长期施肥对潮土团聚体中磷及其组分的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷是植物生长发育必需的大量营养元素之一,是植物完成其生活周期必不可少的营养元素,对作物高产及保持品种的优良特性据有明显作用。植物体需要的磷主要从土壤磷库中获得。作为土壤磷库的重要组成部分,土壤有机磷对土壤肥力和植物营养有着重要的影响,其对植物的作用愈来愈受到关注。
     本文以潮土为例探讨磷素存在形态问题,结合土壤的物理形态.团聚体,旨在为磷素在土壤中的存在形态及定位提供理论上的依据和实践方法,为磷肥的合理利用提供科学的理论依据。结果表明:
     1.潮土团聚体的分配情况:潮土中团聚体的组成以0.25 mm~5 mm含量最高,含量在60.72%~77.98%之间;其次是>5 mm,含量在11.90%~25.82%之间;<0.25 mm最少,含量在7.09%~13.68%之间。潮土团聚体的主体为0.25 mm~5 mm团聚体,长期施用有机肥处理的小团聚体有减少的趋势。
     2.潮土有机磷总量变化:增施磷肥能增加有机磷及无机磷的含量,其中有机肥对增加潮土有机磷及无机磷含量的作用最为明显。但1.5MNPK处理的有机肥量比MNPK有机肥量施用量增加50%,而有机磷的含量只比MNPK增加12.9%,这说明当有机肥施用量达到一定程度再去增施对增加潮土有机磷含量效果有限;施肥处理中秸秆与有机肥配合使用能明显增加无机磷的含量,效果要好于单独施用有机肥,施肥处理对无机磷的影响与有机磷大致相同。
     3.潮土不同磷组分的变化:潮土中的有机磷组分里,ML-OP含量最高,所占比重也最大,MR-OP居中,L-OP和HR-OP含量和比重最小。而作为主要形态的ML-OP在各个处理中的含量由低到高分别是CK< NPK< sNPK< MNPK2< MNPK<1.5MNPK;潮土中的无机磷组分里,Ca10-P含量最高,所占比重也最大,然后依次是O-P> Ca8-P、Al-P、Fe-P和Ca2-P,而作为主要形态的Ca10-P,含量稳定,几种处理相差不大,在潮土中稳定存在。
     4.潮土团聚体中有机磷变化:三种不同的团聚体,从大到小,相比对照,各个施肥处理的有机磷含量都呈现增加的趋势,不同处理团聚体中的有机磷增加幅度大致相同,尤其是0.25 mm~5 mm和<0.25mm增幅几乎相同,这可能是由于这两种团聚体联系较为紧密有关。在不同粒径下,增加幅度最大的都是>5 mm级的1.5MNPK,增幅为88.36%,这说明有机肥增施对增加潮土大颗粒团聚体中有机磷的效果最为显著。
     相同处理,不同粒级的有机磷组分都表现出和总有机磷大致相同的趋势。从大到小,不同组分的有机磷都有不同程度的增加。全磷则不同于有机磷,三个级别的团聚体全磷含量几乎一致,这说明全磷的含量在团聚体中的分配较为稳定,不受团聚体颗粒大小的影响,有效磷在不同团聚体中的变化趋势与有机磷也大致相同,这可能是因为有机磷特别是L-OP和ML-OP是有效磷的一种主要成分,有效磷受有机磷影响较为明显。
     5.潮土团聚体中无机磷及有效磷变化:各处理中,有效磷含量从高到底的次序是1.5MNPK, MNPK, MNPK2, sNPK, NPK、CK,施肥处理的有效磷含量都明显高于对照处理,无机有机肥配合施用可显著提高土壤有效磷的含量。通过相关性和通径分析可以得出:有效磷的磷源主要是中等活性有机磷,中等稳定性有机磷和活性有机磷。作物对几种无机磷的利用能力的顺序为Ca2-P>Ca8-P>Al-P>Fe-P>O-P≈2a10P,植物对潮土无机磷的利用主要是Ca2-P、Ca8-P、Al-P、Fe-P四种,而这四种有效性较高的无机磷组分占总无机磷组分的比例22.3%~49.9%。因此潮土中的无机磷组分一半以上都是极难被植物利用的无效态。在长期施肥条件下,就无机磷而言,最重要的有效磷提供组分是Al-P,其次是Ca8-P。
     6.有机磷、无机磷及全磷在潮土不同团聚体中的分配:潮土团聚体的主体为0.25mm~5mm团聚体,在相同处理的情况下,与对照相比,所有不同粒径团聚体的有机磷、无机磷总量都有不同程度的增加,其中>5mm级的有机磷总量增幅最大,0.25mm~5mm级的无机磷总量增幅最大;不同粒级的有机磷组分及有效磷与总有机磷的趋势大致相同;而全磷的含量较稳定,不受团聚体大小的影响;潮土中无机磷在团聚体中的分配主要由团聚体本身在潮土中的含量决定,有机磷在同团聚体的分配也呈现出类似的现象。
Phosphorus is one essential macroelement to plant growth and development, and is the absolutely necessarity nutritional element of plant in the life cycle,, o but also has significant effect on keeping high productivity of crop and the good characteristic of crop cultivars.The plant P requirement is mainly from the soil.As an important component of soil phosphorus pool,soil organic P has important effect on the soil fertility and plant nutrition,thus its role on plant has been paid more and more attention to.
