酸性气体(H_2S,CO_2)的脱除及其气液传质特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
H_2S和CO_2是最常见的两种酸性气体,在天然气、炼厂气和合成气等工艺混合气净化过程中,以及工业排放尾气中,H_2S是必须去除的气体,无论是工艺气流再加工后续工段的要求,还是尾气排放环保标准的要求,H_2S的含量都控制十分严格;CO_2是温室气体的主要对象,回收和减少工业尾气中的CO_2排放是缓解“温室效应”有效手段之一。有机醇胺吸收剂脱除酸性气体是目前最有效的方法之一。本工作以气液传质理论为基础,围绕酸性气体(H_2S和CO_2)的脱除,开发高性能复合溶剂为主线,针对不同的混合气对象和性质,采用填料柱和膜接触器为吸收反应器,研究H_2S和CO_2酸性气体传质过程和特性,重点研究:1) 空间位阻胺复合溶液选择性吸收H_2S;2) MDEA基复合溶液和氨基酸基复合溶液的开发,复合溶液在膜接触器中吸收CO_2过程中对传质的增强作用和对疏水性聚丙烯膜结构形态的影响,通过数学模型对传质增强作用和形态影响进行表征。
     复合溶液的高选择性可达到节能降耗和获得高纯度气体产品的目的,这在能源紧缺和消耗巨大的今天具有特别重要的意义。研究工作分别采用静态评价装置和动态评价装置,以有机醇胺与酸性气体H_2S和CO_2反应机理为基础,研究添加空间位阻胺的复合溶剂MDEA-TBEE选择性吸收H_2S的性能。在静态装置上,评价复合溶剂MDEA-TBEE的脱除率和选择性性能;在动态装置上,进一步考察各种因素对复合溶剂脱除率和选择性的影响,并与单一溶剂MDEA进行比较;同时,测定总体积传质系数K_Gα值,基于双膜理论,提出一个近似的传质模型计算总体积传质系数K_Gα。结果表明:空间位阻胺是一类具有高选择性的高性能酸性气体吸收剂,在现有的MDEA装置中添加少量位阻胺TBEE能显著地提高溶剂吸收酸性气体的性能,达到节能降耗和提高气体产品纯度的目的;传质模型的计算结果与实验结果符合较好,气速增大,总体积传质系数K_Gα增大;气相H_2S和CO_2浓度增大,总体积传质系数K_Gα减小,在较高的气相CO_2浓度下,模型值与实验值偏差增大,说明在较高的CO_2浓度下,H_2S和CO_2之间的交互作用不能忽视。
     开发高效活化剂是酸性气体吸收领域重要的研究方向之一,研究工作采用一乙醇胺(MEA)为原料,氢气为反应氛围,低压下有机气相通过管式催化反应器合成活化剂哌嗪,考察合成催化剂组成和操作参数对合成反应的影响;将合成产物应用于膜吸收装置和再生装置上考察其吸收和解吸CO_2的性能。结果表明:实验室制各的合成催化剂NiCu/SiO_2+微量磷钨酸,具有良好的催化性能,哌嗪选择性达59.6%~61.3%,MEA转化率65%~78%;合成产物无需精馏分离,可直接可作为脱碳活化剂,应用于膜吸收装置以及现有的胺法脱碳装置中。
     基于膜接触器气体吸收过程和原理,采用疏水性聚丙烯中空纤维膜组件作为膜接
There are most familiar acidic gases of H_2S and CO_2 in industrial gas mixtures and off-gases. Acidic gas H2S is mainly from gas mixtures in natural gas processing, hydrogen purification, refinery off-gases treating and synthesis gas for ammonia and methanol manufacturing. Impurities H_2S must be removed from the gas mixtures to meet the requirements of sequential processing or environmental regulation. CO_2 is one of primarily greenhouse gases. CO_2 recycle from industrial off-gases can availably control and diminish greenhouse effect. The technology of absorption of acidic gases into aqueous solutions of alkanolamines has been one of preferred approaches in current various technologies. This work mainly dealt with removal of acidic gases of H_2S and CO_2 and development of high performance complex solutions. Based on gas-liquid mass-transfer theory and different property of gas mixtures contained acidic gases, the processes and characteristics of mass transfer of acidic gases were investigated in packed columns and membrane contactors. This work focused on two sections: 1) selective absorption of H_2S from gas mixtures contained CO_2 into aqueous solutions of blended amines of MDEA-TBEE in a packed column. 2) development of high performance complex solutions including MDEA-based and amino-acid-based complex solutions; mass-transfer enhancement of the complex solutions on absorption of CO_2 in a membrane contactor; effect of the complex solutions on hydrophobic polypropylene (PP) membrane configuration; and characterization of the mass-transfer enhancement and the effect of membrane configuration by mathematic models.
