聚能粒子流的形成与侵彻研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔药型罩具有工艺简单、成分配比灵活、生产效率高和成型性好等特点,而且很大程度上避免了杵堵等现象的发生,其已经在民用行业特别是石油射孔领域得到了广泛应用。多孔药型罩在爆轰波的作用下被压垮,在其轴线上处于一种连续不散的粒子状态,由无数个小微粒组成,称之为聚能粒子流。与密实材料聚能射流相比,由于聚能粒子流具有许多特有的特性,如不发生颈缩断裂和膨胀性等特性,因此,需要对聚能粒子流的相关机理进行深入研究。
     本文在考虑多孔材料的材料特性的基础上,利用理论分析、试验研究和数值模拟相结合的方法,从聚能粒子流的速度及形成条件、聚能粒子流的温升计算、多孔药型罩制备及其影响因素、聚能粒子流对不同靶板的侵彻特性以及聚能粒子流的数值模拟等方面进行了系统地分析研究。
     首先对现有的多孔材料初始完全压实和部分压实情况进行综述和讨论。分析讨论了多孔材料初始完全压实的冲击绝热线及其相关参数的确定。按照率无关和率相关分析介绍了多孔材料部分压实的一些理论模型;对理想混合物的冲击绝热线及其相关参数的确定进行了分析介绍。通过综合分析对比,确定利用理想混合物的叠加原理来确定钨铜密实材料的冲击绝热线的相关参数,采用多孔材料的初始完全压实的冲击绝热线来描述钨铜多孔药型罩的冲击压缩状态。
     考虑多孔药型罩的初始孔隙度对多孔药型罩压合速度的影响,给出了多孔药型罩压合速度和聚能粒子流速度的计算方法。提出了判断多孔药型罩形成凝聚性聚能粒子流的角度准则和声速准则。计算结果表明:在同一个压力下,随着孔隙度的增加,药型罩压合速度增加,而声速降低;在同一孔隙度下,随着压力的增加,药型罩压合速度增加,而声速也降低;聚能粒子流速度随着孔隙度的增加而增加,压垮角随着压合速度的增加而增加。计算结果与实验结果较吻合。
     从多孔药型罩材料在与爆轰波相互作用中受到冲击波加载及随后卸载、多孔药型罩在压合时的塑性变形以及聚能粒子流伸展过程中的塑性变形等造成聚能粒子流温升的三个阶段,对聚能粒子流温升进行理论估算,计算结果表明:多孔铜药型罩材料在与爆轰波相互作用中受到冲击波加载及随后卸载对于聚能粒子流头部温升的贡献,达到了50%,而密实铜药型罩材料在与爆轰波相互作用中受到冲击波加载及随后卸载对于聚能射流头部温升的贡献为45%;多孔铜药型罩材料的塑性变形对于聚能粒子流尾部温升的贡献最大,达到了70%,而密实铜药型罩材料的塑性变形对于聚能粒子流尾部温升的贡献为45%;由于多孔药型罩在与爆轰波相互作用中受冲击波加载及随后卸载引起的温升的贡献,聚能粒子流的温升明显高于密实聚能射流的温升。
     对已有的密实材料聚能射流和多孔材料聚能粒子流的侵彻模型进行介绍和分析,在考虑材料的可压缩性的基础上,结合多孔药型罩材料的特性,提出了聚能粒子流侵彻计算模型,该模型在不同情况下,可以转化为已有的多种形式的侵彻模型。使该模型具有较广泛的应用前景。
     采用机械合金化方法进行混粉,利用旋模压制方法进行压制药型罩毛坯,再在甲醇裂解气体的保护下进行低温烧结,可以制备出性能较优的钨铜药型罩。在钨铜药型罩配方的基础上添加适量的铅粉,可以提高钨铜聚能粒子流的侵彻性能,但过量的铅粉反而会降低钨铜聚能粒子流的侵彻性能。钨铜聚能粒子流穿深与炸高之间的关系表明:钨铜聚能粒子流适合用于小炸高下使用,其最佳炸高为2.1倍装药口径。钨铜聚能粒子流侵彻不同靶板的试验结果表明:侵彻45号钢时,其穿深与时间的关系为指数函数形式,而侵彻铝板和混凝土靶时,其穿深与时间的关系为幂函数形式。钨铜聚能粒子流对低密度靶板的侵彻性能要优于对高密度靶板的侵彻性能。
     利用理想混合物状态方程的确定方法,确定了钨铜多孔药型罩的Shock状态方程参数,并利用AUTODYN软件对钨铜聚能粒子流进行了数值模拟研究,数值模拟结果表明:模型网格的划分对聚能粒子流速度影响较大,采用“中”网格划分可以基本满足计算的要求,且计算时间可以节省40%,但聚能粒子流速度与实验结果相比要低11.1%;随着时间的增加,聚能粒子流在空气中飞行的速度在下降,但在4倍装药口径位置处以后,速度下降较慢,这主要是聚能粒子流的头部与主体分离,其速度变化较小所致。钨铜聚能粒子流侵彻铝靶的过程中,在开坑阶段聚能粒子流速度下降较快,在准定常阶段,速度下降较慢。聚能粒子流在此过程中也发生“消蚀”现象;数值模拟得到的穿深与时间的关系拟合曲线与实验得到的结果相似,但在相同的时间内,穿深值要低于实验值,这主要是由于聚能粒子流速度低于实验值所致。钨铜聚能粒子流侵彻铝靶后在铝靶内形成的孔道剖面图,数值模拟与实验结果吻合较好。
     本文的研究工作可以为含有多孔材料药型罩的聚能装药结构设计及其工程应用提供一定的理论指导。
Porous shaped charge liner has been widely used in the civilian sectors especially the field of petroleum perforation, as which is characterized by a simple process, flexible composition ratio, high production efficiency, good formability, avoiding the occurrence of the slug and other phenomena. Porous shaped charge liner is collapsed by the detonation wave. A continuous never-ending particle state is composed of numerous small particles on its axis, known as the shaped charge particle jet. Comparing with the dense material jet, shaped charge particle jet has many unique features, such as no necking fracture and expansion. Therefore, it is needed to study the mechanism of shaped charge particle jet.
