].杂交水稻,2006,21(3):72-74.
    [12]Glaszmann J C. Isozymes and classification of Asian rice varieties[J].TAG,1987,74:21-30.
    [13]段中岗,梁程邺.改良聚丙稀酰胺凝胶电泳法测定籼粳分化的同工酶带[J].兰州大学学报(自然科学版),2005,41(4):30-33.
    [14]孙立新,才宏伟,王象坤.东亚、南亚籼稻同工酶基因的异同分析[J].中国农业科学,1997,30(5):50-55.
    [15]陈雨,潘大建,曲延英,等.水稻籼粳分化研究进展[J].广东农业科学,2007,12:3-7.
    [16]孙传清,王象坤,才宏伟.中国普通野生稻和亚洲栽培稻核基因组的遗传分化[J].中国农业大学学报,1997,2(5):65-71.
    [17]Yu L X, Nguyen H T, Genetic variation detected with RAPD markers among upland and lowland rice cultivars(Oryza sativa L.). Theor.Appl Genet.1994,87:668-672.
    [18]Mackill D J. Classifying japonica rice cultivars with RAPD markers. Crop Science,1995,35:889-894.
    [19]王振山,陈洪,朱立煌,等.中国普通野生稻遗传分化的RAPD研究[J].植物学报,1996,38(9):749-752
    [20]樊叶杨,庄杰云,吴建利,等.应用微卫星标记鉴别水稻籼粳亚种[J].遗传,2000,22(6):392-394.
    [21]朱作峰,孙传清,李自超,等.用SSR标记对水稻品种的分类研究[J].农业生物技术学报,2001,9(1):58-61.
    [22]张建勇,袁佐清,李仕贵.微卫星标记分析籼粳亚种间的遗传多样性[J].山东理工大学学报(自然科学版),2005,19(2)22-27.
    [23]潘存红,王子斌,马玉银,等.InDel和SNP标记在水稻图位克隆中的应用[J].中国水稻科学,2007,21(5):447-453.
    [24]蔡星星,刘晶,仇吟秋,等.籼稻93-11和粳稻日本晴DNA插入缺失差异片段揭示的水稻籼-粳分化[J].复旦学报(自然科学版),2006,45(3):309-315.
    [25]戴小军,欧立军,李文嘉,等.水稻籼型、粳型特异性分子标记的研究和应用[J].湖南农业大学学报(自然科学版),2007,33(s1):8.
    [26]池桥宏,荒木均.控制水稻远距离杂交F1不育性的复等位基因[J].农业科技译丛,1995,20(1):20-25.
    [27]Wan JM. Analysis of hybrid sterility gene loci for hybrid rice breeding and understanding of varietal differentiation[D]. Doctoral thesis. Kyoto University, Kyoto, Japan.1995,1-136.
    [28]吕川根,邹江石,宗寿余,等.聚合亚种间育性亲和基因的广谱亲和性水稻品系选育与初步利用[J].上海农业学报,,2005,,21(4):13-18.
    [29]孙传清,吴长明,等.水稻杂种优势与遗传分化关系的研究[J].作物学报,2000,26(6):641-649.
    [30]程式华.杂交水稻育种材料和方法研究的现状及发展趋势[J].中国水稻科学,2000,14(3):165-169.
    [31]张受刚,许旭明.粳型亲籼恢复系的选育与利用[J].福建稻麦科技,2006,24(1):3-5.
    [32]杨振玉.北方杂交粳稻发展的思考与展望[J]作物学报,1998,6(24):840-846.
    [33]钱前,朱立黄.籼粳中间型水稻杂种F1的生物优势、经济优势与RFLP的关系[J]研究作物学报,1998,1(24):74-77
    [34]李任华,徐才国,何予卿,等.水稻亲本遗传分化程度与籼粳杂种优势的关系[J].作物学报.1998,24(5):564-576
    [35]毛传澡.两套群体的籼粳分化及亲本的籼粳分化与杂种表现的关系[D].中国农科院,2000.
    [36]袁隆平.杂交水稻的育种战略设想.杂交水稻,1987,(1):1-3.