    High selectivity of blended solutions can bring on decrease of energy consumption and increase of purity of gas products which come from regeneration of blended solutions. So, there is an especial significance in the case of energy sources shortage and huge energy consumption nowadays. Based on reaction mechanism of alkanolamines with acid gases in this work, selective absorption of H_2S from mixed-gas streams into the aqueous solution of blended amines of MDEA-TBEE has been studied using a static and a dynamic evaluation setup, respectively. TBEE, a severe sterically hindered amine, was added into MDEA to form the blended amines. The acidic gases absorption performance into the aqueous solution of blended amines of MDEA-TBEE was compared with that of single amine of MDEA. A variety of effect factors on the performance were investigated by means of evaluation indexes of removal efficiency and selectivity factor. Based on the mass balance, overall mass transfer coefficient, K_Ga was determinated. An approximate model for mass
引文
[1] Wuebbles D J, Jain A K. Concerns about climate change and the role of fossil fuel use. Fuel Process Technology, 2001, 71:99-119
    [2] 侯杰.《京都议定书》:挑战中国化工业.中国化工报,2005年2月28日.
    [3] 王睿,石冈,魏伟胜.工业气体中H_2S的脱除方法.天然气工业,1999,19(3):84-90
    [4] Wang Dongliang, Teo W K, Li K. Selective removal of trace H_2S from gas streams containing CO_2 using hollow fiber membrane modules/contractors. Separation and Purification Technology, 2004, 35:125-131
    [5] Li K, Wang D, Teo W K, Koe C C. Use of asymmetric hollow fiber modules for elimination of H_2S from gas streams via a membrane absorption method. Chem. Eng. Sci., 1998, 53: 1111
    [6] 王帆.生物法净化再生胶脱硫废气的工业应用研究.(理学硕士学位论文),哈尔滨:东北农业大学,2002
    [7] Iliuta I, Larachi F. Concept of bifunctional redox iron-chelate process for H_2S removal in pulp and paper atmospheric emissions. Chemical Engineering Science, 2003, 58: 5305-5314
    [8] James J. Acid gas treatment and sulfur recovery, process economics program, report 216. SRI Consulting, Menlo Park, California, 1997
    [9] Kittner R, et al. Process for the reduction of the sulfur content in a gaseous stream. European patent 78690, 1995
    [10] Whitman W G. Preliminary experimental confirmation of the two-film theory of gas absorption. Chem. Metall. Eng., 1923, 29:146-148
    [11] Higbie R. The rate of absorption of a pure gas into a still liquid during short periods of exposure, Trans. Am. Inst. Chem. Eng., 1935, 35:36-60
    [12] Danckwerts P V. Significance of liquid-film coefficients in gas absorption. Ind. Eng. Chem., 1951, 43:1460-1467
    [13] Toor H L and Marchello J M. Film-penetration model for mass transfer and heat transfer. AIChE Journal, 1958, 4:97-101
    [14] Lamourelle A P, Sandall O C. Chem. Eng. Sci., 1972, 27:1035-1043
    [15] Whitman W G and Davis D S. Comparative Absorption Rates for Various Gases. Ind. Eng. Chem., 1924, 16 (12): 1233-1237
    [16] Jose L Bravo and James R Fair. Generaiized Correlation for Mass Transfer in Packed Distillation Columns. Ind. Eng Chem. Process Des. Dev., 1982, 21: 162-170
    [17] Shulman H L, Ullrich C F, Wells N. Gas-liquid mass transfer coefficient in packed column. AIChE J., 1955a, 7: 247
