纳米氧化镁的制备及动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文简要介绍了纳米氧化镁粉体材料制备技术的研究进展、纳米氧化镁粒子形成机理以及在溶液以及干燥过程中的防团聚理论、热分解动力学理论和晶粒生长动力学的唯象理论。在试验基础上,分析了各工艺条件对纳米氧化镁的影响规律,并采用正交试验表进行了试验,找到了纳米氧化镁制备过程中影响晶粒直径以及产品收率的关键因素,以及较好的工艺条件。本文通过X-射线衍射、透射电镜、红外光谱、热重和差热分析等手段,对纳米材料不同溶剂置换干燥法、热分解过程机理、纳米氧化镁晶粒生长动力学进行了研究。
     纳米氢氧化镁的煅烧是一个晶型转化和热分解反应的过程。它是由Mg(OH)_2多晶转化为MgO多晶,中间经过一个非晶过程。当干燥时间为3小时,200℃至350℃之间是一个过渡过程,350℃以后,晶型比较完好。煅烧温度越高,粒径越大。
     若以晶粒直径为控制指标,结合单因素试验结果,较佳的合成纳米氧化镁工艺条件为:反应温度95℃,反应时间3小时,反应物浓度2.1mol/dm~3,反应配比为5:1再用50ml乙醇浸泡0.5h,干燥温度100℃,干燥3小时,煅烧温度400℃,煅烧3小时。
     正交试验结果表明,反应物浓度对晶粒直径影响最大,反应温度、反应时间与配比对晶粒直径的影响较小。而反应温度对氧化镁收率的影响最大,反应时间次之,反应配比与反应物浓度对氧化镁收率的影响较小。
     不同溶剂置换干燥的研究表明,不同的溶剂置换方法和干燥方法都会影响纳米氧化镁晶粒直径的大小,其中五种溶剂置换方法所得到的纳米氧化镁的晶粒直径的大小顺序是:水洗、醇洗、水+NN二甲基乙酰胺洗涤、正丁醇共沸蒸馏和醇洗共沸蒸馏;三种干燥方法得到的纳米氧化镁的晶粒直径大小的顺序是:直接煅烧,烘箱干燥和微波干燥。团聚程度随溶剂置换方法变化,团聚程度最大的为水洗所得样品,最小的为醇洗共沸蒸馏与水洗+正丁醇共沸蒸馏所得的产品,水+N,N二甲基乙酰胺洗涤、醇洗所得的产品团聚程度没有显著的差别。
     在纳米粉体的干燥试验中笔者发现,纳米氢氧化镁的湿物料干燥曲线与高斯方程拟合得很好。在湿物料湿基含水量在70%左右,大约干燥3小时以后,纳米氢氧化镁可以干燥到恒重。纳米氢氧化镁的干燥速率曲线可近似分为恒速干燥阶段和降速干燥阶段。
     在热分解机理的研究中,采用Coats-Redfern与Doyle法联合推断氢氧化镁的热分解反应机理,确定其分解机理符合Avrami Erofeev n=1.5法则,即氢氧化镁的分解是一个边成核边生长的过程。计算得到分解活化能为126.6kJ/mol,指前因子为8.5×10~8。
     在晶粒生长动力学的研究中发现,煅烧时间越长、温度越高,纳米氧化镁晶粒增长越大。利用晶粒生长的唯象理论,借助方程G~n=Atexp(-E/RT)确定了晶粒生长动力学指
    
     摘要
    数为2.56 x10“帅4.h一’,活化能108.skJ/mol,动力学指数n为4。本实验的活化能E和
    n明显小于文献的报道,进一步说明纳米氧化镁的活性远远高于常规粒子的活性。
The properties and application of nanometer magnesia have been briefly reviewed in this paper. Both the progress in the research and the synthesis of nanometer magnesia has been remarked, and the basic theory of nanometer powder has been discussed. According to conclusion of the mono-factor experiments, the multifactor orthogonal experiments have been applied in order to analyze systematically. The optimum processing conditions and the key factor in preparation of nanometer magnesia are achieved. TG/DTA/DTG, XRD, TEM and FI-IR techniques were used to characterize the samples. Drying methods, kinetics is studied. The main contents and results are as follows:
    The decompounded-experiments of nanometer magnesium hydroxide demonstrate that the transformation of crystalloid happens in the temperature range from about 250 C to 350 C; magnesium hydroxide absolutely decompounds at 400 C; the higher the calculations temperature is, the bigger the diameter of nanometer magnesia is.