     Based on the material properties of porous materials, the speed, formation conditions, temperature rise calculations and numerical simulation of the shaped charge jet, preparation and influencing factors of the porous shaped charge liner, the characteristics of penetrating different target are analytical research systematically by theoretical analysis, experimental investigation and numerical simulation method.
     Firstly, the existing porous material initial completely and partially shock compressed are evaluated and discussed. The shock adiabatic curve and the relationship of associated parameters of the porous materials are analyzed and discussed; some theoretical models of the incompletely compacted porous materials were introduced in accordance with the rate independent and rate-related; the shock adiabatic curve and the relationship of associated parameters of the ideal mixture are analyzed and discussed. Through comprehensive analysis, the relevant parameters of the dense material of tungsten-copper was determined by the superposition principle of the ideal mixture, and the shock compression state of porous tungsten-copper shaped charge liner was described by the shock adiabatic curve of initially porous material completely compacted.
     The calculation method of the collapse velocity of porous shaped charge liner and the velocity of shaped charge particle jet is given by considering the influence of the initial porosity on the collapse velocity of porous liner. The criterion of angle and sound velocity which judge porous liner to form cohesive shaped charge particles jet is present. The results show that:under the same pressure, as the increase of porosity, collapse velocity increase while the sound speed decrease; in the uniform porosity, collapse velocity increases with increasing pressure, while sound velocity is also reduced; the velocity shaped charge particle jet increases with the increase of porosity, and the collapse angle increase with the increase in the collapse velocity. The calculated results agree well with experimental results.
     The temperature rise of shaped charge particle jet is computed theoretically, which consisted of three parts:porous liner heating due to the shock wave transferred to the porous liner by the explosive detonation wave and due to plastic work performed during porous liner collapse and shaped charge particle jet elongation. The calculated results show that:for porous copper liner, porous liner heating by explosive wave make50%contribution to the temperature rise of the shaped charge particle tip jet, heating by plastic work performed during porous liner collapse and shaped charge particle jet elongation make70%contribution to the temperature rise of the shaped charge particle tip jet. For dense copper liner, it is45%and45%respectively. The temperature rise of shaped charge particle jet is higher than the temperature rise of dense shaped charge jet, because the heating by explosive detonation wave.
     The penetration model of the existing dense material jet and the porous materials shaped charge particles jet is introduced and analyzed. The penetration calculation model of shaped charge particles jet is proposed by considering the compressibility of the material and the characteristics of the porous shaped charge liner materials. Under different circumstances, this model can be transformed into the existing forms of penetration model. The model has broad application prospects.
     A W-Cu shaped charge liner with better performance was prepared by mixing powder with mechanical alloying method, pressing with spin-mode suppression method and sintering under the protection of methanol cracking gas. The penetration performance of W-Cu shaped charge particle jet will be improved by adding the lead powder on the basis of the original peculiarities of tungsten copper liner. However, an excess of lead powder can descend the penetration performance of W-Cu shaped charge particle jet. The relationship of penetration depth and stand-off shows that: W-Cu shaped charge particle jet is suitable for small stand-off and the best stand-off is2.1times the charge diameter. The experiment results of penetrating different targets show that:the relationship of penetration depth and time is the exponential function when W-Cu shaped charge particle jet penetration the45#steel, and is the exponential function when penetration A1and concrete targets. W-Cu shaped charge particle jet is well suited for penetration into low-density target.
     The parameters of Shock equation of state of W-Cu porous liner are determined by the ideal mixture equation of state. W-Cu shaped charge particle jet is numerical simulated using AUTODYN. The results show that:the meshing is greater influence on the velocity of shaped charge particle jet."Middle" meshing can basically meet the requirements of the calculation, and the calculation time can save40%, but shaped particle velocity descend11.1%compared with the experimental results. The flying speed of the shaped charge particles jet declines as the time increases, while the velocity decreases slowly after four times the charge diameter position. This main reason is that the tip is separated from the main body of shaped charge particles jet and the speed change slowly. When W-Cu shaped charge particle jet penetrating into Al target, the velocity decrease fastly in cavitation stage, and slowly in quasi-steady state. W-Cu shaped charge particle jet has a "maceration" phenomenon in this process. The fitting curve of the relationship penetration depth with time which obtained by numerical simulation and experimental result is similar. However, the penetration depth value lower than the experimental value at the same time. This is mainly because the velocity is lower than the experimental velocity. Numerical simulation and experimental results agree well with the Al target profile.
     This research work can provide some theoretical guidance for the structure design and engineering application of the porous liner shaped charge.
引文
[1]王毅,姜炜,刘宏英,等.粉末药型罩材料及其工艺技术的研究进展[J].含能材料,2007(05):555-559.
    [2]王凤英,刘天生,苟瑞君,等.钨铜镍合金药型罩研究[J].兵工学报,2001(01):112-114.
    [3]陈爱武,刘天生,王凤英.高塑性W合金药型罩动态性能研究[J].弹箭与制导学报,2008(03):110-112.
    [4]BAADER V, F. Versuch einer Theorie der SprengarbiL[J]. Bermannische Journal, VON Kohler and. Hoffmcn,1792.
    [5]FOCRSTER M V. Experiments with compressed gun cotton[J]. Nostrand'S Engineering Magazine,1884,31:113-119.
    [6]MUNROE C E. Modern explosives[J]. Scribners Magazine,1888,3:563-576.
    [7]WOOD R W. Optical and physical effects of high explosives[J]. The Royal Society of London,,1936,157:249-261.