    [18] Onda K, Takeuchl H, Okumoto Y J. Gas absorption in packed column. Chem. Eng. Jpn., 1966, 1:56
    [19] Onda K, Sada E, Takeuchi H. Gas absorption with chemical reaction in packedcolumns. J. Chem. Eng. Jpn., 1968a, 1: 62-46
    [20] Onda K, Takeuchi H, Okumoto Y. Mass transfer coefficients between gas and liquid phases in packed columns. J. Chem. Eng. Jpn., 1968b, 1: 56-62
    [21] Viclav Linek and Jiri Sinkule. Verification of the Design Methods for Industrial Carbon Dioxide-Triethanolamine Absorbers: Laboratory Differential Simulation and Computational Methods. Ind. Eng. Chem. Res., 1990, 29: 1676-1681
    [22] Tteybal R E. Mass-transfer operation. 3rd ed., New York: McGraw-Hill, 1985
    [23] Kohl A L, Riesenfeld F C. Gas purification, 4th ed., Houston: Gulf Publishing, 1985
    [24] Adisorn Aroonwilas and Paitoon Tontiwachwuthikul. Mass Transfer Coefficients and Correlation for CO_2 Absorption into 2-Amino-2-methyl-l-propanol (AMP) Using Structured Packing. Ind. Eng. Chem. Res., 1998, 37: 569-575
    [25] Bravo J L, Rocha J A, Fai R. Mass Transfer in Gauze Packmess. Hydrocarbon process, 1985, 64(1): 91-95
    [26] Ralph H Weiland and Kelly R Ahlgren. Mass-Transfer Characteristics of Some Structured Packings. Ind. Eng. Chem. Res., 1993, 32: 1411-1418
    [27] van Krevelen D W, Hoftijzer P J. Kinetics of simultaneous absorption and chemical reaction. Chem. Eng. Prog., 1984, 44: 529
    
    [28] Treybal R E. Mass-transfer operations, 3rd ed. New York: McGraw-Hill, 1985
    [29] Onda K, Takeuchi H, Koyama Y. Effect of Packing Materials on Wetted Surface Area. Kagaku Kogaku, 1967, 31:126-129
    [30] Pani F, Gaunand A, Cadours R, Bouallou C, Richon D. Kinetics of Absorption of CO_2 in Concentrated Aqueous Methyldiethanolamine Solutions in the Range 296-343 K. J. Chem. Eng. Data, 1997, 42: 353-369
    [31] Billet R, Schultes M. Modelling of packed tower performance for rectification, absorption and desorption in the total capacity range. Presented at The Third Korea-Japan Symposium, Tokyo Japan, Oct 25-27, 1993
    [32] Adisorn Aroonwilas, Paitoon Tontiwachwuthikul. Mechanistic model for prediction of structured packing mass transfer performance in CO_2 absorption with chemical reactions. Chemical Engineering Science, 2000, 55:3651-3663
    [33] Vazquez G, Cancela M A, Riverol C, Alvarez E, and Navaza J M. Determination of Interfacial Areas in a Bubble Column by Different Chemical Methods. Ind. Eng. Chem. Res., 2000, 39:2541-2547
    [34] Mounir Bouaifi, Gilles Hebrard, Dominique Bastoul, Michel Roustan. A comparative study of gas hold-up, bubble size, interfacial area and mass transfer coefficients in stirred gas-liquid reactors and bubble columns. Chemical Engineering and Processing, 2001, 40:97-111
    [35] Luo Pei-Cheng, Zhang Zhi-Bing, Zhen Jiao, and Wang Zhi-Xiang. Investigation in the Design of a CO_2 Cleaner System by Using Aqueous Solutions of Monoethanolamine and Diethanolamine. Ind. Eng. Chem. Res., 2003, 42:4861-4866
    [36] Yuan Yanhui, Hart Minghua, Wang Lunwei. Mass transfer for two-phase countercurrent flow in a packed column with a novel internal. Chem. Eng. J., 2004, 99:273-277
    [37] Astarita G, Savage D W, Bosio A. Gas treating with chemical solvents. New York: John Wiley Press, 1985
    [38] 朱世勇.环境与工业气体净化技术.北京:化学工业出版社,2001.
