通辽市污灌区土壤磷素的空间分布特征及迁移转化规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国总体水资源不足,导致农业缺水日趋严重,尤其是北方干旱缺水地区,农业上不得不用大量的污水灌溉农田。污水中含有大量N、P、K等营养元素,其中,磷是庄稼生长必需的重要营养元素之一。
     本研究针对农田土壤中的磷素,采取污灌农田土壤磷素调查分析与室内土柱试验模拟相结合进行了以下两方面的研究:一方面对污水渠两侧农田土壤磷素及常规理化性质进行调查分析,研究污水灌溉农田土壤磷素的空间分布及形态组成;另一方面进行室内土柱试验,分析研究不同浓度含磷污水淋溶条件下,磷在土壤中的变化规律。结论如下:
     1、大规模采样研究发现,土壤全磷含量大多集中在300-700mg/kg之间,均值为451.42mg/kg,整体来看属于缺乏水平,其中有两个全磷含量较高的区域,出现在孔家乡和钱家乡附近,这与当地的土质成分以及多年采用污水灌溉等因素有关。
     2、有多年污灌历史的剖面相比常年采用地下水灌溉的剖面,土层全磷变化趋势相似,只是污灌区域剖面全磷含量峰值较清灌区域具有一定距离的下移,但峰值大小没有明显差距,且峰值较低,均在500mg/kg以下。结合当地长期施肥以及多年污水灌溉的历史可以推断,污水灌溉对当地土壤磷素的积累和迁移影响并不显著。
     3、孔家乡土壤磷素的空间变异特征研究表明,孔家乡全磷、有效磷、NaOH-Pi和Ca-P具有相似的空间分布特征,整体来看,北部污灌区域含量较高,南部清灌区域较低,特别是有效磷含量,污灌区域比清灌区域高66.49%。
     4、室内土柱试验研究表明,土壤具有较好的固磷作用,含磷污水进入土壤,可以通过吸附和沉淀反应截留在土壤中。试验灌以三年灌溉水量24L,地下60cm以上磷素含量变化显著,60cm以下变化不大,说明磷素随水分向下迁移的速率较小,这与磷在土壤中主要以吸附态和沉淀态存在有关。有效磷的迁移累积速率与淋溶液的浓度有关,浓度越大,速率越快。以当地污水处理厂出水灌溉农田,对土壤磷素的迁移转化影响甚微。如果提高淋溶液的磷浓度,则可以有效提高表层土壤中的有效磷含量,因此,从污水灌溉角度出发,用于农田灌溉的污水可以适当放宽对磷的要求。
The lack of overall water resources of our country leads to increasingly serious water shortage; especially in arid areas in northern China, Agriculture had to use a large number of sewage irrigating. Sewage contains large amounts of N, P, K and other nutrients, such as phosphorus is necessary for crops to grow as one of the important nutrients.
     This issue aims at researching phosphorus in the agricultural soil, combining soil phosphorus to wastewater irrigation Investigation and simulation of laboratory soil column experiment getting the following two studies:1、investigate on both sides of the sewers from agricultural soils and the conventional physical and chemical properties and analyze of wastewater irrigation and the spatial distribution of soil phosphorus in the form; 2、do the laboratory soil column experiment; analyze the phosphorus in the soil variation at different concentrations of phosphorus-containing waste water leaching conditions.
     That is the conclusion:
     1、Most of the soil total phosphorus concentration among 300~700mg/kg and the Average value is 451.42mg/kg, as a whole belong to low standards.There have two areas with higher phosphorus content, and appear near the kongjiaxiang and qianjiaxiang, which related to the local soil composition and irrigation with sewage so many years.
     2、With many years of history of sewage irrigation the 7th hole and the 8th hole compared to the 9th hole with year-round using of groundwater for irrigation, soil phosphorus has the similar changes, only phosphorus content of the 7th hole and the 8th hole have a certain distance down than the 9th hole, but no significant difference between the peak size, and the peak was both less than 500mg/kg. With local long-term fertilization and irrigation water for many years of history can be inferred, sewage irrigation on local soil phosphorus accumulation and migration is not significant.
     3、Spatial variability of soil phosphorus studies of kongjiaxiang have shown that in kongjiaxiang total phosphorus, effective phosphorus, NaOH-Pi and Ca-P have similar spatial distributions, all in all, higher in northern and southern lower. Especially effective phosphorus, sewage irrigation area is 66.49% higher than groundwater irrigated area.