    To determine influence of technical conditions on Product diameter, the influences of concentrations , molar ratio, reaction temperature and time on average size were investigated by means of multifactor orthogonal experiments. The results of experiments indicated that product diameter was mostly influenced by concentration of reactants, reaction temperature, followed by molar ratio of reactant and reaction time. According to conclusion of the monofactor experiments and multifactor orthogonal experiments, The optimum processing conditions in preparation of nanometer magnesia: C(MgCl2-6H20)=2.1mol/L , n(CO(NH2)2):n(MgCl2'6H20)=5:l, reaction temperature 95癈 and reaction time 3h.Under these conditions MgO nano-Particles with average crystalline diameter of 4nm were obtained.
    The result of drying experiment indicates that agglomeration degree of nanoscale magnesium oxide particles is relevant with solvent-replacement method. As for the same drying method, agglomeration degree mitigated by the following order: water-washing, water+N,N-dimethyl acetamide washing, alcohol-washing, water-washing + butyl alcohol azeotropic distillation and alcohol-washing + butyl alcohol azeotropic distillation.the diameter of MgO crystalline is affected on drying method. As for the same drying method, the diameter of MgO crystalline mitigated by the following order: water-washing, alcohol-washing,water+N-N-dmiethyl acetamide washing, water-washing + butyl alcohol azeotropic distillation and alcohol-washing + butyl alcohol azeotropic distillation.
    
    
    
    The TG and DTA techniques were used to research the decomposition kinetics of Mg(OH)2.The decomposition mechanism and kinetics equation were investigated according to Coats-Redfern and Doyle methods, the activation energy was about 126.6kJ/mol, and the equation can be depict as follow:
    By means of the kinetic theory, the dynamics equation of nanometer MgO grain growth is obtained, the activation energy was about 108.8kJ/moL and the equation can be depict as follow:
引文
1.张立德,牟季美.纳米材料学[M].,辽宁科技出版社,1994.10.
    2. E.M.Lucas, K.J.Klabunde. Nanocrystales as destructive adsorbents for mimics of chemical warfare agents[J]. Nanostructured Materials, 1999,12:179-182.
    3. Ryan Richards, Ravichandra S.Mulukutla, IIya Mishakov et al. Nanocrystalline ultra high surface area magnesium oxide as a selective base catalyst [J].Scripta mater.,2001, 44: 1663-1666.
    4.汪国忠,程素芳,何国良等.纳米级MgO粉体的合成[J].合成化学,1996,4(4):300-302.
    5.张立德,牟季美.纳米材料与纳米结构[M].科学技术出版社,北京,2001.2
    6.白春礼,纳米科技及其发展前景,纳米科学与技术研究成果专辑,http://www.casnano.net.cn/tiaojian/ziliao/qianyan.html
    7.王宏志,高滚,郭景坤.纳米结构材料[J]..硅酸盐通报 1999,31-34
    8.符晓荣,武光明,宋志棠等.新型溶胶-凝胶法制备纳米MgO薄膜的研究[J].无机材料学报,1999,14(6):828-832.
    9.廖莉玲,刘吉平.固相法合成纳米氧化镁[J].精细化工,2001,18(12):696-698.
    10. K.Chhor, J.F.Bocquet, C.Pommier. Syntheses of submicron magnesium oxide powders[J]..Mater. chem.phys, 1995,40:63-68.
    11. Watari,takanori; Nakayoshi,kazumi; kato Akio preparation of submicron magnesium oxide powders by vapor-phase reaction of magnesium and oxygen. Journal of the Chemical Society of Japan. 1984(6): 1075-1076.
    12. EP 151490
    13. El-shall,M.S.; Slack, W. Synthesis of nanoscale metal oxide particles from laser vaporization/condensation in a diffusion cloud chamber. Mater.Res.Soc.Symp.Proc. 1994:3067-3070.
    14. El-shall,M.S.; Slack, W.; Synthesis of nanoscale particles producted by laser vaporization/condensation in a diffusion cloud chamber. Mater.Res.Soc.Symp.Proc. 1994:351, 369-174.
    15. M.Suzuki, M.Kagawa, Y.Syono et al. Synthesis of ultrafine single-component oxide particles by the spray-ICP technique[J]..Mater.Sci., 1992,27(3): 679-684.
    16. Sagawa, Masahico; Nagae,Tsuneki. Preparation of unrefined powders by inductively coupled plasma generated with modified conventional induction heater. Science Reports of the Research Institutes, Tohoku University, Series A. 1983,31(2):216-224.
    17.李春虎,赵九生,王大祥.纳米MgO和Mgal_2O_4尖晶石的制备与表征[J].无机材料学报,1996,11(3):557-560.
    18.张近.超细粉体氧化镁的合成[J].化学工程,1999,27(2):34-36.