    [37]Xiao J H, Li J M, Yuan L P, et al. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics,1995,140:745-754
    [38]陈庆全,穆俊祥,周红菊,等.利用基础导入系分析粳稻基因的遗传效应.中国农业科学,2007,40(11):2387-239.
    [39]Cheverud J M. and Koutman E J. Epistasis and its contribution to genetic variance components. Genetics, 1995,139:1455-1461
    [40]张启发.水稻杂种优势的遗传基础研究[J].遗传,1998,20(增刊):1-2.
    [41]余四斌,李建雄,徐才国,等.上位性效应是水稻杂种优势的重要遗传基础[J].中国科学,C辑,1998,28(4):333-342.
    [42]曹立勇,占小登,庄杰云,等.水稻产量性状的QTL定位与上位性分析[J].中国农业科学,2003,36(11):1241-1247.
    [43]廖春燕,吴平,易可可,等.不同遗传背景及环境中水稻穗长的QTL和上位性分析[J].遗传学报,2000,27(7):599-607.
    [44]徐建龙,薛庆中,罗利军,等.水稻单株有效穗数和每穗粒数的QTL剖析[J].遗传学报,2001,28(8):135-143.
    [45]郑景生,江良荣,曾建敏,等.应用明恢86和佳辐占的F2群体定位水稻部分重要农艺性状和产量构成的QTL[J].分子植物育种,2003,5(1)633-639.
    [46]向道权,黄烈健,戴景瑞.玉米产量QTL和杂种优势遗传基础研究进展Ⅲ[J].中国农业大学学报,1999,4(增刊):1-7.
    [47]郑小江.玉米产量数量基因位点与杂种优势遗传基础探讨[J].山东农业大学学报(自然科学版),2003,34(3):447-450.
    [48]严钦泉,阳菊华,伏军.两系杂交稻亲本籼粳程度与配合力及杂种优势的关系[J].湖南农业大学学报(自然科学版),2001,27(3):163-166.
    [49]冯瑞光,杨微萍.粳型光敏核不育系主要农艺性状的配合力及杂种优势[J].华北农学报,1997,12(4):7-12.
    [50]赵庆勇,朱镇,张亚东,等.杂交粳稻品质性状的配合力和杂种优势分析[J].江苏农业学报,2008,24(4):387-393.
    [51]吴长明,王象坤.遗传距离在籼粳稻“桥梁”育种的杂交亲本选配中应用的研究[J].北京农业大学学报,1989,15(1):7-14.
    [52]李荣改,孟祥祯,王玉珍,等.水稻遗传距离与杂种优势、杂种产量的关系[J].河北农业大学学报,1993,16(1):13-19.
    [53]马洪文,殷延勃,王兴盛,等.粳稻数量性状的遗传距离及其在杂种优势利用上的应用[J].宁夏农学院学报,1998,19(3),45-49.
    [54]Smith O S,Smith J S C,Bowen S L,et al. Similarities among a group of elite maize inbreds as measured by pedigree,F1 grain yield,.grain yield,heterosis and RFLPs [J].Theor Appl Genet,1990,80:833-840.
    [55]孙祎振,崔心刚.糯玉米自交系配合力分析及RAPD技术预测杂种优势[J],北京农学院学报.2001,16(3):1-12.
    [56]蔡健,兰伟.AFLP标记与水稻杂种产量及产量杂种优势的预测[J].中国农学通报,2005,21(4):39-42.
    [57]罗小金,贺浩华,彭小松,等.利用SSR标记分析水稻亲本间遗传距离与杂种优势的关系[J].植物遗传资源学报,2006,7(2):209--214.
    [58]赵庆勇,朱镇,张亚东,等.SSR标记遗传距离与粳稻杂种优势的相关性分析[J].中国水稻科学,2009,23(2):141-147.
    [59]廖惠红,李容柏,张向军,等.籼稻与热带粳稻渗入系间的分子标记差异性和杂种优势分析[J].西南农业学报,2005,18(1):5-10.
    [60]Melchinger A E, Lee M, Lamkey K R, et al. Genetic diversity for RFLP:Relation to estimated genetic effect in maize inbreds[J]. Theor Appl Genet,1990,80:488-496.
