改进低温下泄水不利影响的水库生态调度方法及影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现行水库调度方式的主要缺陷,是注重发挥水库的社会经济功能,力求经济效益的最大化,但是忽视了水库下游及库区的生态系统需求。本文研究了在考虑生态因素约束条件下的水库中长期优化调度,把水库的生态调度和优化调度结合起来。
     本文的主要研究工作和成果如下:
     (1)以雅砻江锦屏一级水电站为背景,将雅砻江锦屏一级水电下游主要省级保护鱼类作为指示性鱼类。野外考察了雅砻江锦屏一级库区及下游鱼类区系的组成,完善了雅砻江鱼类的生境调查,并进行了鱼类的短期观察试验和长期控制试验。并结合相关文献资料,确定了雅砻江锦屏一级水电下游主要省级保护鱼类对水温的适应性,尤其是产卵期对水温的要求,为水库的生态调度提供了基础性资料。
     (2)采用立面二维水温模型研究了水库运行对下泄水温的影响,分单层进水口和二层叠梁门两种工况分别预测了这两种不同的水库取水方式对应的水库下泄水温的变化,研究结果表明,与单层进水口相比,二层叠梁门方案的下泄水温在春季偏高,冬季偏低,更接近于天然水温过程,对下游河道水温过程的改变较小;采用基于栖息地适宜度的分析方法对单层进水口和二层叠梁门方案进行比较分析,对于下游鱼类温度因子栖息地适宜度而言,二层叠梁门也优于单层进水口方案;采用河道纵向一维水温模型来模拟锦屏一级水电站运行后的河道水温沿程分布情况,与单进水口方案相比,二层叠梁门方案坝址下游河道水温沿程恢复较快,这在一定程度上减轻了下泄低温水对库区下游鱼类的负面影响。总体来说,二层叠梁门取水方案比单层进水口方案更趋近于天然河道水温过程,更有利于维持下游河道的原有水生生态环境,从而确定了二层叠梁门方案是更有利于下游河道水生生态环境的水库取水方案。
     (3)开发了一个基于入库径流预报的水库优化调度模型,所开发的优化模型包括长期优化模型,中期优化模型,和中长期优化模型之间的耦合环节。中长期优化模型均使用增量动态规划算法作为优化算法。长期模型优化的时间跨度为一年,优化时段为一个月。中期模型优化的时间跨度等于中期入库径流预报的预见期(3-7天),优化时段为一天。长期优化模型所输出的月平均库水位被内插为日均库水位,然后将它设定为中期优化模型所使用的离散动态规划法的终止状态,从而实现了长期优化调度和中期优化调度模型的耦合,应用此耦合优化模型进行锦屏一级水库调度模拟的结果显示,这种耦合机制的设计是成功的,长期优化的水位轨迹能很好地指导中期优化调度。对于有误差的入库径流预报序列,使用修正后的长期优化结果,这种耦合作用仍然是有效的。
     (4)采用层次分析法对水利工程生态系统服务功能影响因子进行了分类,并联合采用多级模糊数学评判法,建立了水利工程生态系统服务功能AHP-FUZZY综合评价模型,并利用该模型对生态调度对锦屏一级水库生态系统服务功能的影响进行了评价,定性分析了水库的生态调度对维护下游河流生态系统的重要意义。同时,采用经济评价方法定量分析了生态调度对锦屏一级水库生态系统服务功能经济价值的影响。
The main shortcoming of the existing reservoir operation mode is to pay attention to the socio-economic function of the reservoir, and strive to maximize economic benefits, but it ignores the downstream reservoir and the reservoir eco-system requirements. This paper studies the medium and long-term optimal reservoir operation considering ecological factors, combining ecological reservoir operation and optimal reservoir operation.