    [39] Weiland R H, Sivasubramanian M S. Selective absorption of H_2S from a CO_2 containing gas in solution of MDEA. The 53rd annual gas treating conference, Norman, OK, 2003
    [40] Kohl A L, Nielsen R B. Gas Purification, 5th ed. Houston: Gulf Publishing Co., TX, 1997
    [41] Maham Y, Teng T T, Hepler L G., Mather A E. Volumetric properties of aqueous solutions of monoethanolamine, mono- and dimethylethanolamines at temperatures from 5 to 80℃. Thermochimica Acta, 2002, 386:111-118
    [42] Manuel A Pacheco, Shoichi Kaganoi, Gary T Rochelle, CO_2 absorption into aqueous mixtures of diglycolamine and methyldiethanolamine. Chemical Engineering Science, 2000, 55:5125-5140
    [43] Mandal B P, Guha M, Biswas A K, Bandyopadhyay S S. Removal of carbon dioxide by absorption in mixed amines: modeling of absorption in aqueous MDEA/MEA and AMP/MEA solutions. Chemical Engineering Science, 2001, 56:6217-6224
    [44] Sartori G, Ho W S, Thaler W A, Chludzinski G R, Wilbur J C. Sterically hindered Amines for Acid Gas Absorption. In Carbon Dioxide Chemistry: Environmental Issues. Cambridge U. K.: The Royal Society of Chemistry, 1994
    [45] Guido Sartori, Linden N J, Frederic Leder, et al., Process for removing carbon dioxide containing acidic gases from gaseous mixtures using a basic salt activated with a hindered amine, USP 4112050, 1978
    [46] Caplow M. Kinetics of carbamate formation and breakdown. J. Am. Chem. Soc., 1968, 34: 6795-6803
    [47] Danckwerts P V. The reaction of CO_2 with ethanolamines. Chem. Eng. Sic, 1979, 34: 573-585
    [48] Blauwhoff P M M, Versteeg G F and van Swaaij W P M. A study on the reaction between CO_2 and alkanolamines in aqueous solutions. Chem. Eng. Sic, 1984, 39: 1725-1728
    [49] Versteeg G F and van Swaaij W P M. On the kinetics between CO_2 an alkanolamines both in aqueous and non-aqueous solution: I Primary and secondary amines. Chem. Eng. Sic, 1988,43:573-585
    [50] Versteeg G F and van Swaaij W P M. On the kinetics between CO_2 an alkanolamines both in aqueous and non-aqueous solution: II Tertiary amines. Chem. Eng. Sic, 1988, 43: 587-591
    [51] Frazier H D, Kohl A L. Selective Absorption of Hydrogen Sulfide from Gas Streams. Ind. Eng. Chem., 1950,42(11): 2288-2292
    [52] Wainwright H W, Egleson G C, Brock C M, Fisher J, Sands A E. Selective absorption of hydrogen sulfide from synthesis gas. Ind. Eng. Chem., 1953, 45(6): 1378-1384
    [53] David W Savage and Edward W Funkt. Selective Absorption of H_2S and CO_2 into Aqueous Solutions of Methyldiethanolamine. Ind. Eng. Chem. Fundam., 1986, 25: 326-330
    [54] Asit K Saha, Symalendu S Bandyopadhyay J, Sajuf P and Asok K. Biswast. Selective Removal of H_2S from Gases Containing H_2S and CO_2 by Absorption into Aqueous Solutions of 2-Amino-2-methyl-l-propanol. Ind. Eng. Chem. Res., 1993, 32: 3051-3055
    [55] Nadhir A-B, Steven A Pruess, Victor F Yesavage, Sami Selim M. A rate-based model for the design of gas absorbers for the removal of CO_2 and H2S using aqueous solutions of MEA and DEA. Fluid Phase Equilibria, 2001, 185: 31-43
    [56] Robert N M, Gilbert T M, Mahmud A R. Reactions of carbon dioxide and hydrogen sulfide with some alkanolamines. Ind. Eng. Chem. Res., 1987, 26: 27-30
    [57] Xu Hong-Jian, Zhang Cheng-Fang, and Zheng Zhi-Sheng. Selective H_2S Removal by Nonaqueous Methyldiethanolamine Solutions in an Experimental Apparatus. Ind. Eng. Chem. Res., 2002, 41:2953-2956