    [8]PAYMAN D W. Explosion waves and shock waves, V.-The shock wave and explosion products from detonating high explosives[J]. Royal Society of London,1937,158.
    [9]MOHAUPT H B, Erick Kauaers of France. An improved explosive projectile:Australia, [P]..
    [10]SCHUMANN, E. Improvement of the effect of hollow charge, OTIB1249-17[R],1941.
    [11]WAGNER. Documents connected with the development of hollow charge ammunition, OTIB1249[R],1944.
    [12]TUCK J. Note on the theory if the munroe effect, U.K. Report, A.C3596[R],1945.
    [13]SEELY, CLARK J C. High speed radiographic studies of controlled fragmentation, Ballistic Research Report No.368[R],1943.
    [14]CLARK J C, RODAS W. High speed radiographic studies of controlled fragmentation, Ballistic Research Laboratory Report No.585[R],1945.
    [15]SCHARDIN H, THOMER G. Investigation of the hollow charge problems with help of the flash X-Ray method, Ordnance Technical Intelligence Bulletin 20[R],1941.
    [16]LINSCHITZ H, PAUL M. Experimental studies of CONE collapse and jet formation. part ⅰ: recovery of CONE from Low-Powered charges, National Defense Research Committee, Report OSRD N[R],1943.
    [17]BIRKHOFF G. Mathematical jet theory of lined hollow charges, Ballistics Research Laboratory Report No.370[R],1943.
    [18]BIRKHOFF G. Hollow charge Anti-Tank projectiles, Ballistic Research Laboratory Report No.623[R],1947.
    [19]BIRKHOFF G, MACDOUGALL D P, PUGH E M, et al. Explosives with lined cavities[J]. Journal of Applied Physics,1948,19(6):563-582.
    [20]EVANS, WM. The hollow charge effect[J]. Bulletin of the Institution of Mining and Metallur, 1950(520).
    [21]EVANS W M, UBBELOHDE A R. Formation of munroe JETS and their action on massive targets[J]. Research; a Journal of Science and Its Application,1950,3(7):331.
    [22]PUGH E M, EICHELBERGER R J, ROSTOKER N. Theory of jet formation by charges with lined conical cavities[J]. Journal of Applied Physics,1952,23(5):532-536.
    [23]EICHELBERGER R J, PUGH E M. Experimental verification of the theory of jet formation by charges with lined conical cavities[J]. Journal of Applied Physics,1952,23(5):537-542.
    [24]EICHELBERGER, RJ. Re-Examination of the nonsteady theory of jet formation by lined cavity charges[J]. Journal of Applied Physics,1955,26(4):398-402.
    [25]ALLISON, FE. An application of the Jet-formation theory to a 105mm shaped charge, AD0277458□ [R]:DTIC Document,1962.
    [26]DEFOURNEAUX, M. Theorie hydrodynamique DES charges creuses[J]. Mem. L'Artillerie Francaise,1970,44(2).
    [27]PEREZ E, FAUGUIGNON C, CHANTERET P. Fundamental studies of shaped charge mechanisms[Z],1977.
    [28]HIRSCH, E. A simple representation of the Pugh, Eichelberger, and Rostoker solution to the shaped charge jet formation problem[J]. Journal of Applied Physics,1979,50(7):4667-4670.
    [29]HARRISON J T. Terminal ballistic application of hydrodynamic computer code calculations, ADA041065□[R]:DTIC Document,1977.
    [30]HARRISON T J, KARPP. A comparison between the eulerian, hydrodynamic computer code (brlsc) and experimental collapse of a shaped charge liner, ADA059711[R]:DTIC Document, 1978.
    [31]LEIDEL J D. A design study of an annular-jet charge for explosive cutting[D]. [S.l.]:Drexel University, Philadelphia,1978.
    [32]ROBINSON A C, VIGIL M G. An analytical-experimental comparison of 150 and 220 grain per foot linear shaped charge performance[R]:Sandia National Labs., Albuquerque, NM (USA),1987.
    [33]LAVRENT'EV, M A. Cumulative charge and the principles of its operation[J]. Uspekhi Matematicheskikh NAUK,1957,12(4):41-56.
    [34]NOVIKOV P N, DIV F. Certain properties of high-speed cumulative jets(Optimization of high speed cumulative jets, and jet passage through hole)[R],1967.
    [35]SIMONOV, VA. Flows due to an incident impact wave on a wedge-shaped cavity[J]. Combustion, Explosion, and Shock Waves,1971,7(2):239-242.
    [36]DERIBAS A A, KUDINOV V M, MATVEENKOV F I, et al. Determination of the impact parameters of flat plates in explosive welding[J]. Combustion, Explosion, and Shock Waves, 1967,3(2):182-186.
    [37]GODUNOV S K, DERIBAS A A, ZABRODIN A V, et al. Hydrodynamic effects in colliding solids[J]. Journal of Computational Physics,1970,5:517.
    [38]GODUNOV S K, DERIBAS A A. Jet formation upon collision of metals[J]. Soviet Physics Doklady,1972,17:101.
    [39]GODUNOV S K, DERIBAS A A, MALI V I. Influence of material viscosity on the jet formation process during collisions of metal plates[J]. Combustion, Explosion, and Shock Waves,1975,11(1):1-13.
    [40]WALTERS, P W. Influence of material viscosity on the theory of Shaped-Charge jet formation, ADB041485[R]:DTIC Document,1979.
    [41]BROWN J, CURTIS J P, COOK D D. The formation of jets from shaped charges in the presence of asymmetry [J]. Journal of Applied Physics,1992,72(6):2136-2143.
    [42]KELLY R J, CURTIS J P, BREMER M. On analytic modeling of casing and liner thickness variations in a shaped charge[J]. Journal of Applied Physics,1994,75(1):96-103.
