不同作物轮作下石灰性紫色土磷素形态变化及其影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用定位监测和分级化验方法,研究盆地丘陵区两种典型旱地轮作方式(玉米-油菜轮作和玉米-小麦轮作)下石灰性紫色土磷素形态组成特征、动态变化及其影响因素,主要结论如下。
     (1)两种轮作下土壤表层和下层全磷含量(P)分别平均为0.75和0.54g kg~(-1),属中等水平;土壤速效磷(Olsen-P)分别平均为3.3和1.4 mg kg~(-1),属低磷水平。这与调查中发现油菜、小麦及玉米均存在一定缺磷现象的结果相一致。由此判断供试土壤磷素并未出现过剩,应对作物进行测土配方施用磷肥。土壤表层的全磷和速效磷含量明显高于下层,分别高出0.21g kg~(-1)和1.9mg kg~(-1)。土壤磷素以无机磷为主,两种轮作下土壤表层无机磷平均占88%,下层更高达91%。土壤表层有机磷的比例高于下层,其原因是土壤有机磷与有机质呈显著正相关(r=0.341~*,n=72),而表层有机质又高于下层。
     (2)两种轮作下土壤无机磷形态组成总体特征是Ca_(10)-P(磷灰石)处于绝对优势,土壤表层和下层分别平均占无机磷总量的67%和74%;表层Ca_8-P和O-P分列二、三位,下层O-P和Ca_8-P分列二、三位;表层、下层的Al-P、Fe-P、Ca_2-P均分列四、五、六位。Ca_2-P的比例甚低,不足1%。在两种轮作三种作物及其不同生育期土壤无机磷形态的具体含量和组成虽然有所变化,但这一总趋势基本不变。多元回归分析表明,土壤速效磷主要来源于无机磷中的Ca_2-P,与其他无机磷形态的关系甚小或者完全无关。因此,供试土壤Ca_2-P含量低,正是导致其速效磷含量低的基本原因。
     (3)玉米、油菜和小麦各生育期内土壤无机磷形态变化特征较为复杂,不同作物间各形态无机磷变化特征各不相同,同种作物不同形态无机磷变化特征各异。
     (4)两种轮作下土壤无机磷形态变化主要受微地形(不同地形部位)、轮作、土壤有机质和土壤颗粒组成的影响,而与土壤pH相关性不显著。
     微地形的影响主要表现在,不同地形部位两种轮作之间下层土壤Ca_(10)-P含量差异均达到极显著水平,其t值分别为t=3.486~(**)(P=0.004,n=16)和t=4.242~(**)(P=0.001,n=16)。反映不同地形部位母质对土壤无机磷形态的影响。
     轮作对Ca_8-P含量有较大影响,即不同轮作方式间表层土壤Ca_8-P含量差异达到极显著水平t=-3.025~(**)(P=0.004,n=40);下层土壤Ca_8-P含量差异达到显著水平t=-2.562~*(P=0.018,n=32)。但轮作对其他各形态无机磷影响不显著。
     供试土壤无机磷形态中的各形态磷含量与土壤pH的相关性均未达到显著水平。可能与供试土壤的pH变化范围狭窄(7.71~8.49)有关。
     土壤各形态无机磷中Ca_s-P和Al-P与有机质呈显著正相关,其相关系数分别为r=0.267~*(n=72)和r=0.295~*(n=72)。其他各形态磷与有机质无显著相关性。
     此外,土壤颗粒组成中仅粉粒对Ca_8-P和Al-P有一定影响,即Ca_8-P与粉粒呈显著正相关(r=0.264~*,n=72),Al-P与粉粒呈显著正相关(r=0.301~*,n=72)。
The phosphorus(P) content of the calcareous purple soil under two typical rotation systems of the arid land in the central hill region of Sichuan basin was studied,by the method of located monitoring. And the phosphorus fraction and variation characteristics and their influencing factors were also studied, taking the method of inorganic phosphorus(Pi) fractionation in calcareous soil from Jiang Bofan and Gu Yichu.The results indicated that:
     (1) The average total phosphorus content(TP) in surface soil under the two types of rotation systems were 0.75 and 0.54 g kg~(-1),which were on the middle level.And each the Olsen-P content were 3.3 and 1.4 mg kg~(-1),which were on the low level.Certain characteristic of P lack was found in the growth stages of rape,wheat and corn during the research.For the results,the soil studied was not surplus of P,but need to test the soil P content of the crop to apply P fertilizer.The TP and Olsen-P content were higher in surface soil than subsurface soil.The TP of the studied soil was mainly made up of Pi,and it stood 88%of the TP content in surface soil,even 91%in the subsurface soil.The organic phosphorus(Po) percentage was higher in surface soil than that in subsurface soil,on the ground that the Po had significant revelation with soil organic matter(OM),and the OM content in the surface soil was higher than that in the subsurface soil.