     In this study, a Fluvo-aquic soil was taken to evaluate phosphorus forms in combination with soil aggregates in order to provide theoretical basis and practical method for the forms and location of phosphate, and to provide scientific basis for rational use of phosphate. The results showed that:
     1. Composition of soil aggregates:The highest content in soil aggregates composition is the aggregates of 0.25 mm-5 mm, ranging from 60.72%-77.98%of the gross weight, followed by the aggregates of>5 mm, ranging from 11.90%-25.82%, and the lowest content for<0.25 mm, ranging from 7.09%~13.68%.The principal part is 0.25 mm-5 mm,long term fertilizer would decrease the content of small size of aggregates in Fluvo-aquic soil.
     2. Changes of soil organic phosphorus(OP):The increased application of P can increase the organic phosphorus and inorganic phosphorus content of the soil, and the organic manure was the most effective way to increase organic phosphorus content fluvo-aquic in soil. Compared to MNPK,1.5MNPK contain 50%more phosphorus, while only 12.9%more organic phosphorus content, it indicates that the continuous application of organic manure up to a certain level have limited effect to increase Fluvo-aquic soil organic phosphorus. Organic manure used in conjunction with straw can significantly increased levels of inorganic phosphorus, and has better effects than the application of alone organic fertilizer.
     3. Changes of soil inorganic phosphorus(iP):In Fluvo-acquic soil, among the fractions of organic phosphorus the ML-OP content is the highest with largest proportion, followed by MR-OP. While L-OP and HR-OP have the smallest content and proportion. As ML-OP is the main fraction, its content in different treatments varied from low to high, so ranked as CK     4. Changes of organic phosphorus(OP)and its fractions in Fluvo-aquic soil aggregates with different sizes:Organic phosphorus content shown the tendency to increase with almost same degree in soil aggregates from big to small particles, in all the treatments compared to CK. Especially in 0.25-5 mm and<0.25 mm particles, this may be due there close linkage. In different sizes, the biggest increase occurred in the aggregate of >5mm of 1.5MNPK, that is 88.36%, indicating that organic manure increase in macro aggregate organic phosphorus is most significant.
     In the same treatment, different fractions of organic phosphorus and total organic phosphorus variation have shown similar trends. From big to small particles, different components have different degrees of organic phosphorus increase. The total phosphorus of three aggregates contents was found almost identical, indicating that the distribution of total phosphorus in the aggregates is more stable and free from the impact of aggregate particle size, making it different from organic phosphorus. The variation tendency of available P in different aggregates is similar, this can be because L-OP and ML-OP are two major component of available phosphorus, therefore L-OP and ML-OP influence the available phosphorus more noticeable.
     5. Changes of available phosphorus(AP),inorganic phosphorus(iP)and its fractions in Fluvo-aquic soil aggregates with different sizes:In each treatment, the available phosphorus content order from high to low in succession was 1.5MNPK, MNPK, MNPK2, sNPK, NPK, CK. The available phosphorus content of fertilization treatment was significantly higher than CK. Inorganic and organic manure combination can significantly increase soil available phosphorus content. And analyzing the relativity and path can indicate that the major source of available phosphorus mainly is L-OP、ML-OP and MR-OP, and the ability of plants to use inorganic phosphorus is in order of Ca2-P> Ca8-P> Al-P> Fe-P> OP≈Ca10P,
     Plants mainly use Ca2-P, Ca8-P, Al-P, Fe-P, that are four inorganic fractions in fluvo-aquic soil, these four higher effective fractions are only 22.3%-49.9%of the total phosphorus. Therefore more than half of the inorganic phosphorus is almost ineffective in fluvo-aquic soil. In the long-term fertilization of inorganic phosphorus, the most important component to provide available P is Al-P, followed by Ca8-P.