     The main research work and results are as follows:
     In this paper, take the Yalong river Jinping I Hydropower project as the background, take major provincial-level protection of fish as indicators of fish along downstream Jinping I Hydropower project, and inspected fish fauna composition in the reservoir area and downstream in field, perfect the investigation of fish habitat in Yalong river, carry out short-term observed trials and long-term controlled trial. Because blood indicators can reflect the biological properties and the normal physiological state, fish blood and body metabolism, nutritional status and disease are closely related, and level of digestive enzyme vigor affects directly the animals on nutrient absorption and utilization, environment adapt status can be found from the changes of digestive enzymes, through water temperature coercion experiment of fish, study the physiological response of fish from changes of the serum indicators and in digestive enzyme vigor under different temperature conditions, combined with relevant literature, identify the water temperature adaptability of fish, especially the water temperature requirements of spawning, provide basic data for reservoir ecological operation.
     In this paper, two-dimensional model of the reservoir water temperature are taken to study the influence of discharge water temperature when reservoir operation. Aim at discharged low water temperature of Jinping reservoir. In this paper, predict single inlet and stratified water conditions respectively discharge water temperature changes. The results show that compared with the single-intake scheme, stratified water scheme has higher discharged water temperature in spring, lower discharged water temperature in winter. Stratified water scheme is better than single-intake scheme by analyzing d downstream fish temperature habitat suitability criteria.It is closer to the natural water temperature process. Vertical river one-dimensional water temperature model is taken to simulate temperature distribution along the river. Compared with the single-intake scheme, river water temperature of stratified water scheme is recoveried quickly, which in a certain extent, reduce the negative impact of the low temperature discharged water on fish. Generally speaking, compared with the single-intake scheme, stratified water scheme is closer to the natural water temperature process, and is more propitious to maintain river ecological environment.
     This paper develops a reservoir optimal operation model based on runoff prediction. Optimization model includes long-term optimization model, middle term optimization model, and the coupling between long-term optimization model and middle term optimization model. Middle-term and long-term optimization model take all state increment dynamic programming algorithm as the optimization algorithm. The time span of long-term optimization model is one year, and the optimization period is one month. The time span of middle-term optimization model equal foreseeable period of runoff forecasting (3 to 7 days), and the optimization period is one day. The average monthly water level of long-term optimization model of the output has been interpolated for the average day water level, and it is set to termination of increment dynamic programming of medium-term optimization model, consequently achieves coupling long-term optimization model and middle-term optimization model. Results of application of this coupled model to optimize reservoir operation Jinping simulation show that design of coupling mechanism is successful. The trajectory of long-term optimization can be a good guidance to middle-term optimization.
     Hydraulic project impact factors of ecosystem services are classified by using the analytic hierarchy, and using jointly of multi-level fuzzy evaluation method. The AHP-FUZZY model of hydraulic project is established. The effect of ecological operation on ecosystem services function of Jinping I reservoirs is appraised. The importance of reservoirs ecological operation to maintain downstream ecological system is analyzed qualitatively, and the influence of reservoirs ecological operation on Jinping I reservoirs ecosystem services function economic value is also analyzed quantitatively by using economic evaluation method.
引文
[1]李景波.水库健康调度与河流健康生命探讨[J].水利水电技术,2007,38(9):12-15.
    [2]王西琴.河流生态需水理论、方法与应用[M].北京:中国水利水电出版社,2007.
    [3]徐毓荣,徐钟际,向申,等.季节性缺氧水库铁、锰垂直分布规律及优化分层取水研究[J].环境科学学报,1999,19(2):147-152.
    [4]陈凯麒,曹晓红,廖琦琛,等.水利水电建设中若干环境保护关键技术的考虑[J].生态环境保护研究与实践,2006,58(2):16-19.
    [5]索丽生.闸坝与生态[J].中国水利,2005,(16):5-7.
    [6]潘理中,芮孝芳.水电站水库优化调度研究的若干进展[J].水文,1999,(6):37-40.
    [7]陈宁珍.水库运行调度[M].北京:水利电力出版社,1990.