     4、Soil column experiments showed that the soil has good stabilizing phosphorus function, when phosphorus-containing waste water into the soil, adsorption and precipitation reactions can trapped phosphorus in the soil. If we irrigate three-year irrigation water volume (24L), the phosphorus content of more than 60cm underground changed significantly, above 60cm little changed, which indicated that phosphorus with water down the rate of migration is lower, this is mainly related to phosphorus as adsorbed state and precipitated state exists in the soil and sediment. Cumulative rate of migration of phosphorus changes along with the concentration of leaching solution, the greater the concentration, the faster rate. Using local sewage treatment plant effluent irrigating soils have little effect on migration and transformation of soil phosphorus. If you increase the concentration of phosphorus leaching solution, you can effectively improve the surface soil effective phosphorus content; therefore, just considering from the perspective of phosphorus, agricultural irrigation water can be appropriately broadened the requirements of phosphorus.
引文
[1]何小凤,谢英荷.土壤磷素形态及分级方法研究概述[J].科学之友,2007,148-149.
    [2]沈善敏.论我国磷肥的生产与应用[J].土壤通报,1985,3:97-103.
    [3]李庆逵.磷肥的现代化研究[J].土壤通报,1986,2:1-7.
    [4]袁可能.植物营养元素的土壤化学[M].北京:科学出版社,1983,110-163.
    [5]何松多.水稻土的磷库分级以及对P的吸附-解析特性研究[D].浙江大学,2008.
    [6]赵吴琼.长期施肥土壤有机磷形态变化及有效性研究[D].东北农业大学,2007.
    [7]Hayes JE,Riehardson AE,SimPson RJ. Components of organic phosphorus in soil extracts that are hydrolyzed by Phytase and acid phosphates[J].Biol Fert Soils.2000,32:279-286.
    [8]沈仁芳.潮土无机磷的形态及其分布特点[J].河南农业科学,1992,12:24-25.
    [9]宋付朋.长期施磷石灰性土壤无机磷形态特征及其有效性研究[D].山东农业大学,2006.
    [10]Brookes PC,Powlson DS,Jenkinson DS. Measurement of microbial biomass phosphorus in soil[J].soil Biol Biochem.1982,14:319-329.
    [11]Tisdale S L,Nelson W L,Beaton J D.1985,Trans.Jin J-Y,Liu R-L,et al.1998,Soil Fertility and Fertilizer.Beijing:China Agricultural Science and Technology.
    [12]鲁如坤.土壤-植物营养学原理与施肥[M].北京:化学工业出版社,1998,428-436.
    [13]慕韩锋.黄土旱塬长期定位施肥对土壤磷素分级、空间分布及有效性的影响[D].西北大学,2008.
    [14]蒋柏藩,顾益初.石灰性土壤无机磷分级体系的研究[J].中国农业科学,1989,22(3):58-61.
    [15]R C Dalal,Soil Organic Phosphorus[J].Advances in A gronomy.1977,29:83-11.
    [16]向万胜,黄敏,李学垣.土壤磷素的化学组分及其植物有效性[J].植物营养与肥料学报,2004,10(6):663-670.
    [17]Bowman R A,Cole CA,An exoratory method for fraetionation of organic Phosphorus from grassland soil[J].soil Sci.,1978,125:95-101.
    [18]Bowman R.A.,Cole C.V.Transformation of organic phosphorus substrates in soils as evaluated by NaHCO3-extraction[J].Soil Sci.,1978,125:49-54.
    [19]王旭东,等.有机磷在塿土中组成变异的研究[J].土壤肥料,1997,(5):16-18.
    [20]任治.土壤有机磷分组方法探讨[J].吉林农业科学,1989,(3):69-76.
    [2l]莫淑勋.有机肥中磷及其与土壤磷素肥力的关系.土壤学进展,1992,20(3):1-7.
    [22]刘小虎,等.长期轮作施肥对棕壤有机磷组分及其动态变化的影响[J].土壤通报,1999,30(4):178-180.
    [23]邵煌庭,甄清香.灌漠土磷素形态及其有效性的研究[J].中国农业科学,1991,51-57.
    [24]王永和,曹翠玉,史瑞和.石灰性土壤有机-无机肥配施对土壤供磷的影响[J].南京农业大学
    学报,1993,16(4):36-42.
    [25]冯固,杨茂秋,白灯莎.用32P示踪研究石灰性土壤中磷素的形态及有效性的变化[J].土壤学报,1996,33(3):301-306.
    [26]陈欣,等.红壤坡地磷素流失规律及其影响因素[J].水土保持学报,1999,5(3):38-63.