    [43]CURTIS J P, KELLY R J. Circular streamline model of shaped-charge jet and slug formation with asymmetry [J]. Journal of Applied Physics,1994,75(12):7700-7709.
    [44]CURTIS J P, KELLY R J, COWAN K G. Variational approach to the calculation of the radii in the stagnant core model of shaped charge jet formation[J]. Journal of Applied Physics, 1994,76(12):7731-7740.
    [45]CURTIS J P, CORNISH R. Formation model for shaped charge liners comprising multiple layers of different materials[C]//18th International Symposium on Ballistics. San An. San Antonio, Texas,1999:458.
    [46]WALSH J M, SHREFFLER R G, WILLIG F J. Limiting conditions for jet formation in high velocity collisions[J]. Journal of Applied Physics,1953,24(3):349-359.
    [47]COWAN G R, HOLTZMAN A H. Flow configurations in colliding plates:explosive bonding[J]. Journal of Applied Physics,1963,34(4):928-939.
    [48]P. C. CHOU, J. CARLEONE, R. R. KARPP. Criteria for jet formation from impinging shells and plates[J]. Journal of Applied Physics,1976,47(7):2975-2981.
    [49]HARRISON J, DIPERSIO R, KRAPP R, et al. DEA-AF-F/G-7304 technical meeting;physics of □explosives, vol. Ⅱ[R],1974.
    [50]HIRSCH E, MAYSELESS M. THE MAXIMUM MACH NUMBER OF COHERENT COPPER JET[C]//23RD":INTERNATIO NAL SY MPOS IUM O N BALLISTICS. TARRAGONA, SPAIN,2007:119-126.
    [51]TRISHIN Y, KINELOVSKII S. Effect of porosity on shaped-charge flow[J/OL]. Combustion, Explosion, and Shock Waves,2000,36(2):272-281.
    [52]恽寿榕,赵衡阳.爆炸力学[M].北京:国防工业出版社,2005.
    [53]CHOU P-c, CARLEONE J. The stability of shaped-charge jets[J]. Journal of Applied Physics, 1977,48(10):4187-4195.
    [54]HELD, M. Particulation of shaped charge jets[Z],1989:1-10.
    [55]SHELTON R D, ARBUCKLE A L. A calculation of particle size distributions in the break-up of shaped charge jets[J]. Journal of Applied Physics,1979,50(10):6190-6195.
    [56]WALSH, JM. Plastic instability and particulation in stretching metal jets[J]. Journal of Applied Physics,1984,56(7):1997-2006.
    [57]ROMERO, L A. The stability of stretching and accelerating plastic sheets. Ⅰ[J]. Journal of Applied Physics,1991,69(11):7474-7486.
    [58]ROMERO, L A. The stability of stretching and accelerating plastic sheets. Ⅱ[J]. Journal of Applied Physics,1991,69(11):7487-7499.
    [59]FRANKEL I, WEIHS D. Influence of viscosity on the capillary instability of a stretching jet[J]. Journal of Fluid Mechanics,1987,185(1):361-383.
    [60]PACK, DC. On the perturbation and break up of a high-speed, elongating metal jet[J]. Journal of Applied Physics,1988,63(6):1864-1871.
    [61]A. L. YARIN. On instability of rapidly stretching metal jets produced by shaped charges[J]. International Journal of Engineering Science,1994,32(5):847-862.
    [62]BABKIN A V, LADOV S V, MARININ V M, et al. Effect of shaped-charge jet compressibility and strength on the characteristics of their intertial stretching in free flight[J]. Journal of Applied Mechanics and Technical Physics,1997,38(2):177-184.
    [63]BABKIN A V, LADOV S V, MARININ V M, et al. Characteristics of inertially stretching shaped-charge jets in free flight[J]. Journal of Applied Mechanics and Technical Physics, 1997,38(2):171-176.
    [64]BABKIN A V, LADOV S V, MARININ V M, et al. Regularities of the stretching and plastic failure of metal shaped-charge jets[J]. Journal of Applied Mechanics and Technical Physics, 1999,40(4):571-580.
    [65]HIRSCH, E. A formula for the shaped charge jet breakup-time[J]. Propellants, Explosives, Pyrotechnics,1979,4(5):89-94.
    [66]HIRSCH, E. Scaling of the shaped charge jet break-up time[J]. Propellants, Explosives, Pyrotechnics,2006,31(3):230-233.
    [67]CURTIS, JP. Axisymmetric instability model for shaped charge jets[J]. Journal of Applied Physics,1987,61(11):4978-4985.
    [68]SCHWARTZ A J, BAKER E L. Effect of interior surface finish of the break-up of Copper shaped charge[C]//18th International on Symposiumon Ballistics,11. San Antonio, Texas, 1999.
    [69]CHANTERET P Y, LICHTENBERGER A. About varying shaped charge liner thickness[C]//17th International Symposium on Ballistics, Midran,31,1998:365-372.
    [70]ANDERSON G, JANZON B, KARLSSON S, et al. A study of grain size effects on the performance of cold pressed shaped charge liners[C]//15th International Symposium on Ballistics,1995.
    [71]JACKOWSKI A, WLODARCZYK E. The influence of repressing liners made from sintered Copper on jet formation[J]. Journal of Materials Processing Technology,2006,171(1): 21-26.
    [72]B. ZYGMUNT, Z. WILK. Formation of jets by shaped charges with metal powder liners[J]. Propellants, Explosives, Pyrotechnics,2008,33(6):482-487.
    [73]郑哲敏.聚能射流的稳定性问题[J].爆炸与冲击,1981(01):6-17.
    [74]秦承森,段庆生,韩冰.聚能射流的断裂时间[J].爆炸与冲击,1997(04):31-38.
    [75]秦承森,段庆生,林忠,等.聚能射流失稳断裂[C]//“力学2000"学术大会,中国北京,2000:521-522.