    [8]中华人民共和国水利部.水利水电工程水文计算规范SL278-2002[S],北京:中国水利出版社,2002.
    [9]郭耀真,赵在望.水库坝前水温统计分析[J].水利水电技术,1997,28(3):2-7.
    [10]朱伯芳.库水温度估算[J].水利学报,1985(2):12-21.
    [11]张大发.水库水温分析及估算[J].水利学报,1984(1):19-27.
    [12]Huber W C, Harleman D R. Temperature prediction in stratified reservoirs [J]. Journal of the Hydraulics Division,1972,98 (4):645-666.
    [13]Orlob G T. Mathematical modelding of water quality in lakes and resvervoirs [M]. New York:Wiley Interscience,1983.
    [14]Hondzo M, Stefan H G Riverbed heat conduction prediction [J] Water Resources Research,1994,30 (5):1503-113.
    [15]陈永灿,张宝旭,李玉梁.密云水库垂向水温模型研究[J].水利学报,1998(9):14-20.
    [16]李怀恩,沈晋.一维垂向水库水温数学模型研究与黑河水库水温预测[J].陕西机械学院学报,1990(4):236-243.
    [17]殷学鹏,杨传智.垂向一维水质模型及在龙滩水库水质预测中的应用[J].水利水电环境,1991(1):16-21.
    [18]蒋红.水库水温计算方法探讨[J].水力发电学报,1999(2):60-69.
    [19]Cole T M, Wells S A. CE-QUAL-W2:A two-dimensional, laterally averaged, hydrodynamic and water quality model, Version 3.1. Instruction Report EL-2002-1,U.S. Army Engineering and Research Development Center, Vicksburg, MS,2002.
    [20]江春波,张庆海,高忠信.河道立面二维非恒定水温及污染物分布预报模型[J].水利学报,1998(9):20-24.
    [21]陈小红.湖泊水库垂向二维水温分布预测[J].武汉水利电力学院学报,1992,25(4):376-383.
    [22]邓云,李嘉,李克锋,等.梯级电站水温累积影响研究[J].水科学进展,2008,21(2):21-25.
    [23]冯民权,郑邦民周孝德.河流及水库流场与水质的数值模拟[M].北京:科学出版社,2007.
    [24]徐毓荣,徐钟际,向中,等.季节性缺氧水库铁、锰垂直分布规律及优化分层取水研究[J].环境科学学报,1999,19(2):147-152.
    [25]戴送晨.宝珠寺水库蓄水前后水温、水质变化回顾分析[J].水电站设计,2001,17(4):58-60.
    [26]薛联芳.东江水电站对环境影响的研究[J].水电站设计,1997,13(3):23-26.
    [27]王立武.分层型水库浮游生物的研究[J].水电站设计,1999,15(3):12-16.
    [28]詹晓群,胡建军.伦潭水库水温预测分析及冷害对策[J].江西水利科技,2004,30(1):92-95.
    [29]韩彩霞,尹晓煜.预测伍家庄水库下泄水温对农作物的影响[J].水利科技与经济,2002,(9):155-157.
    [30]吴莉莉,王惠民,吴时强.水库的水温分层及其改善措施[J].水电站设计,2007,23(3):97-100.
    [31]Grand Canyon Monitoring and Research Center. The State of Natural and Cultural Resources in the Colorado River Ecosystem (SCORE) [R].1995-2005.
    [32]Ward J V, Standford J. The ecology of regulated streams [M]. New York, Plenum Press,1979.
    [33]Raskin P D, Hansen E, Margolis R M. Water and sustainability:global patterns and long range problems [J]. Natural Resources Forum,1996,20 (1):1-15.
    [34]Richter B, Artner J B, Wigington R, et al. How much water does a river need? [J]. Freshwater Biology, 1997,37 (2):231-249.
    [35]陈建敏,丰华丽,王立群,等.生态标准河流和调度管理研究[J].水科学进展,2006,17(5):631-636.