     6. Distribution of total phosphorus(TP), organic phosphorus(OP) and inorganic phosphorus(iP) in different Loess soil aggregates:The main part of fluvo-aquic soil aggregate is 0.25-5mm, in the case of the same treatment, compared to CK, the organic an inorganic phosphorus content of all the aggregate have different extents of increase, among which>5mm have the biggest organic phosphorus increase, and the biggest inorganic phosphorus increase is in 0.25-5mm aggregates. Different fractions of organic phosphorus and available phosphorus have broadly similar trend with total organic phosphorus, and total phosphorus was rather stable, and was not subject to the influence of aggregate size. The distribution of inorganic phosphors in fluvo-aquic soil aggregates mainly decided by the aggregates content, and distribution of organic phosphorus showed a similar phenomenon.
引文
[1]张福锁,元石.土壤与植物营养研究新动态(第三卷).中国农业出版社.1995,第一版:170-184
    [2]王敬国.植物营养的土壤化学.北京农业大学出版社.1995,第一版:92-103
    [3]Merw I A.Orchard Groundcover Management Impacts on Apple Tree Growth and Yield,and Nutrient Availability and Uptake[J].Amer.Soc. Hort. Sci.1994,119:209-215
    [4]司友斌,王慎强,陈怀满.农田氮、磷流失与水体富营养化[J].土壤,2000,(4):188-193
    [5]杨珏,阮晓红.土壤磷素循环及其对土壤磷流失的影响[J].土壤与环境,2001,10(3):256-258
    [6]Mendoza R E,Canduci A,Aprile C.Phosphorus release from fertilizer effects on phosphorus transformations in a chernozemic soil[J].Fertilizer Research,1990,23:165-172
    [7]鲁如坤.土壤磷素化学研究进展[J].土壤学进展,1990,(6):1-5
    [8]蒋柏藩.土壤磷的化学行为与有效磷的测试[J].土壤,1992,22(4):191-89
    [9]陆欣.土壤肥料学[M].北京:中国农业大学出版社,2001
    [10]廖菁菁.农田土壤磷素的时空变异及形态转化特征研究[D].南京:南京农业大学,2007
    [11]沈善敏.国外的长期肥料试验(1)(2)(3)[J],土壤通报,1984,15(2):85-91,134-138,184-185
    [12]沈善敏.长期土壤肥力试验的科学价值[J].植物营养与肥料学报,1995,1(1):1-9
    [13]田秀英.国内外的长期肥料试验研究[J].渝西学院学报,2002,3(15):14-16
    [14]林葆,林继雄,李家康主编.长期施肥的作物产量和土壤肥力变化(全国化肥试验网论文汇编).中国农业科学技术出版:1996
    [15]Six,J.,Ellliott,K.,Combrink,E.K.5011structureand5011organicmatter:1.Distribution of Aggregate associated carbon.Soil Research Society of America Journal,2(X)0,64:681-689
    [16]Elliott E T.Aggregate structure and carbon,nitrogen,and phosphorus in native and cultivated Soil Sci Soc Am J.1986,50:627-633
    [17]Harley J L,Smith S E.Mycorrhizal Symbiosis[M].London:Academic Press,1983
    [18]Elliott E T.Coleman D C.Let the soil for us[J].Ecological Bulletms,1988,39:23-32
    [19]Christensen B T.Straw incorporation and soil organic matter in macro—aggregations and particle size separates[J].Journal of Soil Science,1986,37:125-135
    [20]Haynes R J,Be&Fe M H.Influence of six crop species on aggregate stability and some labile organic ma tter fractions[J].Soil Biology&Biochemistry,1997,29(11-12):1647-1653
    [21]Fisdall J M.Possible role of soil microorganisrrks in aggregation insods[J].Plant Soil,1994,117:145-153
    [22]Six J,Paustian K,Elliott ET,et al.Soil structure and soil organic matter;I. Distribution of aggregate size classes and aggregate associated carbon[J].Soil Science Society of America Journal,2000,64:681-689