    [76]秦承森,李勇.一个新的射流颗粒速度差公式[J].爆炸与冲击,2001(01):8-12.
    [77]石艺娜,秦承森.金属射流失稳断裂的理论分析[J].力学学报,2009(03):361-369.
    [78]石艺娜.金属冲击射流形成、断裂和颗粒化分布研究[D].北京:中国工程物理研究院,2008.
    [79]PACK D C, EVANS W M. Penetration by High-Velocity (munroe') jets:i[J]. Proceedings of the Physical Society. Section B,1951,64:298.
    [80]EICHELBERGER, RJ. Experimental test of the theory of penetration by metallic jets[J]. Journal of Applied Physics,1956,27(1):63-68.
    [81]ABRAHAMSON G R, GOODIER J N. Penetration by shaped charge JETS of nonuniform velocity[J]. Journal of Applied Physics,1963,34(1):195-199.
    [82]ALLISON F E, VITALI R. A new method of computing penetration variables for shaped-charge jets, AD400485[R],1963.
    [83]CARLEONE J, CHOU P-c, FLIS W J, et al. User's manual for DESC-2, Dyna East Corporation Technical Report,DETR-75-4[R],1982.
    [84]GROVE B, WALTON I. SHAPED CHARGE JET VELOCITY & DENSITY PROFILES[C]//23RD INTERNATIONAL SY MPOSIUMON BALLISTICS. TARRAGONA, SPAIN,2007:103-110.
    [85]CORNISH R, MILLS J T, CURTIS J P, et al. Degradation mechanisms in shaped charge jet penetration [J]. International Journal of Impact Engineering,2001,26(1/10):105-114.
    [86]MILLS J T, CURTIS J P. A theoretical investigation of the penetration properties of hollow particles[J]. International Journal of Impact Engineering,2001,26(1/10):523-531.
    [87]M. MAYSELESS, R. GENUSSOV. Jet penetration into low density targets[J]. International Journal of Impact Engineering,1999,23(1 PART Ⅱ):585-595.
    [88]MARKELOV, GE. Effect of initial heating of shaped charge liners on shaped charge pentetration[J]. Journal of Applied Mechanics and Technical Physics,2000,41(5):788-791.
    [89]MARKELOV, GE. Effect of initial heating of the jet-forming layer of shaped-charge liners on the ultimate elongation of jet elements[J]. Journal of Applied Mechanics and Technical Physics,2000,41(2):231-234.
    [90]BABKIN A V, BONDARENKO P, FEDOROV S V, et al. Limits of increasing the penetration of shaped-charge JETS by pulsed thermal action on shaped-charge liners[J]. Combustion, Explosion, and Shock Waves,2001,37(6):727-733.
    [91]B. S. HAUGSTAD. Compressibility effects in shaped charge jet penetration[J]. Journal of Applied Physics,1981,52(3):1243-1246.
    [92]B. S. HAUGSTAD, O. S. DULLUM. Finite compressibility in shaped charge jet and long rod penetration-The effect of shocks[J]. Journal of Applied Physics,1981,52(8):5066-5071.
    [93]FLIS W J, CHOU C-p. Penetration of compressible materials by shaped charge jets[C]//7th Int. Symp. on Ballistics. Netherlands,1983:617-625.
    [94]CHICK M C, FREY R B, BINES A. Jet penetration in Plexiglas[J]. International Journal of Impact Engineering,1990,9(4):433-439.
    [95]MAYSELESS M, HARVEY W B, HETZ A. A computational study of non-porous and porous liners in explosively-formed jets[C]//AIP Conference Proceedings,505,2000:367.
    [96]FLIS H J, CRILLY M G. Hypervelocity jet penetration of porous materials[C]//18th. Int. Symp. on Ballistics. San Antonio, Texas,1999:869-876.
    [97]GROVE, B. Theoretical considerations on the penetration of powdered metal jets[J]. International Journal of Impact Engineering,2006,33(1/12):316-325.
    [98]WERNEYER K D, MOSTERT F J. Analytical model predicting the penetration behavious of JETS with a time-varying mass density profiles[C]//21st International. Symposium on Ballistics. ADELAIDE,SOUTH AUSTRALIA,2004:390-397.
    [99]MARITZ M F, WERNEYER K D, MOSTERT F J. An analytical penetration model for JETS with varying mass density profiles[C]//22nd International Symposium on Ballistics,2005: 622-629.
    [100]E. HIRSCH, M. MAYSELESS. Penetration of porous jets[J]. Journal of Applied Mechanics, Transactions ASME,2010,77(5):1-7.
    [101]STEVEN M B. Shaped charge liner materials:resources, processes, properties, costs, and applications, ADA278191[R]:DTIC Document,1991.
    [102]BOURNE B, COWAN K G, CURTIS J P. Shaped charge warheads containing low melt energy metal liners[C]//19th International Symposium on Ballistics. Interl,2001:583-590.
    [103]DOIG, A. Some metallurgical aspects of shaped charge liners[J]. Journal of Battlefield Technology,1998,1(1):1-3.
    [104]MCWILLIAMS S T, BAKER E L, NG K W, et al. High spin armor piercing warheads development with Mo and Ta liners[J]. International Infantry and Small ARMS,2002.
    [105]MURR L, SHIH H K, NIOU C S. Dynamic recrystallization in detonating Tantalum shaped charges:a mechanism for extreme plastic deformation[J]. Materials Characterization,1994, 33(1):65-74.
    [106]FENG C, MURR L, NIOU C S. Aspects of dynamic recrystallization in shaped charge and explosively formed projectile devices[J]. Metallurgical and Materials Transactions a,1996, 27(7):1773-1778.
    [107]王铁福,阮文俊.贫铀中的碳含量对其聚能射流性能的影响[J].科学通报,1997(07):764-766.