    [36]宋兰兰,陆桂华,刘凌.水文指数法确定河流生态需水[J].水利学报,2006,37(11):1336-1341.
    [37]王兆印,曾庆华,吕秀贞,等.蓄水河流对环境的影响[M].北京:中国环境出版社,1988.
    [38]Sabet M H, Coe J Q, Ramirez H M. Optimal operation of California Aqueduct [J]. Journal of Water Resources Planning and Management,1985,111 (2):222-237.
    [39]Higgins J M, Brock W G. Overview of reservoir release improvement at 20 TVA dams [J]. Journal of Energy Engineering,1999,125 (1):1-17.
    [40]吕新华.大型水利工程的生态调度[J].科技进步与对策,2006(7):129-131.
    [41]索丽生.水利工程的特殊功能—关于水利工程建设新思路的思考[J].水利水电技术,2003,34(1):1-3.
    [42]戴甦,王船海,金科.引江济太水量水质联合调度研究[J].中国水利,2008(1):15-17.
    [43]吴志平,巫函蕾,颜志俊.构建引江济太管理体制与机制的探讨[J].中国水利,2008(1): 12-14.
    [44]长江水利委员会.三峡工程综合利用与水库调度研究[M].武汉:湖北科学技术出版社,1997.
    [45]傅春,冯尚友.水资源持续利用原理的探讨.水科学进展[J],2000,11(4):436-440.
    [46]邵东国,郭宗楼.综合利用水库水量水质统一调度模型.水利学报[J],2000(8):10-15.
    [47]贾海峰,程声通,丁建华.水库调度和营养物消减关系的探讨[J].环境科学,2001,22(4):104-107.
    [48]陈守煜,黄宪成,李登峰.大连市水资源利用与宏观经济协调发展规划多目标群决策模型与方法[J].水利学报,2003(3):12-15.
    [49]王好芳,董增川.基于量与质的多目标水资源配置模型[J].人民黄河,2004(6):21-25.
    [50]Little J D. The uses of storage water in a hydroelectric system [J]. Operations Research,1955,3 (2):12-15.
    [51]Howard R A. Dynamic programming and Markov process [M]. Technology Press of MIT,1960.
    [52]Needham J T, Watkins D W, Lund J R, et al. Linear programming for flood control in the Iowa and Des Moines rivers [J]. Journal of Water Resources Planning and Management,2000,126 (3) 118-127.
    [53]Rosenthal R E. The status of optimization models for the operation of multireservoir systems with stochastic inflows and nonseparable benefits [R]. National Technical Information Service,1980.
    [54]Lasdon L, Waren A. Surrey of nonlinear programming application [J]. Water Resources Research, 1974,10 (1):7-12.
    [55]Askew J. Optimum reservoir operating policies and the imposition of a reliability constraint [J]. Water Resources Research,1974,10 (1):21-25.
    [56]Song YH, Chou C S, Stonham T J. Combined heat and power economic dispatch by improved ant colony search algorithm [J]. Electric Power Systems Research,1999,52 (3):115-121.
    [57]Kenndy J, Eberhart R C. Particle Swarm Optimization:Proc. IEEE International Conference on Neural Networks [C]. Piscataway, NJ:IEEE Service Center,1995:1942-1948.
    [58]李晓磊.基于分解协调的人工鱼群算法研究[J].电路与系统学报,2003,8(1):1-6.
    [59]Huang SJ. Enhancement of hydroelectric generation scheduling using ant colony system based optimization approaches [R]. IEEE Trans, on Power Systems,2001,16 (3):296-301.
    [60]徐刚,马光文,梁武湖.蚁群算法在水库优化调度中的应用[J].水科学进展,2005,16(3):397-400.
    [61]周慕逊,王正初,李睿,等.水电站机组优化组合的混合粒子群优化算法[J].水力发电,2007,33(5):47-50.
    [62]侯云鹤,鲁丽娟,熊信良,等.广义蚁群与粒子群结合算法在电力系统经济负荷分配中的应用[J].电网技术,2004,28(21):34-38.