    [23]蒋柏藩.土壤磷的化学行为愈有效磷的侧定[J].土壤,22(4):181-183
    [24]黄昌勇主编.土壤学[M].北京:中国农业出版社,2000
    [25]Chang S C.M L Jackson.Soil phosphorus fractions in some representive soil.[J].Soil Sci,1958,9:109-119
    [26]蒋柏藩,顾益初.石灰性土壤无机磷分级体系的研究[J].中国农业科学,1989,22(3):58-66
    [27]顾益初,蒋柏藩.石灰性土壤无机磷分级的测定方法[J].土壤,1990,22(2):101-110
    [28]张淑茗,于淑芳.石灰性土壤无机磷形态和有效性的研究[J].土壤肥料,1992,(3):1-4
    [29]林治安,谢承陶,张振山等.早地农田石灰性土壤磷素形态,转化与施肥[J].土壤肥料,1996(6):26-28
    [30]吕家珑,刘文革,王旭东等.长期施肥对土壤无机磷形态组成的影响[J].西北农业大学学报,1995,23(3):51-54
    [31]周广业,阎龙翔.长期施用不同肥料对土壤磷素形态转化的影响[J].土壤学报,1993,30(4):443-446
    [32]史瑞和.江苏省几种土壤磷素状况和磷肥肥效仁[J].土壤学报,1962,10:374-379
    [33]沈仁芳,蒋柏藩.石灰性土壤无机磷的形态分布极其有效性[J].土壤通报,1992,29(1):80-86
    [34]顾益初,蒋柏藩,鲁如坤.风化对土壤粒级中磷素形态转化及其有效性的影响[J].土壤学报,1984,21(2):134-143
    [35]曹一平,崔健宇,石灰性土壤中油菜根际磷的化学动态及生物有效性[J].植物营养与肥料学报.1994,1(试刊):49-54
    [36]刘文革.磷肥在石灰性土壤中的形态转化及施用时间对其肥效的影响[J].土壤通报,1993,24(4):154-157
    [37]Hayes J E,Richardson A E,Simpson RJ.2000.Components of organic phosphorus in soil extracts that are hydrolyzed by phytase and acid phosphates. Biol Fert Soils,32:279-286
    [38]Brookes PC,Powlson DS,Jenkinson DS.1982.Measurement of microbial biomass phosphorus in soil. Soil Biol Biochem,14:319-329
    [39]鲁如坤主编.土壤和植物营养中的施肥原则[M].北京:化学工业出版社,1998
    [40]金继运,刘荣乐等.土壤肥力与肥料[M].北京:中国农业科学技术出版社,1998
    [41]贺铁.土壤有机磷研究新进展[J].土壤通报,1986,17(3):141-143
    [42]Tate K R.The Biological trarmation of phosphorus in soil [J]. Plant and Soil,1984,125(1):49-
    [43]Bowman A, Cole C V. An exploratory method for fraction of organic phosphorus grassland [J]. SoilSci.1978,125(1):49-54
    [44]Bowman A, Cole C V. An exploratory method for fraction of organic phosphorus grassland [J]. Soil Sci.,1978,125(2):95-101
    [45]Hedley MJ.Stewart JWB,Chauhan BS.1982.Changes in inorganic and organic phosphorus fractions induced by cultivation practices or by laboratory incubations. Soil Sci Soc Am [J],46:970-976
    [46]TateK B.The biological transformation of phosphorus in soil[J].Plant and Soil,1984,76:245-256
    [47]Dalal R C.Soil organic phosphorus[J].Advan.in Agron,1977,29:83-119
    [48]Tiessen H,Stwart J W B,Bettany J R.Cultivation effects on the amounts and concentration of carbon,nitrogen and phosphorus in grassland soil[J].Agron.J.1982,74:831-835
    [49]Lai L,Hao M-D,Peng L-F.2003.Developments of researches on soil phosphorus.Res Soil Water Cons,10(1):65-67
    [50]Tate K R.The biological transformation of phosphorus in soil[J].Plant and soil,1984,76:245-25
    [51]曹翠玉,张亚丽,沈其荣等.有机肥料对黄潮土有效磷库的影响[J].土壤,1998,30(5):235-238
    [52]Stevenson F J.Cycle of soil:Carbon,nitrogen,phosphorus,sulfer,micronutrients M.New York: Dekker Press,1986,270-271
    [53]家珑,张一平,陶国树等.23年肥料定位试验0~100cm土壤剖面中各形态磷之间的关系[J].水土保持学报,2003,17(3):48-50
    [54]Bowman R A,Cole C V.Transformation of organic phosphorus substrates in soils as evaluated by NaHCO3 extraction [J].Soil Sci,1978a,125:49-54.