    [58] Mandal B P, Biswas A K., Bandyopadhyay S S. Selective absorption of H_2S from gas streams containing H_2S and CO_2 into aqueous solutions of N-methyldiethanolamine and 2-amino-2-methyl- 1-propanol. Separation and Purification Technology, 2004, 35: 191-202
    [59] Markus B-N, Anton Friedl, Ulrich Koss, Thomas Tork. Modelling selective H_2S absorption and desorption in an aqueous MDEA-solution using a rate-based non-equilibrium approach. Chemical Engineering and Processing, 2004, 43:701-715
    [60] 高峰,孙成权,曲建升编译.气候变化对自然和人类社会系统的影响——IPCC第三次气候变化评价报告.地球科学进展.2001,16(4):590~592
    [61] Wuebbles D J, Jain A K. Concems about climate change and the role of fossil fuel use. Fuel Process Technol., 2001, 71: 99~119
    [62] Anand B Rao, and Edward S Rubin. A Technical, Economic, and Environmental Assessment of Amine-Based CO_2 Capture Technology for Power Plant Greenhouse Gas Control. Environ. Sci. Technol., 2002, 36, 4467-4475
    [63] Mulder M,李琳译,膜技术基本原理,第二版.北京:清华大学出版社,1999
    [64] Falk Pedersen O, Dannstrom H, Witzko R, Bier C. Natural Gas Sweetening using Membrane Gas/Liquid Contactors., 49th. Laurance Reid Gas Conditioning Conference, Feb. 1999
    [65] Falk Pedersen O, Dannstrom H. Separation of carbon dioxide from offshore gas turbine exhaust. Energy Convers. Manag., 1997, 38: S81-S86
    [66] Feron P H M, Jansen A E. An ecotechnology-integrated MEA process for CO_2-removal. Energy Convers. Manag., 1995, 36: 401-411
    [67] Kim J J, Jang T S, Kwon Y D. Structure study of PP hollow fiber membranes made by melt-spinning and cold-stretching method. J. Membr. Sic., 1994, 93:209-215
    [68] Dindore V Y, Brilman D W F, Feron P H M, Versteeg G F. CO_2 absorption at elevated pressures using a hollow fiber membrane contactor. J. Membr. Sci., 2004, 235:99-109
    [69] Kiani A, Bhave R R, Sirkar K K. Solvent extraction with immobilized interfaces in a microporous hydrophobic membrane, J. Membr. Sci., 1984, 20:125-145
    [70] Kim B S, Harriott P. Critical energy pressure for liquids in hydrophobic membranes. J. Colloid Interface Sci., 1987, 115:1-3
    [71] Reed B W, Semmens M J, Cussler E L. Membrane contactors, in: R. D. Noble, S. A. Stern (Eds.), Membrane Separations Technology. Principles and Applications, Elsevier, Amsterdam, 1995
    [72] Karoor S, Sirkar K K. Gas absorption studies in microporous hollow fiber modules. Ind.Eng. Chem. Res., 1993, 32: 674-684
    [73] Wang K L, Cussler E L, Baffled membrane modules made with hollow fiber fabric. J. Membr. Sci., 1993, 85: 265-278
    [74] Wickramasinghe S R, Semmens M J, Cussler EL. Hollow fiber modules made with hollow fiber fabric. J. Membr. Sci., 1993, 84: 1-14
    [75] Wickramasinghe S R, Semmens M J, Cussler E L. Mass transfer in various hollow fiber geometries. J. Membr. Sci., 1992, 69: 235-250
    [76] Li Dongfei, Wang Rong, Chung Tai-Shung. Fabrication of lab-scale hollow fiber membrane modules with high packing density. Separation and Purification Technology, 2004, 40: 15-30
    [77] Sengupta A, Peterson P A, Miller B D. Large-scale application of membrane contactors for gas transfer from or to ultrapure water. Separation and Purification, 1998,14: 189-200
    [78] Prasad R, Sirkar K K. Dispersion-free solvent extraction with microporous hollow-fiber modules. AIChE J., 1988, 34(2): 177-188
    [79] Cooney D O, Poufos M G. Liquid-liquid extraction in a hollow-fiber device. Chem. Eng. Commun., 1987, 61: 159-167