     (2) The total characteristic of Pi fractionations under the two types of rotation systems showed that: Ca_(10)-P content took the most part of the total Pi content.It stood 67%and 74%of the total Pi content in the surface and subsurface soil.Ca_8-P and O-P content took the 2~(nd) and 3~(rd) place in the surface soil and on the opposition in the subsurface soil.Al-P,Fe-P and Ca_2-P took the 4~(th),5~(th) and 6~(th) place both in the surface and subsurface soil.The percentage of Ca_2-P content was very low,taking less than 1%.This main trend kept steadly though the Pi fraction form and content changed during the different growth stages and among the three crops under the two types of rotation systems.The results of multiple regression analysis indicated that the soil Olsen-P was mainly from Ca_2-P which was one of the Pi fractions,and it had no relations with other forms of Pi.So,the Ca_2-P content was low in the studied soil.It was the basically reason which led to the low content of Olsen-P.
     (3) The characteristics of soil Pi fraction variation were much complex in the growth stages of corn, rape and wheat.They were different with each other in different crops,and so were the characteristics of different Pi fraction variation in the same crop.
     (4) The Pi fraction and variation were mainly influenced by microtopography,rotation,soil organic matter and soil granule composition,and had no relation to soil pH.
     Microtopography mainly affected the Ca_(10)-P content of the subsurface soil.The difference of it reached to extremely significant level among the subsurface soils under each rotation system,and each the "t" value of the difference under the rotation was t=3.486~(**)(P=0.004,n=16) and t=4.242~(**) (P=0.001,n=16).
     Rotation showed heavy influence to Ca_8-P,but showed not enough significant influence to other types of Pi.Ca_8-P content showed extremely significant difference(t=-3.025~(**),P=0.004,n=40) in surface soil under different rotation systems,and it showed significant difference(t=-2.562~*,P=0.018, n=32) in subsurface soil.
     The content of each type of Pi showed no correlation with soil pH,the correlation didn't reach to significant level.It's on the ground that the changing range of the soil pH value was very narrow.
     Among the Pi fractions,Ca_8-P and Al-P content were positively correlated with soil OM,and the correlation coefficient were(r=0.267~*,n=72) and(r=0.295~*,n=72).The content of other types of Pi showed no correlation with soil OM,the correlation didn't reach to significant level.
     Among the soil granule composition,only silt showed influence to Ca_8-P and Al-P,and the Ca_8-P showed significant correlation with silt(r=0.264~*,n=72),the Al-P showed significant correlation with silt(r=0.301~*,n=72).
引文
[1]程传敏,曹翠玉.干湿交替过程中石灰性土壤无机磷的转化及有效性[J].土壤学报,1997,34(4):382-391.
    [2]段亮,段增强,夏四清.农田氮、磷向水体迁移原因及对策[J].中国土壤与肥料,2007,(4):6-11.
    [3]冯跃华,张杨珠.土壤有机磷分级研究进展[J].湖南农业大学学报(自然科学版),2002,28(3):259-264.
    [4]冯跃华,张杨珠,黄运湘,等.湖南省主要类型水稻土有机磷形态分级研究[J].湖南农业大学学报(自然科学版),2001,27(1):24-28.
    [5]高超,张桃林,吴蔚东.农田土壤中的磷向水体释放的风险评价[J].环境科学学报,2001,21(3):344-349.
    [6]高亚军,朱培立,王志明,等.稻麦轮作条件长期不同土壤管理对磷、钾和pH的影响[J].土壤,2000,(5):257-261.
    [7]郭晓冬,杨玲,张雪琴.甘肃省主要耕地土壤磷素形态及其有效性研究[J].土壤通报,1998,29(3):119-122.