    [27]鲁如坤,时正元.退化红壤肥力障碍特征及重建措施Ⅲ典型地区红壤磷素积累及其环境意义.土壤,2001,(5):227-231,238.
    [28]黄昌勇.土壤学[M],中国农业出版社,2000,150-180.
    [29]于天仁,等.可变电荷土壤的电化学[M].北京:科学出版社,1996,9-31.
    [30]鲁如坤.土壤磷素化学研究进展[J].土壤学进展,1990,18(16):1-5.
    [31]王光火,等.石灰性土壤与磷酸盐的反应及吸持态磷的同位素交换性[J],1993,11:374-379.
    [32]Cole,C.V.etal. Soil Sci.Soc.Am.Proc.,1953,17:352-356.
    [33]Griffin R.A.et al,The Interaction of Phosphate with Calcite[J],Soil Sci.Amer. Proc,1973,Vol. 37:847-850.
    [34]Hinrich L.Bohn et al,Soil chemistry[M],John Wiley&sons,1985.
    [35]Gary M.Pierzynski et al,Soils and Environmental Quality[M],Lewis Publishers,1994.
    [36]M.亚历山大,土壤微生物学导论[M],科学出版社,1983.
    [37]张宝贵,等.土壤生物在土壤磷有效化中的作用[J].土壤学报,1998,2:104-109
    [38]Fengmao Guo,Russell S.Y.Partioning soil phosphorus into three discrete pools of differing availability[J].Soil Science,1998,163(10):822-831.
    [39]Sample E.C.,Soper R.J.,Raci GJ.Reactions of phosphate fertilizers in soils in the role of phosphorus in Agricultures. Am.Sox.Agron. Madison.Wis,1980,20-128.
    [40]李祖荫.关于石灰性土壤固磷强度与固磷基质问题[J].土壤通报,1992,23(4):190-192.
    [41]吕家珑,李祖荫.石灰性土壤固磷基质的探讨[J].土壤通报,1991,22(5):204-206.
    [42]蒋和,等.施肥十年后的水稻土微生物学特性和酶活性研究[J].土壤通报,1990,21(6):265-268.
    [43]袁玲,等.长期施肥对土壤酶活性和氮磷养分的影响[J].植物营养与肥料学报,1997,3(4):300-306.
    [44]Dala R.C.Soil organic phosphorus.Adv.Agron.,1997,29:83-119.
    [45]Rodriguez D.Goudrian J.Qyarzabal M.phosphorus nutrition and water stress tolerance in wheat plant[J].Journal of Plant Nutrition,1996,19(1):29-39.
    [46]Jawson M.D.,Franzluebbers A.J.Galusha D.K..Soil fumigation within monoculture and rotations[J].Response of corn and mycorrhizae. Agron.J.,1993,85:1740-1180.
    [47]Magid J.Vegetation effects on phosphorus fractions in set-aside soils[J].Plant and Soil,1993,149:111-119.
    [48]Oberson A.,Fardeau J.C.Soil phosphorus dynamics in cropping systems managed according to conventional and biological agricultural methods[J].Biol.Fertil.Soils,1993,16:111-117.
    [49]Masasha Uwasawa,Prapit Sangtong,Wisit Cholitkl.Behavior of phosphorus in paddy soils of Thailand. II Fate of phosphorus during rice cultivation in some representative soils.Soil Sci.Plant Nutr.,1988,34(2):183-194.
    [50]廖菁菁.农田土壤磷素的时空变异及形态转化特征研究[D].南京农业大学,2007.
    [51]蒋柏藩,顾益初.石灰性土壤无机磷分级体系的研究[J],中国农业科学,1989,22(3):58-661.
    [52]蒋柏藩,顾益初.石灰性土壤分级的测定方法,土壤,1990,22(2):101-102.
    [53]安卫红.石灰性土壤无机磷分级方法的比较选择[J].吉林农业科学,1990,(2):83-85.
    [54]李絮花.石灰性土壤无机磷分级方法选择的研究[J].山东农业大学学报,1996,27(2):185-190.
    [55]熊恒多,李世俊,范业宽.酸性水稻土有机磷分组法的探讨[J].土壤学报,1993,30(4):390-399.
    [56]范业宽,胡晓玲,等.Bowman-Cole提取石灰性土壤稳定性与中度活性有机磷方法的改进[J].华中农业大学学报,1997,16:345-348.