    
    
    19.酒金婷,李立平,葛钥等.固相法合成纳米氧化镁[J].无机化学报,2001,17(3):361-365.
    20.王路明.石灰卤水法制备超细氧化镁的研究.海湖盐与化工.2001,30(1):21-24.
    21. CN 1190077A.
    22.张近.纳米氧化镁合成工艺的研究[J].无机盐工业,1999-03,31(2):3-5.
    23.朱亚先,曾人杰,刘新锦等.MgO纳米粉的制备及表征[J].厦门大学学报,2001,40(6):1256-1258.
    24.杨荣榛.纳米及氧化镁团聚和解团聚的研究[J].陕西师范大学学报,2002,30(1):83-85.
    25. J.A.Wang, O.Novara, X,Bokhimi et al. Characterizations of the thermal decomposition of brucite prepared by sol-gel technique for synthesis of nanocrystalline MgO[J].Materials Letters, 1998,35:317-323.
    26.陈改荣,徐绍红,杨军.硬脂酸溶胶凝胶法制备氧化镁纳米微粒的研究[J].功能材料,2002,33(5):521-523.
    27. TW 241243.A
    28. Olga B.Koper; Isabelle,Lagadic.; Alexander volodin. Alkaline-earth oxide nanoparticles obtained by aerogel methods. Chemical materials, 1997(11):2468-2480.
    29. Bhargava,Atit; Alarco,Jose A.. Synthesis and characterization of nanoscale magnesium oxide powders and their application in thick films of Bi2Sr2CaCu2O3.Materials letters, 1998,34(3-6):133-142.
    30. D. Porath et al.J.APPI.Phys.,1997,81:2241
    31.朱履冰,表面与界面物理[M].天津大学出版社.
    32.华东理工大学技术化学物理研究所编,超细颗粒制备科学与技术[M].华东理工大学出版社.
    33.尾崎义治,超微颗粒导论[M].武汉工业大学出版社.
    34.刘琪.胶粒聚集程度对ZrO_2-MgO超细粉末状态的影响[J].硅酸盐学报,1989,17(6):522-525.
    35.葛荣德,赵天从,刘志宏等.团聚参数在氧化锆超细粉末团聚状态表征中的应用[J].粉末冶金技术,1994.12(2):87-90.
    36.葛荣德,赵天从,朱宣惠.粉末团聚表征新方法[J].硅酸盐学报,1993.21(3):229-234.
    37.傅献彩.物理化学[M].高等教育出版社,北京,1990.
    38.濑升,尾崎义治.中国轻工业出版社,武汉,1999.
    39.王宝和,于才渊,王喜忠.纳米多孔材料的超临界干燥[C].第八界全国干燥大会论文集,2002,22-31.
    40.刘志强,李小斌,彭志宏等.湿化学法制备超细粉末过程中的团聚机理及消除方法[J].化学通报,1999,(7):54-57
    41. Kiyoshi Itatani, Masayuki Nomura, Akira Kishioka et al. Sinterability of various high-purify magnesium oxide powders[J]..Mater.Sci., 1986, 21:1429-1435.
    42. E.Alvarado, L.M.Torres-Martinez, A.F.Fuentes et al. Preparation and characterization of MgO powders obtained from different magnesium salt and the mineral dolomite[J]. Polyhedron, 2000,
    
    19:2345-2351.
    43. Alok Maskard, Douglas M.Smith.Agglomeration during Drying of Fine Silica Powders,part Ⅱ:The Role of Particle Solubility[J].Am.Ceram.Soc., 1997,80[7]: 1715-22
    44. Mary Sue Kaliszewski, Arthur H. Heuer. Alcohol interaction with Zirconia powders[J]. Am.Ceram. Soc., 1990, 73[6]:1504-509.
    45. K.Chhor; J.F.Bocquet; C.Pommier. Synthesis of submicron magnesium oxide powders. Materials Chemistry and Physics,1995,40(1):63-68.
    46.梁丽萍,等.不同干燥工艺制备CaO-ZrO_2复合氧化物粉体及粉体性能表征,材料科学与工程[J].1997(15)2:37-40.
    47.酒金婷,等.用高分子保护的纳米氧化镁的合成[J].无机化学学报,2001,17(3):361-365.
    48.张昭,等.无机精细化工工艺学[M]北京:化学工业出版社,2002,6.
    49.张宗涛,等.无团聚Al_2O_3-ZrO_2复合纳米粉末的制备及机理[J]~+,华中理工大学学报,1996,(22)4:439-443.
    50.张永红,等.共沸蒸馏制备氧化铟粉体及性能的研究[J].湖南有色金属,2002.8:26-28..