    [9]海龙,王平,张仁陟,等.不同耕作方式对土壤有机磷形态的影响[J].甘肃农业大学学报,2006,41(5):95-99.
    [10]韩俊杰,马保国,韩宝坤,等.麦稻轮作高产条件下施磷对土壤速效磷及作物产量的影响[J].河北农业大学学报,2001,24(3):22-26.
    [11]黄启为,彭辉辉,扬志辉,等.旱地土壤无机磷分级方法的比较[J].湖南农业大学学报(自然科学版),2001,27(6):457-459.
    [12]蒋柏藩,顾益初.石灰性土壤无机磷的分级研究[J].中国农业科学,1989,22(3):58-66.
    [13]介晓磊,杨先明,黄绍敏,等.石灰性潮土长期定位施肥对小麦根际无机磷组分及其有效性的影响[J].中国土壤与肥料,2007,(2):53-58.
    [14]来璐,郝明德,彭令发.土壤磷素研究进展[J].水土保持研究,2003,10(1):65-67.
    [15]李庆召,王定勇,朱波,等.川中紫色土旱坡地磷素的输出特征研究[J].水土保持学报,2004,18(6):97-99.
    [16]李秋梅,陈新平,张福锁,等.冬小麦-夏玉米轮作体系中磷钾平衡的研究[J].植物营养与肥料学报,2002,8(2):152-156.
    [17]李孝良,于群英,陈世勇,等.安徽省土壤磷素形态及其影响因素研究[J].安徽农业技术师范学院学报,2001,15(1):12-15.
    [18]廖菁菁,黄标,孙维侠,等.农田土壤有效磷的时空变异及其影响因素分析-以江苏省如皋市为例[J].土壤学报,2007,44(4):620-628.
    [19]林治安,谢承陶,张振山,等.石灰性土壤无机磷形态、转化及有效性研究[J].土壤通报,1997,28(6):274-276.
    [20]刘建玲,张福锁.小麦-玉米轮作长期肥料定位试验中土壤磷库的变化[J].2000,11(3):365-368.
    [21]刘世亮,介晓磊,翟东明,等.不同磷源在玉米根际的形态转化及有效性研究[J].扬州大学学报(农业与生命科学版),2003,24(2):54-58.
    [22]刘世全,高丽丽,蒲玉琳,等.西藏土壤磷素和钾素养分状况及其影响因素[J].水土保持学报,2005,19(1):75-78,88.
    [23]陆欣.土壤肥料学[M].北京:中国农业大学出版社,2002:208-225.
    [24]马保国,韩俊杰,杨太新,等.麦稻轮作高产条件下无机磷的形态转化及其生物有效性研究[J].河北农业大学报,2000,23(4):42-45,61.
    [25]马保国,杨太新,郭凤台,等.麦稻轮作体系中磷素平衡的研究[J].农业环境科学学报,2005, 24(2):371-374.
    [26]孟庆华,李根英.山东省主要土类的有机磷及其与磷酸化酶和解磷微生物的相关性研究[J].土壤通报,2006,37(1):84-87.
    [27]欧勇胜,张世熔,余琼,等.横断山北部生态脆弱区土壤磷素空间分布特征[J].生态学报,2005,25(10):2776-2781.
    [28]邱凤琼,丁庆堂,党连超.三种黑土中有机碳、氮、磷的形态分布与肥力的关系[J].土壤学报,1983,20(1):23-29.
    [29]沈仁芳,蒋柏藩.石灰性土壤无机磷的形态分布及其有效性[J].土壤学报,1992,29(1):80-86.
    [30]田秀平,马艳梅,韩晓日.长期耕作、施肥对白浆土无机磷形态的影响[J].土壤,2003,35(4):344-346.
    [31]王俊,李凤民,贾宇,等.半干旱黄土区苜蓿草地轮作农田土壤氮、磷和有机质变化[J].应用生态学报,2005,16(3):439-444.
    [32]王平,李凤民,刘淑英,等.长期施肥对黑垆土无机磷形态的影响研究[J].土壤,2005,37(5):534-540.
    [33]王霞,吕宪国,白淑英,等.松花湖富营养化发生的阈值判定和概率分析[J].生态学报,2006,26(12):3989-3997.