    [57]Ivanoff DB,Reddy KR,Robinson S,Chemical fractionation organic phosphorus in selected histosols[J],Soil Sci,1998,163(1):36-45.
    [58]Hedley M.J.,Stewart J.W.B.,Chauhan B.S..Changes in inorganic and organic soil phosphorus fraction induced by cultivation practices and by laboratory incubations. Soil Sci.Soc.Am.J.,1982,46:970-976.
    [59]Guppy CN,Menzies NW,et al. A simplified sequential phosophorus fractionation method.Commun Soil Sci Plant Anal,2000,31:1981-1991.
    [60]杨颖.通辽市科尔沁区农业节水潜力分析——农业水资源优化配置利用[D].内蒙古农业大学.2008.
    [61]南京农业大学.土壤农化分折[M].北京:中国农业出版杜.1990:80-83.
    [62]刘凤枝,刘潇威.土壤和固体废弃物监测分析技术[M].化学工业出版社,2006,348-349.
    [63]Hedley,M.J., J.W.B.Stewart, and B.S.Chauhan. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci.Soc.Am.J.1982,46:970-976.
    [64]Yaobing Sui, Michael L. Thompson, and Chao Shang, Fractionation of Phosphorus in a Mollisol Amended with Biosolids Soil Sci. Soc. Am. J.1999,63:1174-1180.
    [65]Greenberg, A.E., et al. (ed.) Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC.1992.
    [66]Tiessen, H., and J.O. Moir. Characterization of available P by sequential extraction, p.75-86. In M.R. Carter (ed.) Soil sampling and methods of analysis. Lewis Publishers, Boca Raton, FL.
    1993.
    [67]于群英,等.安徽省土壤无机磷组分状况及施肥对土壤磷素的影响[J].水土保持学报,2006,20(4):57-61.
    [68]李北罡,等.内蒙古乌兰布和沙漠样中磷形态分析及生物可获磷研究[J].生态与农村环境学报,2008,24(3):86-88,93.
    [69]穆晓慧,李世清,党蕊娟.黄土高原石灰性土壤不同形态磷组分分布特征[J].中国生态农业学报,2008,16(6):1341-1347
    [70]Walbridge M R. Phosphorus biogeochemistry[J]. Ecology,2000,(81):1474-1475.
    [71]谭鑫,张宏.我国高寒草甸土壤磷素研究进展[J].草业与畜牧,2009,3:1-5.
    [72]贾宇平,苏志珠.段建南黄土高原沟壑区小流域土壤有机碳空间变异[J].水土保持学报,2004,18(2):31-34.
    [73]Robertson G P, et al Soil resources,microbial activity and primary production across an agricultural ecosystem [J].Ecological Applications,1997,7:158-171.
    [74]胡克林,等.中国农业大学上庄实验站土壤理化性质的空间分布特征[J].中国农业大学学报,2006,11(6):27-33.
    [75]黄智刚,等.红壤蔗区土壤有效态氮、磷、钾的空间变异[J].中国糖料,2006,1:26-29.
    [76]王绍强,等.中国土壤土层厚度的空间变异性特征[J].地理研究,2001,20(2):161-170.
    [77]刘建玲,等.磷肥和有机肥的产量效应与土壤积累磷的环境风险评价[J].中国农业科学,2007,40(5):959-965.
    [78]Sharpley A N, McDowell R W, Kleinman P J A. Amount, forms and solubility of phosphorus in soils receiving manure[J]. Soil Science Society of America Journal,2004,68:2048-2057.
    [79]高洪阁,高宗军,李白英,陈丽惠.污灌区与非污灌区的地下水主要水质指标变化趋势及对比研究[J].环境污染治理技术与设备,2002,3(6):25-28.
    [80]王贵玲,蔺文静.污水灌溉对土嚷的污染及其整治[J].农业环境科学学报,2003,22(2):163-16.
    [81]杨萧.污水灌溉土壤养分迁移转化规律的研究[D].新疆大学,2006.
    [82]尹逊霄,等.土壤中磷素的有效性及其循环转化机制研究[J].首都师范大学学报(自然科学版),2005,26(3):95-101.
    [83]Aaron J. Miller,Edward A. GSchuur,Oliver A. Chadwick. control of phosphorus pools in Hawaiian montane forest soils[J]. Geoderma,2001,102:219-237.
    [84]王彩绒,等.太湖典型地区蔬菜地土壤磷素淋失风险[J].环境科学学报,2005,25(1):76-80.
    [85]刘文辉.污水土地处理关键因子的研究[D].西安科技大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700