ZAO透明导电薄膜的制备与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文概概述了透明导电薄膜的性能、制备技术和应用前景。并以ZnSO_4.7H_2O和NH_4Al(SO_4)_2.12H_2O为主要原料,NH_4HCO_3为沉淀剂采用液相共沉淀法制备了Al_2O_3,含量为2.5wt%的ZnO/Al_2O_3,超细复合粉末;分别在不同温度下对复合粉末进行H_2气还原处理:分别以ZnO/Al_2O_3复合粉末、还原ZnO/Al_2O_3复合粉末、纳米ZnO与纳米γ-Al_2O_3的混合粉末为原料采用热等静压(HIP)工艺制备了ZnO/Al_2O_3陶瓷靶材;对ZnO/Al_2O_3陶瓷靶材进行射频磁控溅射和直流磁控溅射制备了铝掺杂氧化锌(ZAO)透明导电薄膜。
     采用XRD、SEM和TEM等分析方法,分析了ZnO/Al_2O_3复合粉末及前驱体、ZnO/Al_2O_3陶瓷靶材和ZAO透明导电薄膜的相组成与形貌;用TG/DSC热分析法研究了粉末前驱体的热分解情况;用XPS分析法研究了还原温度对粉末性能的影响;用激光粒度分析技术测定了复合粉末的平均粒度及其分布;用原子吸收谱(AAS)分析了粉末前驱体中各杂质元素的含量:用显微硬度分析法分析了靶材的维氏硬度(H_γ)和断裂韧性(K_(IC));测定并分析了靶材的体电阻率、薄膜的方块电阻及体电阻率和薄膜的可见光透射率:
     对复合粉末的分析研究表明:各复合粉末样品均存在不同程度的颗粒“团聚”:前驱体经680℃×12h焙烧后得到的复合粉末性能较好,粉末体积平均粒径为12.250μm;粉末的还原温度超过700℃时,ZnO发生分解。
     各靶材样品的XRD、SEM和TEM分析结果表明:以还原和未还原ZAO粉为原料的靶材组织中出现了第二相组织:ZnAl_2O_4,而以纳米ZnO、Al_2O_3粉为原料的靶材组织中未见第二相。靶材的力学性能和导电性分析结果表明:以还原粉为原料的靶材导电性和综合力学性能最佳,且各靶材的致密
    
     西南交通大学硕士研究生学位论文第n页
    度均在97%以上,断裂韧性接近或超过1.oMPa.m,/,,电阻率均在10一3Q.。。
    量级,靶材具有良好的机械加工和电火花加工性能。
     薄膜的电学性能分析结果表明:ZAO薄膜的电阻率受基片温度(Ts)、
    溅射功率和溅射气氛中氧浓度的影响较大。TS为330℃时直流磁控溅射法
    制得的ZAO薄膜的电阻率为9.3 xlo一,Q .Cm,是本文得到的最低薄膜电阻
    率;采用射频磁控溅射法制备的ZAO薄膜电阻率在TS为330℃时也降至
    最低为l.4x1o一:,Q.em。
     薄膜的透光性分析结果表明:各薄膜样品的可见光透射率平均值均在
    80%以上;随着基片温度的升高,薄膜透射率升高,且薄膜透射曲线吸收
    边缘向短波方向移动。
In this paper, the properties, preparation methods and applications of transparent conducting thin films were reviewed. ZnO/Al2O3 compound powders with 2.5wt% Al2O3 were synthesized by coprecipitation method using ZnSO4.7H2O and NH4Al(SO4)2 12H2O as the raw materials and NH4HCO3 as the precipitator. Then the compound powders were reduced by H2 gas at different temperatures. Three kinds of ZnO/Al2O3 ceramic targets were fabricated by hot isostatic pressing (HIP) method with three kinds of powders: reduced compound powder, compound powder and nanometer powders. Aluminum-doped zinc oxide (ZAO) transparent conducting thin films were prepared with ZnO/Al2O3 ceramic targets by r.f. or dc magnetron sputtering method.
    Phase compositions and morphologies of ZnO/Al2O3 compound powders, pioneer-precipitates of the compound powders, ZnO/Al2O3 ceramic targets and ZAO transparent conducting thin films were investigated by XRD, SEM and TEM. Thermochemistry performances of the pioneer-precipitates of the compound powders were investigated by TG/DSC methods. XPS was applied to analyze the influences of reduction process on the properties of powders. The particles size and size distribution of the compound powders were studied by laser technology. Moreover atomic absorption spectroscopy (AAS) method was used to determine the proportion of impurity elements in the pioneer-precipitate of the compound powders. The hardness Hy and fracture toughness KIC of the targets were determined through microhardness analysis. The resistivity of the targets, the sheet resistance and optical transmittance of
    