    [34]王艳玲,王杰,赵兰坡,等.黑土无机磷形态及其有效性研究[J].水土保持学报,2004,18(3):85-89.
    [35]武永锋,朱波,刘从强,等.川中丘陵区典型土地利用方式下磷素迁移的初步研究[J].地球与环境,2006,34(4):7-10.
    [36]肖鹏飞,张世熔,黄丽琴,等.成都平原区土壤速效磷时空变化特征[J].水土保持学报,2005,19(4):89-92,99.
    [37]谢林花,吕家珑,张一平,等.长期施肥对石灰性土壤磷素肥力的影响[J].应用生态学报,2004,15(5):787-794.
    [38]熊俊芬,石孝均,毛知耘.紫色土无机磷形态转化及其有效性的定位研究[J].土壤,2000,(5):262-265.
    [39]杨利玲,杨学云.土壤磷素形态研究现状评述[J].安徽农业科学.2006,34(19):4996-4997.
    [40]于群英,李孝良,李粉茹,等.安徽省土壤无机磷组分状况及施肥对土壤磷素的影响[J].水土保持学报,2006,20(4):57-61,66.
    [41]于淑芳,杨力,蒋庆功,等.山东石灰性潮土、褐土无机磷的形态、转化和有效性[J].土壤通报,2003,34(5):422-426.
    [42]臧凤艳,卢树昌,刘冬英,等.冬小麦-夏玉米轮作区土壤磷消长规律的研究[J].大津农学院学报,2005,12(1):1-4.
    [43]张健,陈凤,濮励杰,等.区域土地利用变化对土壤磷含量的影响评价研究[J].生态环境,2007,16(3):1018-1023.
    [44]张漱茗,于淑芳.石灰性土壤中无机磷形态和有效性的研究[J].土壤肥料,992,(3):1-4.
    [45]张锡洲,周建新,李廷轩,等.川中丘陵区农田养分变化与可持续发展研究[J].水土保持学报,2004,18(2):84-87,132.
    [46]赵小蓉,林启美.微生物解磷的研究进展[J].土壤肥料,2001,(3):7-11.
    [47]赵吴琼,李菊梅,徐明岗,等.长期不同施肥下灰漠土有机磷组分的变化[J].生态环境,2007,16(2):569-572
    [48]Bowman R A,Core C V.Transformation of organic phosphorus substrates in soils as evaluated by NaHCO_3-extraction[J].Soil Sci,1978a,125:49-54.
    [49]Bowman R A,Cole C V.An exploratory method for fractionation of organic phosphorus from grassland soils[J].Soil Sci,1978b,125:95-101.
    [50] Dean L A. "S .S. S.A.P.", 1937,2:223-2280.
    
    [51] Dean LA. "J.Apric.Sci", 1938,28:234-246.
    
    [52] Fisher R and Thomes R P. "J. Amer. Soc Agron", 1935,27:863-873.
    
    [53] Ghani M O. " India.I.Agric,Sic", 1943,13:29-45.
    
    [54] Hedley M J, Stewart J W B, Chauhan B S. Changes in inorganic and organic soil phosphorus fraction inducedby cultivation practices and by laboratory incubations[J]. Soil Sci Soc Am J,1982,46:970-976.
    [55] Ivanoff D B, Reddy K R, Robinson S. Chemical fractionation organic phosphorus in selected histosols [J].Soil Sci, 1998,163(1):36-45.
    [56] Petersen G W, et al. "S.S. S. A. P", 1966,30:563-565.
    [57] Sharpley AN, Daniel T C, Lemunyon J L. Agricultural phosphorus and eutrophication: a symposium overview [J].J.Environ.Qual.,1998,27:251-257.
    [58] Syers J K, et al. "S.S.S.A.P", 1972,36:20-25.
    [59] Tiessen H, Stewart J W B, Moir J Q. Changes inorganic and inorganic phosphorus composition of two grassland soils and their particle size fractions during 40-90 years of cultivation[J].Soil Sci,1983,34:815-823.
    [60] Turner B L, McKelvie I D, Haygarth P M. Characterisation of water-extractable soil organic phosphorus by phosphatase hydrolysis [J].SoilBiology&Biochemistry, 2002,34:27-35.
    [61] Williams C H. "J.Agric.Sci.", 1950,42:257-262.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700