    [61]Barbosa A M M, Geraldi I O, Benchimol L L,et al. Relationship of intra-and interpopulation tropical maize single cross hybrid performance and gentic distances computed from AFLP and SSR markets[J]. Euphytica, 2003,130(1):87-99.
    [62]吴敏生,王守才,戴景瑞.RAPD分子标记与玉米杂种产量预测的研究[J].遗传学报,1999,26(5):578-584.
    [63]曹永国,向道权,黄烈健,等.SSR分子标记与玉米杂种优势利用关系的研究[J].农业生物技术学报,2002,(2):120-123.
    [64]王胜军,万建民,等.利用SSR分子标记划分杂交籼稻亲本群的研究[J].作物学报,2006,32(10):1437-1443.
    [65]应杰政,施勇烽,庄杰云,等.用微卫星标记评估中国水稻主栽品种的遗传多样性应[J].中国农业科学2007,40(4):649-654.
    [66]王胜军,陆作楣,万建民.采用表型和分子标记聚类研究杂交籼稻亲本的遗传多样性[J].中国水稻科学,2006,20(5):475-480.
    [67]苏顺宗,黄玉碧,杨俊品,等.利用SSR鉴定水稻杂交种子纯度的研究[J].种子,2003,(1):23-35.
    [68]詹庆才.利用微卫星DNA标记进行杂交水稻种子纯度鉴定的研究[J].杂交水稻,2002,17(5):46-50.
    [69]彭锁堂,庄杰云,颜启传,等.我国主要杂交水稻组合及其亲本SSR标记和纯度鉴定[J].中国水稻科学,2003,17(1):1-5.
    [70]李建雄,余四斌,徐才国,等.汕优63的产量及其构成因子的数量性状基因位点分析[J].作物学报,2000,26(6):892-898.
    [71]郑景生,江良荣,曾建敏,等.应用明恢86和佳辐占的F2群体定位水稻部分重要农业性状和产量构成的QTL[J].分子植物育种,2003,1(5):633-639.
    [72]叶少平,张启军,李杰勤,等.用培矮64S/Nipponbare F2群体对水稻产量构成性状的QTL定位分析[J].作物学报,2005,31(2):1620-1627.
    [73]杜景红,樊叶杨,王磊,等.应用剩余杂合体衍生的近等基因系分解水稻产量性状QTL[J].中国水稻科学,2008,22(1):1-7.
    [74]李仕贵,马玉清,何平,等.不同环境条件下水稻生育期和株高的QTL分析[J].作物学报,28(4):546-550.
    [75]赵芳明,张桂权,曾瑞珍,等.用单片段代换系(SSSLs)研究水稻株高及其构成因素QTL加性及上位性效应[J].作物学报,2009,35(1):48-56.
    [76]何风华,席章营,曾瑞珍,等.利用单片段代换系定位水稻抽穗期QTL[J].中国农业科学2005,38(8):1505-1513.
    [77]张永生,江玲,刘喜,等.控制水稻品种Koshihikari抽穗期的数量性状位点[J].作物学报,2008,34(11):1869-1876.
    [78]刘永胜,朱立煌,孙敬三,等.水稻籼粳杂种生殖障碍的基因定位分析[J].植物学报,1997,39(12):1099-1104
    [79]苏菁,刘耀光.栽培稻(Oryza saliva L.)亚种间F1花粉不育基因S-a的精细定位及克隆[J].分子植物育种,2003,1(5/6),757-758.
    [80]赵明富,蔡春苗,车容会,等.水稻光温敏雄性核不育系45S不育基因的分子定位[J].分子植物育种,2008,6(6):1045-1049.
    [81]李广贤,屠国庆,张克勤,等.应用微卫星标记定位水稻恢复系密阳46的主效和微效恢复基因[J].中国水稻科学,2005,19(6):506-510
    [82]刘蔼民,李和标,张启发,等.水稻广亲和基因在RFLP图谱上的初步定位[J].华中农业大学学报,1992,11(3):213-219.
    [83]张小惠,朱旭东,钱前,等.水稻新广亲和基因的初步分子定位[J].中国水稻科学,1998,12(1):11-16.
    [84]赵勇,杨凯,Akbar Ali Cheema,等.利用水稻功能基因SSR标记鉴定水稻种质资源[J].中国农业科学,2002,35(4):349-353.