    [108]工铁福,赵国虎,阮文俊,等.贫铀药型罩材料中微量杂质对聚能射流性能的影响[J].高压物理学报,1996(02):23-27.
    [109]王铁福,阮文俊,朱鹤荣,等.贫铀药型罩及其聚能射流[J].爆炸与冲击,1995(02):180-184.
    [110]FUCHS E B. Shaped charges having a porous Tungsten liner:An experimental and theoretical study of metal compression, jet formation, and penetration mechanics[D]. [S.l.]: New Jersey Institute of Technology,1997.
    [111]GUO W, LI S-k, WANG F-c, et al. Dynamic recrystallization of Tungsten in a shaped charge liner[J]. Scripta Materialia,2009,60(5):329-332.
    [112]BAKER E L, DANIELS A, VOORHIS G P, et al. Development of Molybdenum shaped charge liners[Z],1998:173-182.
    [113]W. H. TIAN, A. L. FAN, H. Y. GAO, et al. Comparison of microstructures in electroformed Copper liners of shaped charges before and after plastic deformation at different strain rates[J]. Materials Science and Engineering a,2003,350(1-2):160-167.
    [114]TIAN W-h, HU S-l, FAN A-l, et al. Microstructural change in electroformed Copper liners of shaped charges upon plastic deformation at ultra-high strain rate[J]. Radiation Effects and Defects in Solids,2002,157(1/2):145-156.
    [115]YANG F, LI C, CHENG S, et al. Microstructural evolution in electroformed Nickel shaped-charge liners with nano-sized grains undergone deformation at ultrahigh strain rate[J]. International Journal of Minerals, Metallurgy, and,2010,17(5):617-623.
    [116]YANG F, LI C-h, CHENG S-w, et al. Deformation behavior of explosive detonation in electroformed Nickel liner of shaped charge with nano-sized grains[J]. Transactions of Nonferrous Metals Society of China,2010,20(8):1397-1402.
    [117]FAIBISH E B, MILLER S. Investigation of shaped charges with conical and hemispherical liners of Tungsten alloys[C]//Proceedings of 9th International Symposium on Ball. England, 1986:237-242.
    [118]LEE S, KIM E P, KIM Y, et al. Penetration performances of Tungsten-Copper shaped charge liner[Z],2005:437-443.
    [119]王铁福,朱鹤荣,周箭隆,等.钨铜合金药型罩及其性能(英文)[J].弹道学报,1992(02):61-66.
    [120]臧涛成,贾建新.用聚能装药多层药型罩提高流速度的研究[J].弹道学报,1995,7(002):78-82.
    [121]臧涛成,刘军.铜—铝复合罩用于射孔弹的研究[J].爆破器材,1994,23(004):27-32.
    [122]史慧生.核技术在药型罩密度检测中的应用[J].核电子学与探测技术,1998(06):38-41.
    [123]史慧生.射孔弹药型罩伽马射线检测仪[J].石油仪器,1997(03):30-32,61.
    [124]史慧生.药型罩质量分布对射孔弹穿透性能的影响[J].爆破器材,1997(04):1-5.
    [125]汪永庆,王树山.粉末药型罩射流速度的近似计算方法[J].火工品,2001(04):45-48.
    [126]郭圣延,曾新吾.铋在石油射孔弹药型罩中的作用[J].测井技术,2002(04):338-340,35.
    [127]李如江,刘天生,沈兆武,等.多孔药型罩聚能射流的稳定性[J].爆炸与冲击,2009,29(2):217-220.
    [128]李如江,沈兆武,王凤英.药型罩初始孔隙度对聚能射流行为的影响[J].高压物理学报,2008,22(4):445-448.
    [129]李如江,沈兆武,刘天生.多孔药型罩聚能射流低炸高大穿深机理研究[J].含能材料,2008(04):424-427.
    [130]李如江.多孔药型罩聚能射流机理及应用研究[D].合肥:中国科学技术大学,2008:1-117.
    [1]奚正平.烧结金属多孔材料[M].北京:冶金工业出版社,2009:1-344.
    [2]HERRMANN, W. Constitutive equation for the dynamic compaction of ductile porous materials[J]. Journal of Applied Physics,1969,40(6):2490-2499.
    [3]经福谦.实验物态方程导引(第二版)[M].北京::科学出版社,1999:1-405.
    [4]MCQUEEN R G, MARSH S P, TAYLOR J W, et al. The equation of state of solids from shock wave studies, in High-Velocity impact phenomena, r. kinslow, ed.[M]. New York: Academic Press,1970:293-417.
    [5]STEINBERG J D. The temperature independence of Gruneisen's gamma at high temperature [J]. Journal of Applied Physics,1981,52(10):6415-6417.
    [6]COWPERTHWAITE, M. Significance of some equations of state obtained from shock-wave data[J]. American Journal of Physics,1966,34(11):1025-1030.
    [7]KORMER S B, FUNTIKOV A I, URLIN V D, et al. Dynamical compression of porous metals and the equation of state with variable specific heat at high temperatures[J]. Soviet Phys. JETP,1962,15(3):477-488.
    [8]KRUPNIKOV K K, BRAZHNILC M I, KRUPNIKOVA V P. Shock compression of porous Tungsten[J]. Soviet Phys. JETP,1962,15(3):470-476.
    [9]OH H, PERSSON P. A full range hugoniot of state for porous materials[C]//American Physical Society topical conference on shock waves in condensed matter. Albuquerque, NM, 1989:1-4.
    [10]BOADE R R. Experimental shock-loading properties of porous materials and analytical methods to describe these properties[C]//Shock Waves and the Mechanical Properties of Solids, Proc. of the 17th Sagamore Army Materials Conference. Raquette Lake NY,1970: 263-285.
    [11]OH K H, PERSSON P A. A constitutive model for the shock Hugoniot of porous materials in the incomplete compaction regime[J]. Journal of Applied Physics,1989,66(10):4736-4742.