    51.曹爱红,洪掌珠,蓝心仁.沉淀法制备TiO_2纳米粉体和微波干燥的研究[J].河南化工,2002,(6):9-11
    52.曹爱红.微波干燥制备Al_2O_3纳米粉体的研究[J].天津工业大学学报,2002,21(4):25-27
    53.许珂敬,许煜汾.表面活性剂在制备ZrO_2微粉中的作用[J].材料研究学报,1999,13(4):434-436
    54.王志强,吕秉玲,刘建平等.沉淀法合成高纯超细氢氧化镁的研究[J].无机盐工业,2001,33(4):3-4
    55.辛延龄,刘凤春,许珂敬.湿化学法制备ZrO_2超细粉末的干燥过程中控制粉体团聚的方法[J].山东陶瓷,2002,25(3):25-27
    56.许珂敬,董云会,杨富贵.化学沉淀法制备多孔纳米SiO_2粉末[J].淄博学院学报,2000,2(4):52-55
    57.彭新林,龙志奇,崔梅生等.共沉淀法合成铈锆复合氧化物及表征[J].中国稀土学报,2002,20(专辑):104-107
    58.张环华,李秀珍,潘湛昌等.溶胶-凝胶法制备纳米CeO_2[J].精细化工中间体,2002,32(5):30-31
    59.相宏伟,钟炳,彭少逸.超临界流体干燥理论、技术及应用[J].材料科学与工程,1995,13(2):38-53
    60.宁桂玲,吕秉玲.纳米颗粒的干燥及其研究进展[J].化工进展,1996,(5):22-25
    61.梁长海.维持凝胶结构的干燥理论、技术及应用[J].功能材料,1997,28(1):10-14
    62. Z.Novak,Z.Knez, I.Ban et al. Synthesis of barium titanate using supercritical CO_2 drying[J]. J.of Supercritical Fluids,2001,19: 209-215
    63. Kiyoshi Itatani, Kiyotaka Koizumi,F.Scott Howell et al.Agglomeration of magnesium oxide particles formed by the decomposition of magnesium hydroxide [J].Mater.Sci., 1988,23:3405-3412.
    
    
    64.赵惠忠,张文杰,汪厚植 合成镁白云石中CaO和MgO晶粒生长动力学[J].耐火材料,1996,30(2)84-87.
    65.水淼,徐铸德,岳林海.纳米掺铁二氧化钛sol-gel法制备与表征[J].无机化学学报,2001,17(1):32-37.
    66. NIcholson G C. Grain growth in zinc oxide[J]. J. Am. Ceram Soc,1965,48(4):214-215.
    67. Gupta T K, Coble R L. Sinteringof ZnO(Ⅰ):densification and grain growth[J].J. Am. Ceram Soc,1968,51(9):521-525.
    68. Senda T, Bradt R C. Grain growth in sintering ZnO and ZnO-Bi2O3 Ceramics[J]. J. Am Ceram Soc,1990,73(1):106-114.
    69. Wong J. Sintering and varistor characteristics of ZnO-Bi2O3 Ceramics[J]. J.Apl Phys, 1980,51(8): 4453-4459.
    70. senda T, Bradt R C, Grain growth of zinc oxide during the sintering of zinc oxide-antimony oxide oeramic[J].J.Am Ceram soc,1991,74(1):298-302.
    71.肖明.TiO2掺杂ZnO压敏陶瓷的晶粒生长研究,湖北大学学报(自然科学版)[J].2001,(23)2:134-139.
    72.章天金.ZnO压敏陶瓷的晶粒生长和电学性能[J].无机材料学报,1999,14(6):921-927.
    73.傅若农,常永福著.气相色谱和热分解技术[M].国防工业出版社,1989:246-390.
    74.胡荣祖,史启祯.热分析动力学[M].科学出版社,2001:47—148.
    75.李峰,何静,杜以波.α-磷酸锆的制备与热分解非等温动力学研究[J].无机化学学报 1999,15(1)55-60.
    76. A.B.Phadnis,etal. Thormochimica acta[J]. 1983.62:361-367
    77. David dollimore,ping tong,Kenneth S.Alexander.the kinetic interpretation of decomposition of calcium carbonate by use of relationships other than the Arrhenius equation[J].thermchimica Acta 1996(282/283):13-27.
    78.黄惠忠等,纳米材料分析[M].化学工业出版社,北京 2003,3
    79.滕素珍,数理统计[M].大连理工大学出版社,大连,1999.2
    80.高荣杰,冯丽娟,杜敏等.低硼氢氧化镁的制备机热分解动力学参数[J].青岛海洋大学学报 2002.32(5):789-794.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700