    [63]武新宇,程春田,廖胜利,等.两阶段粒子群算法在水电站群优化调度中的应用[J].电网技术,2006,30(20):25-27.
    [64]William H M. Man's Impact on the Global Environment:Assessment and Recommendations for Action [M]. MIT Press,1970.
    [65]Holdren J P, Ehrilich, P. Human population and global environment [J]. Amer. Sci.1974,282-292.
    [66]Ehrilich P R. Extinction[M]. New York:Ballantine,1981.
    [67]Schulze E D, Mooney H. Biodiversity and Ecosystem Function [M]. Berlin:Springer-Verlag,1993.
    [68]Constanza R. The value of world's ecosystem services and natural capital[M]. Nature,1997.
    [69]薛达元,包浩生,李文华.长白山自然保护区生物多样性旅游价值评估研究[J].自然资源学报,1999,14(2):140-145.
    [70]谢高地.中国自然草地生态系统服务价值[J].自然资源学报,2001,16(1):47-53.
    [71]龙华.温度对鱼类生存的影响[J].渔业现代化,2005(2):20-21.
    [72]Valenzuela A E, Silva V M. Some changes in the haematological parameters of rainbow trout exposed to three artificial photoperiod regimes [J]. Fish Physiol. Biochem,2007, (33):35-48.
    [73]Marder Z A. Serum elect rolyte and enzyme responses to heat stress and dehydration in the fow [J]. Comp. Biochem. Physiol.,1983,74(2):11-15.
    [74]杨蕙萍,童圣英,王子臣.国内外关于水产动物消化酶研究的概况[J].大连水产学院学报,1998,13(3):64-71.
    [75]北京大学生物系生物化学教研室.生物化学实验原理和方法[M].北京:高等教育出版社,1988.
    [76]中山大学生物系.生化技术导论[M].北京:科学出版社,1979.
    [77]刘伟,李佐锋.温度对链鳙鱼生理生化指标的影响[J].东北师大学报自然科学版,1995,2(2):108-112.
    [78]陈品健,王重刚,陆浩,等.真鲷幼鱼消化酶活性与温度的关系[J].厦门大学学报(自然科学版),1998,37(6):931-934.
    [79]刘军.长江上游特有鱼类受威胁及优先保护顺序的定量分析[J].中国环境科学,2004,24(4):7-11.
    [80]朱瑶.大坝对鱼类栖息地的影响及评价方法述评[J].中国水利水电科学研究院学报,2005,3(2):100-103.
    [81]刘兰芬.河流水电开发的环境效益及主要环境问题研究[J].水利学报,2002(8):121-128.
    [82]杨富忆.黑龙江干流水电梯级开发对鱼类资源的影响与补救措施[J].国土与自然资源研究,2000(1):55-57.
    [83]Spalart P, Allmaras S. A one-equation turbulence model for aerodynamic flows [R]. American, Institute of Aeronautics and Astronautics,1992.
    [84]Launder B E, Spalding D B. Lectures in mathematical models of turbulence [M]. London: Academic Press,1972.
    [85]Rodi W. Influence of buoyancy and rotation on equations for the turbulent length scale [R]. London, Symposium on Turbulent Shear Flows,1979.
    [86]Henkes R A, Hoogendoorn C J. Natural-convection flow in a square cavity calculated with low-Reynolds-number turbulence models [J]. International Journal of Heat and Mass Transfer, 1991,34 (2):377-388.
    [87]Gibson M M, Launder B E. Ground effects on pressure fluctuations in the atmospheric boundary layer [J]. Journal of Fluid Mechanics Digital Archive,1978,86 (3):491-511.
    [88]Launder B E. Second moment closure:present and future? [J]. International Journal of Heat and Fluid Flow,1989,10 (4):282-300.