    
    ZAO films were measured.
    The investigation for the compound powders and pioneer-precipitates indicates that particle conglomerations exist in all the compound powders. And the particle size of the compound powder is 12.25 \xm in average. The powder baked at 680C is perfect in properties, and zinc oxide will decompose when the reduction temperature exceeds 700 C,
    Results of XRD, SEM and TEM for the targets indicate that secondary phase ZnAl2O4 exists in the targets synthesized with reduced or unreduced compound powders, but not in the target synthesized with nanometer powders. The analytical results for the mechanical and electrical properties of the targets indicate that the target synthesized with reduced compound powders has the best general properties, furthermore the relative densities and fracture toughness of all the targets exceed 97% and 1.0 MPa.m1/2 respectively, and the resistivity of the targets attains 10-3.cm. These results indicate that ZAO targets synthesized by HIP can be easily machined by electrical and mechanical machining.
    Investigation for electrical properties of the films indicates that substrate temperature, sputtering power and oxygen fraction have great impacts on the properties of the films. The resistivity of the films prepared by dc magnetron sputtering under the substrate temperature 330C is 9.3x10-4.cm which is the lowest resistivity of the films in this paper. The lowest resistivity of the films prepared by r.f. magnetron sputtering under the substrate temperature 330C is 1.4x10-3.cm
    Study for optical transmittance of the films indicates that the average value of the optical transmittance of the films exceeds 80%. With the substrate
    
    temperature increasing the average optical transmittance increases and the absorption edge of the transmission curve of the films moves toward short wavelength.
引文
[1] 马如章,蒋民华,徐祖雄编.功能材料学.冶金工业出版社,1999
    [2] 王零森编.特种陶瓷.中南工业出版社,2000
    [3] 曲远方编.功能陶瓷及应用.化学工业出版社,2003
    [4] 周玉著.陶瓷材料学.哈尔滨工业大学出版社,1995
    [5] 贡长生,张克立编.新型功能材料.化学工业出版社,2001
    [6] Badeker K. Ann Phys(Leipzig), 1907;22:749
    [7] Nanto H, Minami T et al. J Appl Phys. 1984, 247:1029
    [8] 曲喜新,杨邦朝等.电子薄膜材料.科学出版社,1996
    [9] 陆峰,徐成海等.真空与低温.2001,7(3):125
    [10] Hu J H, Gordon R G. Journal of applied physics. 1992, 71(2):880~890
    [11] Tominaga K, Kataoka M, et al. Thin solid films. 1996, 291:84~87.
    [12] KimK H, Park K C. Journal of applied physics. 1997, 81(12):7764~7772
    [13] Kwroyanmagi A. Journal of applied physics. 1989, 66(11):5492~5497
    [14] Ghosh S, Sarkar A, et al. Thin solid films. 1991, 205:64~68
    [15] Zafar S. Vacuum science technology. 1995, A13(4):2177~2182
    [16] Wendt R, Ellmer K. Surface and coating technology. 1997, 93:27~31
    [17] Ellmer K. Thin solid films. 1994, 247:15~23
    [18] Ellmer K, Wendt R. Surface and coating technology. 1997, 93:21~26
    [19] Jinz C, Hamberg I, et al. Thin solid films. 1998, 164:381~386
    [20] Minami T, Hanton H, et al. Thin solid films. 1998, 164:275~279
    [21] Takata S, Minami T, et al. Thin solid films. 1986, 135:183~187
    [22] Hu J, Gordon R G. Applied physics. 1992, 71(2):880~890
    [23] Nunes P. Thin solid films. 1999, 337:176~179
    [24] Tang W, Cameron D C. Thin solid films. 1994, 2238:83~87
    [25] Minami T, Nanto H. Thin solid films. 1984; 111(2):167~174
    [26] Minami T, Nanto H, et al. Japanese journal of applied physics(part 2).1984, 23(5):L280~L282
    [27] 范志新,陈玖林等.真空技术与应用.2000,(10):11
    
    
    [28] 倪星元,吴永刚等.材料研究学报.1999,(13):3
    [29] 范志新,高红等.中国陶瓷.2002,38(1):2
    [30] 倪星元.吴永刚等.材料科学与工程,1998,16(2):43.
    [31] 赵九蓬,刘丽等.编新型功能材料设计与制备工艺.化学工业出版社,2003
    [32] 施昌勇,沈克明.稀有金属.2000,24(2):154
    [33] 贺洪波,易葵等.光学学报.1998,18(60):799
    [34] Shih W C, Wu M S. Journal of crystal growth. 1994, 137:319
    [35] 杨田林,张德恒等.太阳能学报.1999,20(2):200
    [36] 顾培夫著.薄膜技术.浙江大学出版社,1990
    [37] Kanfmann T, Fuchs G, et al. Crystal Res. Technol. 1998, 23:635
    [38] Tran N H, Hartmann A J, et al. J phys chem B. 1999, 103:4264
    [39] Funakubo H, Mizuan, et al. J electroceramics. 1999, 4(s1):25
    [40] Wenas W W, Yamada A, et al. Japanese journal of applied physics. 1994, 33:L283
    [41] Yi L X, Xu Z, et al. China science bulletin. 2001, 6(14):1223
    [42] 张凤翔.真空电子技术.1998,3:43
    [43] 刘彦松,王连卫等.功能材料.2001,32(1):78
    [44] Dutta A, Basu S, et al. Materials chem. Phys. 1993, 34:41
    [45] 贾锐,曲凤钦.功能材料.1999,30(6):636
    [46] Ohyama M, Kozuka H, et al. Thin solid films. 1997, 306:78
    [47] Ohyama M, Kozuka H, et al. Journal of American ceramics society. 1998, 81(6):1622
    [48] 邱志仁,俞平等.中山大学学报.1998,37(1):51
    [49] Zu P, Tang Z K, et al. Journal of crystal growth. 1998, 184/185:601
    [50] Ardakni H K. Thin solid films. 1996, 287:280~282
    [51] Liu Y, Gorla G R, et al. Journal of electronic materials. 2000, 29(1):69
    [52] 郝晓涛,马瑾等.中国科学(A辑).2001,31(9):835
    [53] Eller K. J Phys D: Appl. Phys. 2000, 33:R17~R32
    [54] Baik D G, Cho S M. Thin solid films. 1999, 354:228
    [55] 张昕彤,庄家骐等.高等学校化学学报.1999,20(12):1945~1947
    [56] Carlos A K. chemosphere. 2000, 40:427~432
    