    [85]余汉勇,魏兴华,王一平,等.应用形态、等位酶和SSR标记研究水稻矮仔占衍生品种的遗传差异[J].中国水稻科学,2004,18(6):477-482.
    [86]宣云,赵伟,宋丰顺,等.利用SSR标记分析部分粳稻品种的遗传多样性[J].核农学报,2007,21(3):217-220.
    [87]程本义,夏俊辉,沈伟峰,等.微卫星标记分析我国南方常规水稻品种的遗传差异[J].核农学报,2009,23(1):7-1.
    [88]刘炜,李自超,史延丽,等.利用SSR标记进行粳稻品种的遗传多样性研究[J].西南农业学报,2005,18(5):509-513.
    [89]赵庆勇,朱镇,张亚东,等.SSR标记遗传距离与粳稻杂种优势的相关性分析[J].中国水稻科学,2009,23(2):141-147.
    [90]敖光辉,王丽,魏琴,等.籼粳稻亚种间分子标记差异分析[J].安徽农业科学,2008,36(5):1778-1780.
    [91]何风华,曾瑞珍,席营.不同Waxy基因水稻的遗传多样性[J].分子植物育种,2003,1(2):179-186.
    [92]郭慧,李树杏,徐建第,等.24份水稻细胞质雄性不育系的SSR多态性分析[J].杂交水稻,2007,22(3):56-61.
    [93]Susan R, Mccouch, Leonid Teyetelman, et al. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.)[J]. DNA Research,2002,9:199-207.
    [94]李任华,徐才国,何予卿,等.水稻亲本遗传分化程度与籼粳杂种优势的关系[J].作物学报,1998,24(5):564-575.
    [95]姜延波,孙传清,李任华等.利用RFLP标记对两系杂交水稻及其亲本的分类研究[J].中国农业科学.1999,32(6):8-15.
    [96]毛艇,徐海,郭艳华等.利用SSR分子标记进行水稻籼粳分类体系的初步构建[J].华北农学报.2009,24(1):119-124.
    [97]许旭明.水稻籼粳亚种间杂交籼粳衍生系遗传基础的研究[D].福建农林大学博士学位论文,.2009.
    [98]柯蓓.水稻籼粳亚种间杂交籼粳衍生系的SSR分析[D].,福建农林大学硕士学位论文,2009.
    [99]张尧忠,徐宁生.酯酶酶带籼粳分类法及稻种籼粳分类体系的讨论.西南农业学报,1998,11(3):88-92.
    [100]张桂权,卢永根.水稻粳型亲籼系的创建及其在超级稻育种上的利用[J].沈阳农业大学报,2007,]0,38(5):676-680.
    [101]杨守仁,张龙步,徐正进,等.水稻理想株形育种的基础研究及其与国内外同类研究的比较[J].中国水稻科学,1993,7(3):187-192.
    [102]徐正进,陈温福,张文忠,等.北方粳稻新株型超高产育种研究进展[J].中国农业科学,2004,37(10):1407-1413.
    [103]马均,周开达:亚种间重穗型杂交稻穗颈维管束与穗部性状的关系[J].西南农业学报,2001,14(3):1-5.
    [104]袁隆平,武小金,颜应成,等.水稻广谱广亲和系的选育策略[J].中国农业科学,1997,30(4):1-8.
    [105]张兆兰,王才林.利用粳型广亲和恢复系与籼稻不育系配制亚种问杂种[J].江苏农业学报,1990,6:161-167.
    [106]许旭明,张受刚,卓伟,等.水稻广亲和恢复系GK729的表现及其利用[J].福建稻麦科技,1997,15(1):17-20.
    [107]王象坤,孙传清,李自超.生物多样性的起源演化及亚洲栽培稻的分类[J].植物遗传资源学.2000,1(2):48-53.
    [108李金泉,姜健,徐正进,等.籼梗稻杂交后代的六性状遗传研究初报[J].沈阳农业大学学报,2000,31(3):233-237.
    [109]张涛,倪先林,蒋开锋,等.水稻功能基因标记遗传距离与杂种优势的相关性研究.中国水稻科学,2009,23(6):567-572.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700