    [89]Launder B E, Reece G J, Rodi W. Progress in the development of a Reynolds-stress turbulence closure [J]. Journal of Fluid Mechanics Digital Archive,1975,68 (3):537-566.
    [90]Launder B E, Spalding D B. The numerical computation of turbulent flows [J]. Computer Methods in Applied Mechanics and Engineering, Special edition on the 20th Anniversary,1990.
    [91]金忠青.N-S方程的数值解和紊流模型[M].南京:河海大学出版社,1989..
    [92]冯民权,郑邦民,周孝德.河流及水库流场与水质的数值模拟[M].北京:科学出版社,2007.
    [93]陈景仁.湍流模型及有限元分析[M].上海:上海交通大学出版社,1988.
    [94]陶文铨.数值热传学[M].西安:西安交通大学出版社,1988.
    [95]陶文铨.计算热热传学的研究进展[M].西安:西安交通大学出版社,2000.
    [96]吴和赓,张志明.气象学[M].北京:中国水利水电出版社,1986.
    [97]吴永莲,涂美珍.气象学基础[M].北京:北京师范大学出版社,1988.
    [98]周淑贞.气象学与气候学[M].北京:高等教育出版社,1987.
    [99]郑邦民,黄克中,魏良琰.流体力学[M].北京:水利电力出版社,1989.
    [100]周雪漪.计算水力学[M].北京:清华大学出版社,1995.
    [101]张文生.科学计算中的偏微分方程有限差分法[M].北京:高等教育出版社,2006.
    [102]George E. F, Wolfgang R. W. Finite-difference methods for partial differential equations[M]. New York:Dover Publications,2004.
    [103]朱伯芳.有限单元法原理与应用[M].北京:中国水利水电出版社,1998.
    [104]曾攀.有限元分析及应用[M].北京:清华大学出版社,2004.
    [105]李人宪.有限元法基础[M].北京:国防工业出版社,2005.
    [106]罗惕乾.流体力学[M].北京:机械工业出版社,2007.
    [107]泰勒.有限元方法第3卷流体动力学[M].北京:清华大学出版社,2008.
    [108]谭维炎.计算浅水动力学-有限体积法的应用[M].北京:清华大学出版社,1998.
    [109]江春波,张永良,丁则平.计算流体力学[M].北京:中国电力出版社,2007.
    [110]李万平.计算流体力学[M].武汉:华中科技大学出版社,2004.
    [111]彭泽洲.水环境数学模型及其应用[M].北京:化学工业出版社,2007.
    [112]李人宪.有限体积法基础[M].北京:国防工业出版社,2008.
    [113]Schamberger M L, O'Neil L J. Concepts and Constraints of Habitat-model Testing[M]. Wildlife 2000:Modeling Habitat Relationships of Terrestrial Vertebrates, Madison, Wisconsin. USA: University of Wisconsin Press,1986:5-10.
    [114]Bovee K D, Lamb B L, Bartholow J M. Stream habitat analysis using the instream flow incremental methodology [R]. U.S. Geological Survey, Biological Resources Division Information and Technology Report USGS/BRD-1998-0004,1998.
    [115]冯民权,郑邦民,周孝德.水环境模拟与预测[M].北京:科学出版社,2009.
    [116]张勇传.水电站经济运行[M].北京:水利电力出版社,1984.
    [117]谭维炎,黄守信.应用随机动态规划进行水电站水库的优化调度[J].水利学报,1982,(7):12-16.
    [118]李声涛,彭世彰.多种水源联合运用非线性规划灌溉模型[J].水利学报,1986,(6):7-9.
    [119]刘清仁.松花江流域水旱灾害发生规律及长期预报研究[J].水科学进展,1994,5(4):319-327.
    [120]章淹.致洪暴雨中期预报进展[J].水科学进展,1995,6(2):162-168.
    [121]杨旭,栾继红,冯国章.中长期水文预报研究评述与展望[J].西北农业大学学报,2000,28(6):203-207.