    [12]BUTCHER B M. The description of strain rate effects in shocked porous materials[C]//Shock Waves and the Mechanical Properties of Solids.Proc. of the 17th Sagamore Army Materials Conference. Raquette Lake NY,1970:1-4.
    [13]CARROLL M M, HOLT A C. Static and dynamic pore-collapse relations for ductile porous materials[J]. Journal of Applied Physics,1972,43(4):1626-1636.
    [14]JOHNSON J N, ADDESSIO F L. Tensile plasticity and ductile fracture[J]. Journal of Applied Physics,1988,64(12):6699-6712.
    [15]JOHNSON, N J. Dynamic fracture and spallation in ductile solids[J]. Journal of Applied Physics,1981,52(4):2812-2825.
    [16]GURSON, AL. Continuum theory of ductile rupture by void nucleation and growth:Part I-Yield criteria and flow rules for porous ductile media[J]. Journal of Engineering Materials and Technology,1977,99(1):2-15.
    [17]ADDESSIO F L, JOHNSON J N. Rate-dependent ductile failure model[J]. Journal of Applied Physics,1993,74(3):1640-1648.
    [18]谭华.实验冲击波物理导引[M].北京:国防工业出版社,2007:1-224.
    [1]BIRKHOFF G, MACDOUGALL D P, PUGH E M, et al. Explosives with lined cavities[J]. Journal of Applied Physics,1948,19(6):563-582.
    [2]PUGH E M, EICHELBERGER R J, ROSTOKER N. Theory of jet formation by charges with lined conical cavities[J]. Journal of Applied Physics,1952,23(5):532-536.
    [3]BEHRMANN L, BIRNBAUM N. Calculation of Shaped-Charge JETS using engineering approximations and finite difference computer codes, volume 2. modification and utilization of a Two-Dimensional finite difference continuum mechanics code to calculate the jet formation parameters for a, AD0915423[R]:DTIC Document,1973.
    [4]BEHRMANN L, BIRNBAUM N. Calculation of Shaped-Charge JETS using engineering approximations and finite difference computer codes, volume i. generalized analytical approach to Shaped-Charge warhead design, AD0915601[R]:DTIC Document,1973.
    [5]GURNEY, W R. The initial velocities of fragments from bombs, shell and grenades, ADA800105[R]:DTIC Document,1943.
    [6]KLEINHANSS H R. Experimentelle untersuchungen ZUM kollapsprozess BEI :hohlladungen[C]//Third International Symposium on Military Application. France, 1973.
    [7]CHOU P-c, FLIS W J. Recent developments in shaped charge technology[J]. Propellants, Explosives, Pyrotechnics,1986,11(4):99-114.
    [8]DUVALL G E, ERKMAN J O. Technical report, No.1[R],1958.
    [9]MIKHAILOV A, DREMIN A N. Flight speed of a plate propelled by products from a sliding detonation[J]. Combustion, Explosion, and Shock Waves,1974,10(6):787-792.
    [10]SHUSHKO L A, SHEKHTER B I, KOV S L. Bending of a metal strip by a sliding detonation wave[J]. Combustion, Explosion, and Shock Waves,1975,11(2):229-236.
    [11]RANDERS-PEHRSON G. An improved equation for calculating fragment projection angle[C]//Second International Symposium on Ballistics. Daytona Beach USA, 1976:9-11.
    [12]CHOU P-c, CARLEONE J, FLIS W J, et al. Improved formulas for velocity, acceleration, and projection angle of explosively driven liners[J]. Propellants, Explosives, Pyrotechnics, 1983,8(6):175-183.
    [13]TAYLOR G I. Analysis of the explosion of a long cylindrical bomb detonated at ONE end," scientific papers of sir g. i. taylor,, Ⅲ[M]. Cambridge:Cambridge University Press,1941: 277-286.
    [14]DEFOURNEAUX M, LURSAT D. Equations approchees DE l'ecoulement derriere UNE detonation AVEC confinement lateral[J]. Astronautica ACTA,1972,17:615-621.
    [15]KERDRAON, A. Etude DE LA projection cylindrique convergente[C]//ISL Symposium, 1975.
    [16]WALSH J M, SHREFFLER R G, WILLIG F J. Limiting conditions for jet formation in high velocity collisions[J]. Journal of Applied Physics,1953,24(3):349-359.
    [17]VON NEUMANN J. Oblique reflecrion of shocks, Explosives Research Report No.12[R]. Washington DC,1943.
    [18]CHOU P-c, CARLEONE J, KARPP R R. Criteria for jet formation from impinging shells and plates[J]. Journal of Applied Physics,1976,47(7):2975-2981.
    [19]TREBINSKIR, JACKASKI A. Influence of shock wave heating during porous liners launching on the behavior of jets[C]//17th International Symposium on Ballistics,1998: 235-242.
    [1]PFEFFER G. Determination par simulations numeriques de l'etat et des lois de fragmentation des jet de charges creuses[C]//5e symposium international de halistique. Toulouse,1980: 16-18.
    [2]E. RACAH. Shaped charge jet heating[J]. Propellants, Explosives, Pyrotechnics,1988,13(6): 178-182.
    [3](俄)лп奥尔连科.爆炸物理学原书第3版下[M].孙承伟,译.第3版.北京:科学出版社,2011.
    [4]TRISHIN Y, KINELOVSKII S. Effect of porosity on shaped-charge flow[J/OL]. Combustion, Explosion, and Shock Waves,2000,36(2):272-281.
    [1]BIRKHOFF G, MACDOUGALL D P, PUGH E M, et al. Explosives with lined cavities[J]. Journal of Applied Physics,1948,19(6):563-582.
    [2]ABRAHAMSON G R, GOODIER J N. Penetration by shaped charge JETS of nonuniform velocity[J]. Journal of Applied Physics,1963,34(1):195-199.