    
    [57] 刘超峰,祖庸.化工型材料.1995,23(11):13~15
    [58] 张伟等.功能材料.1997,28(5):511~513
    [59] Mitarai, Takeshi. Japan, 63288914
    [60] 赵新宇等.无机材料学报.1996,11(4):611~616
    [61] Hohen, Berger G, et al. Journal of material research. 1992, 7(3):546~548
    [62] 陈道峰,施国顺等.复旦大学学报(自然科学版).1997,36(1):112~116.
    [63] 余保龙,张桂兰等.物理化学学报.1995,11(7):587~589.
    [64] 李汶军,施尔畏等.中国科学(E辑).1998,28(3):212~219.
    [65] 王文亮,李东升等.化学研究与应用.2001,13(2):157~159
    [66] 何峰,张正义等.润滑与密封.1997,5:65~66
    [67] 张立德著.超微粉体制备与应用技术.中国石化出版社,2001
    [68] 廖莉玲,刘吉平.贵州化工.2002,27(3):1~2
    [69] 晋传贵,朱伟长等.精细化工.1999,16(2):26~27
    [70] 雷闫盈,李晓娥等.陕西化工.2000,29(1):16~17
    [71] 郝臣,陈彩凤等.机械工程材料.2002,26(7):25~27
    [72] 付高峰,毕诗文等.有色矿冶.2000,16(1):40
    [73] 倪星元,吴永刚等.材料研究学报.1999,13(3):332
    [74] 裴志亮,谭明辉等.金属学报.2000,36(1):73
    [75] Jin Seok Yang, Ha Yoon Seong, et al. Surface and coatings technology. 2003, 169/170:575
    [76] 刘敏娜,王桂清等.精细化工中间体.2002,32(2):35~36
    [77] 左演声,陈文哲等编.材料现代分析方法.北京工业大学出版社,2000
    [78] Rong. J. Hong, X. Jiang, etc. Journal of crystal grwth. 2003, 249:462
    [79] 范志新,陈玖林等.真空技术与应用.2000,(10):12
    [80] Zhang D H, Yang T L, et al. Applied surface science. 2000, 158:43~48
    [81] 应春,沈杰等.真空科学与技术.1998,18(2):126
    [82] Zhang D H, Yang T L, et al. Thin solid films. 1998, 326:60~62
    [83] Guojia Fang, Dejie Li, et al. Journal of crystal growth. 2003, 247:394
    [84] 马福康著.等静压技术.冶金工业出版社,1992
    [85] 关振铎,张太中等编.无机材料物理性能.清华大学出版社,1992。
    [86] 关振铎,张太中等编.无机材料物理性能.清华大学出版社,1992。
    
    
    [87] 李玉增.世界有色金属.1998,11:13
    [88] 孙超,陈猛.材料研究学报.2002,16(2):11
    [89] 裴志亮,谭明辉等.金属学报.2000(36):1
    [90] 赵佩琛.烧结球团.1994,1:15
    [91] 赵大庆,范锦鹏.粉末冶金技术.2002,20(5):267~269
    [92] 陈建勋,赵瑞荣.矿冶工程.1999,19(1):60~61
    [93] 高瑞平,李晓光编.先进陶瓷物理与化学原理及技术.科学出版社,2001
    [94] 王力衡,黄运添等编.薄膜技术.清华大学出版社,1991
    [95] 唐伟忠著.薄膜材料制备原理、技术及应用.冶金工业出版社,2003
    [96] 邹璐,叶志镇.半导体情报.2001,38(6):55-57
    [97] Yasuhiro Igasaki, Hirokazu Kanma, et al. Applied surface science. 2001, (169-170):508-511
    [98] 付恩刚,庄大明等.真空科学与技术.2003,23(1):12-15
    [99] P. Nunes, D. Costa, et al. Performances presented by zinc oxide thin films deposited by r. f. magnetron sputtering. 2002, 64:293-297
    [100] 陈猛,白雪冬等.半导体学报.2000,21(4):396
    [101] 王岚,鲍崇林等.真空科学与技术.1997,17(1):57

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700