    [122]陈守煜.模糊水文学与水资源系统模糊优化原理[M].大连:大连理工大学出版社,1990.
    [123]王本德.水文中长期预报模糊数学方法[M].大连:大连理工大学出版社,1992.
    [124]夏军.中长期径流预估的一种灰色关联模式与预测方法[J].水科学进展,1993,4(3):190-197.
    [125]冯平,杨鹏,李润苗.枯水期径流量的中长期预报模式[J].水利水电技术,1992,(3):6-9.
    [126]陈意平,李小牛.灰色系统理论在水利中的应用及前景[J].人民珠江,1996,(1):25-27.
    [127]胡特松,袁鹏,丁晶.人工神经网络在水文水资源中的应用[J].水科学进展,1995,6(1):76-82.
    [128]丁晶,邓育人,安学松.人工神经前馈网络模型做过渡径流预测的探索[J].水电站设计,1997,13(2):69-74.
    [129]赵永龙,丁晶,邓育人.混沌小波网络模型及其在水文中长期预测中的应用[J].水科学进展,1998,9(3):252-287.
    [130]李贤彬,丁晶,李厚强.基于子波变换序列的人工神经网络组合预测[J].水利学报,1992,(2):1-4.
    [131]金龙,秦伟良,姚华栋.多步预测的小波神经网络预报模型[J].大气科学,2000,24(1):71-86.
    [132]黄春雷,王玉华,陈忠贤,等.三峡梯级水利枢纽围堰运行期发电决策支持[J].梯级调度与流域集控,2005,101(1):37-41.
    [133]《运筹学》教材编写组.运筹学[M].北京:清华大学出版社,2005.
    [134]弗雷德里克,杰拉尔德.运筹学导论[M].北京:清华大学出版社,2007.
    [135]马光文,刘金焕,李菊根.流域梯级水电站群联合优化运行[M].北京:中国电力出版社,2007.
    [136]钱学伟,陆建华.水文测验误差分析与评定[M].北京:中国水利水电出版社,2007.
    [137]孙增义,吴跃.水情自动测报技术基础及其应用[M].北京:中国水利水电出版社,1999.
    [138]朱星明,安波,王成明,等.水库流域入库洪水预报误差分析[J].水文,1997,(2):20-24.
    [139]李文华.生态系统服务功能价值评估的理论、方法与应用[M].北京:中国人民大学出版社,2008.
    [140]赵焕臣.层次分析法[M].北京:科学出版社,1986.
    [141]姜艳萍,樊治平.基于判断矩阵的决策理论与方法[M].北京:科学出版社,2008.
    [142]张俊福,邓本让,朱玉仙,等.应用模糊数学[M].北京:地质出版社,1988.
    [143]李柏年.模糊数学及其应用[M].合肥:合肥工业大学出版社,2007.
    [144]谢季坚,刘承平.模糊数学方法及其应用[M].武汉:华中科技大学出版社,2006.
    [145]刘年丰,谢鸿宇,肖波.生态容量及环境价值损失评价[M].北京:化学工业出版社,2005.
    [146]于连生.自然资源价值论及其应用[M].北京:化学工业出版社,2004.
    [147]刘向华.生态系统服务功能价值评估方法研究[M].北京:中国农业出版社,2009.
    [148]曾贤刚.环境与资源价值评估——理论与方法[M].北京:高等教育出版社,2002.
    [149]李金昌.生态价值论[M].重庆:重庆大学出版社,1999.
    [150]张坤民,温宗国,杜斌.生态城市评估与指标体系[M].北京:化学工业出版社,2003.
    [151]欧阳志云,李文华.生态系统服务功能研究[M].北京:气象出版社,2002.
    [152]刘敏超,李迪强,温琰茂.三江源区植被固定CO2释放O2功能评价[J].生态环境,2006,15(3):594-597.
    [153]中国生物多样性国情研究报告编写组.中国生物多样性国情研究报告[C].北京:中国环境科学出版社,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700