    [3]ALLISON F E, VITALI R. A new method of computing penetration variables for shaped-charge jets, AD400485[R],1963.
    [4]DIPERSLO R, SIMON J. The penetration-standoff relation for idealized shaped charge jets, 1542[R],1964.
    [5]TATE, A. A theory for the deceleration of long rods after impact[J]. Journal of the Mechanics and Physics of Solids,1967,15(6):387-399.
    [6]KEEFE M, HOULTON J. Penetration by stretching projectiles[J]. Journal of the Mechanics and Physics of Solids,1988,36(5):537-549.
    [7]HAUGSTAD, BS. Compressibility effects in shaped charge jet penetration[J]. Journal of Applied Physics,1981,52(3):1243-1246.
    [8]FLIS W J, CHOU C-p. Penetration of compressible materials by shaped charge jets[C]//7th Int. Symp. on Ballistics. Netherlands,1983:617-625.
    [9]VOUMARD C, RODUNER H P, SANTSCHI W, et al. Performances and behaviour of WCu-PSEUDO-ALLOY shaped charges with a simple model for calculating the STAND-OFF curve[Z],2001:1479-1485.
    [10]WERNEYER K D, MOSTERT F J. Analytical model predicting the penetration behavious of JETS with a time-varying mass density profiles[C]//21st International. Symposium on Ballistics. ADELAIDE,SOUTH AUSTRALIA,2004:390-397.
    [11]MARITZ M F, WERNEYER K D, MOSTERT F J. An analytical penetration model for JETS with varying mass density profiles[C]//22nd International Symposium on Ballistics,2005: 622-629.
    [12]GROVE, B. Theoretical considerations on the penetration of powdered metal jets[J]. International Journal of Impact Engineering,2006,33(1/12):316-325.
    [13]李如江.多孔药型罩聚能射流机理及应用研究[D].合肥:中国科学技术大学,2008:1-117.
    [14]FLIS H J, CRILLY M G. Hypervelocity jet penetration of porous materials[C]//18th. Int. Symp. on Ballistics. San Antonio, Texas,1999:869-876.
    [1]赵腾,罗虹,贾万明,等.影响药型罩材料使用性能的因素研究[J].兵器材料科学与工程,2007(05):82-86.
    [2]李国宾.复合药型罩的研究进展[J].兵器材料科学与工程,1995(01):63-68.
    [3]史慧生.药型罩质量分布对射孔弹穿透性能的影响[J].爆破器材,1997(04):1-5.
    [4]王凤英,刘天生,苟瑞君,等.钨铜镍合金药型罩研究[J].兵工学报,2001(01):112-114.
    [5]李如江,沈兆武,王凤英.药型罩初始孔隙度对聚能射流行为的影响[J].高压物理学报,2008,22(4):445-448.
    [6]胡忠武,李中奎,张廷杰,等.药型罩材料的发展[J].稀有金属材料与工程,2004(10):1009-1012.
    [7]郭志俊,张树才,林勇.药型罩材料技术发展现状和趋势[J].中国钼业,2005(04):40-42.
    [8]吴成,廖莎莎,孙韬,等.钨合金药型罩材料的大破孔聚能战斗部研究[J].北京理工大学学报,2009(09):760-762,76.
    [9]李晓杰,王占磊,闫鸿浩,等.一种纳米晶W-Cu合金药型罩的研制[C]//第七届中国功能材料及其应用学术会议.长沙,中国湖南,2010:333-334,33.
    [10]景青波,景振禹,石健.粉末药型罩金属粒度级配及热处理对聚能射流性能的影响[J].火炸药学报,2008,31(04):42-44.
    [11]CHAWLA M S. High performance composite shaped charge:United States,5792977[P]: 1-5.
    [12]张全孝,高云,贾万明,等.机械合金化铜-钨药型罩材料的研究[J].兵器材料科学与工程,2000(03):44-50.
    [13]陈锋,姜德义,谢湛,等.激光烧结成形结合熔渗制备钨铜射孔弹药型罩[J].粉末冶金材料科学与工程,2010,15(003):258-264.
    [14]HE H, JIA S. Direct electrodeposition of Cu-Ni-W alloys for the liners for shaped charges[J]. Journal of Materials Science & Technology,2010,26(5):429-432.
    [15]张全孝,姚懂,曹连忠,等.钨铜EFP药型罩的制备及成形性能[J].稀有金属材料与工程,2009(03):527-531.
    [16]王占磊,李晓杰,张程娇,等.爆炸烧结W-Cu合金药型罩材料及其性能[J].爆炸与冲击,2011(03):332-336.
    [17]B. ZYGMUNT, Z. WILK. Formation of jets by shaped charges with metal powder liners[J]. Propellants, Explosives, Pyrotechnics,2008,33(6):482-487.
    [18]黄培云.粉末冶金原理[M].北京:冶金工业出版社,1997.
    [19]BABKIN A V, LADOV S V, FEDOROV S V. Analysis of influence of the sintered liner composition on the shaped charge jet free flight behavior and its penetration capacity[C]//25th International Symposium on Ballistics. Beijing,2010:638-646.
    [20]HELLE G V, TRIMBLE J J. Shaped charge temperature measurement[C]//6th International Symposium on Detonation. San Diego,1976:.
    [21]E. Hirsch, M. Mayseless. Penetration of Porous Jets [J]. Journal of Applied Mechanics, 2010,77(051803):1-7.
    [1]Century Dynamics Inc. AUTODYN user manual(Release 13.0)[M]. [S.l.]:Century Dynamics Inc,,2010:1-474.
    [2]张向荣,黄风雷.炸高对钨铜射流空气及水中侵彻的影响[J].北京理工大学学报,2011(03):262-264.
    [3]张先锋,陈惠武,赵有守.EFP冲击引爆带壳炸药数值模拟研究[J].弹道学报,2006,18(001):90-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700