    [55]Bowman R A,and Cole C V.An exploratory method for fractionation of organic phosphorus from grassland soils[J].Soil Sci,1978b,125:95-101.
    [56]鲍士旦.土壤农化分析[M].北京:中国农业出版,2000.
    [57]中国科学院南京土壤研究所编.土壤理化分析[M].上海:上海科学技术出版社,1978.
    [58]袁志发,周静芋.试验设计与分析[M].北京:高等教育出版,2000.
    [59]朱祖详主编.土壤学[M].北京:农业出版社,1983.
    [60]牛灵安,秦耀生等.曲周试区秸秆还田配施氮磷肥的效应研究,土壤肥料1998(6)
    [61]杨剑虹等.土壤农化分析与环境监测[M].重庆:中国大地出版,2008
    [61]黄绍敏1,宝德俊等。长期施肥对潮土土壤磷素利用与积累的影响,中国农业科学2006,39(1):102-108
    [62]李淑敏,李隆,张福锁。玉米/鹰嘴豆间作对有机磷利用差异的研究,中国农业科技导报2004第6卷(3)
    [63]罗安程,T.B.Subedi,有机肥对水稻根际土壤中微生物和酶活性的影响,植物营养与肥料学报1999,5(4):321~327
    [64]李和生,李昌纬.施肥对磷素在红油土中形态及分布的影响[J].西北农业学报,1995,4(3
    [65]王旭东,张一平,李祖荫.有机磷在塿土中组成变异研究[J].土壤肥料,1997,5:16-18.
    [66]谢林花,吕家珑,张一平,等.长期施肥对石灰性土壤磷素肥力的影响[J].应用生态学报,2004,15(5):790-794.
    [67]Lai L,Hao M-D,Peng L-F.2003.Developments of researches on soil phosphorus.Res Soil Wate Cons,10(1):65-67(in Chinese).
    [68]刘小虎,邹德乙,刘新华.长期轮作施肥对棕壤有机磷组分及其动态变化的影响[J].土壤通报,1999,30(4):178-180.
    [69]熊毅,李庆逵.中国土壤(第二版)[M].北京:科学出版社,1987,155
    [70]富东英;张清;侯中田。松嫩平原黑土区施肥与土壤有效磷累积关系的研究。天津农学院学报,Journal of Tianjin Agricultural University,2006年02期
    [71]刘建玲;廖文华等,磷肥和有机肥的产量效应与土壤积累磷的环境风险评价中国农业科学2007,40(5):959-965
    [72]徐阳春;沈其荣;冉炜;长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响土壤报第39卷第1期
    [73]谢林花,吕家珑,张一平,等.长期施肥对石灰性土壤磷素肥力的影响[J].应用生态学报,2004,15(5):790-794
    [74](李淑敏,李隆,张福锁。玉米/鹰嘴豆间作对有机磷利用差异的研究,中国农业科技导报2004第6卷(3)
    [75].蒋柏藩,顾益初.石灰性土壤无机磷分级体系的研究[J].中国农业科学,1989,22(3):58~66.
    [76]曹一平,崔健宇,石灰性土壤中油菜根际磷的化学动态及生物有效性[J].植物营养与肥料学报.1994,1(试刊):49~54
    [77]陆文龙,张福锁,曹一平.磷土壤化学行为研究进展[J].天津农业科学,1998,4(4):1~7
    [78]吕家珑,刘文革,王旭东等.长期施肥对土壤无机磷形态组成的影响[J].西北农林大学学报,2003.5(4):21~24
    [79]李中阳.我国典型土壤长期定位施肥下土壤无机磷的变化规律研究.西北农林大学硕士论文,2007.5:37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700