    [80] Keller K H, Stein T R. A two-dimensional analysis of porous membrane transport. Math. Biosci., 1997, 1: 421-437
    [81] Yang M-C, Cussler E L, Designing hollow-fiber contactors. AIChE J., 1986, 2: 1910-915
    [82] Wickramasinghe S R, Semmens M J, Cussler E L. Mass-transfer in various hollow fiber geometries. J. Membr. Sci., 1992, 9: 35-50
    [83] Kreulen H, Smolders C A, Versteeg G F, van Swaaij W P M. Membrane contactors for CO_2 absorption. J. Membr. Sci., 1993, 78: 197-199
    [84] Gabelman Alan, Hwang Sun-Tak. Hollow fiber membrane contactors. Journal of Membrane Science, 1999, 159: 61-106
    [85] Li Jing-Liang, Chen Bing-Hung. Review of CO_2 absorption using chemical solvents in hollow fiber membrane contactors. Separation and Purification Technology, 2005, 41: 109-122
    [86] Chakravarty T, Phukan, U K, Weiland R H. Reaction of acid gases with mixtures of amines. Chem. Eng. Prog., 1985, 81: 32-36
    [87] Kucka L, Richter J, Kenig E Y, Go'rak A. Determination of gas/liquid reaction kinetics with a stirred cell reactor. Separation and Purification Technology, 2003, 31: 163-175
    [88] Nii S, Takeuchi H, Takahashi K. Removal of CO_2 by gas absorption across a polymeric membrane. J. Chem. Eng. Jpn., 1992, 25 (1): 67-72
    [89] Li K, Teo W K. Use of permeation and absorption methods for CO_2 removal in hollow fiber membrane modules. Sep. Purif. Technol., 1998, 13: 79-88
    [90] Nii S, Takeuchi H. Removal of CO_2 and/or SO_2 from gas streams by a membrane absorption method. Gas Sep. Purif., 1994, 8 (2): 107-114
    [91] Kumar P S, Hogendoorn J A, Feron P H M, Versteeg G F. Approximate solution to predict the enhancement factor for the reactive absorption of a gas in a liquid flowing through a microporous membrane hollow fiber. J. Membr. Sci., 2003,213: 231-245
    [92] Qi Zhang, Cussler, E L. Microporous Hollow Fibers for Gas Absorption. I. Mass Transfer in the Liquid. J. Membr. Sci., 1985a, 23: 321-332
    [93] Qi Zhang, Cussler E L. Microporous Hollow Fibers for Gas Absorption. II. Mass Transfer Across the Membrane. J. Membr. Sci., 1985b, 23: 333-345
    [94] Yang M C, Cussler E L. Designing Hollow-Fiber Contactors. AIChE J., 1986, 32: 1910-1916
    [95] Sujatha Karoort, Kamalesh K Sirkar. Gas Absorption Studies in Microporous Hollow Fiber Membrane Modules. Ind. Eng. Chem. Res., 1993, 32: 674-684
    [96] Huseni A Rangwala. Absorption of CO_2 into aqueous solutions using hollow fiber membrane contactors. J. Membr. Sic, 1996, 112: 229-240
    [97] Kim Young-Seok, Yang Seung-Man. Absorption of carbon dioxide through hollow fiber membranes using various aqueous absorbents. Separation and Purification Technology, 2000,21: 101-109
    [98] Yongtaek Lee, Richard D Noble, Yeom Bong-Yeol, Park You-In, Lee Kew-Ho. Analysis of CO_2 removal by hollow fiber membrane contactors. J. Membr. Sci., 2001, 194: 57-67
    [99] Thambimuthu K, Davison J. Carbon dioxide capture for power station, obtainable form IEA Greenhouse Gas R&D Programme, 2004
    [100] TNO Environment, Energy and Process Innovation. Method for gas absorption across a membrane, USP. 5749941, 1998
    [101] Paul H M Feron, Albert E Jansen. CO_2 separation with polyolefin membrane contactors and dedicated absorption liquids: performances and prospects. Separation and Purification Technology, 2002, 27:231-242
    [102] Dindore V Y, Brilman D W F, Geuzebroek F H, Versteeg G F. Membrane solvent selection for CO_2 removal using membrane gas-liquid contactors. Separation and Purification Technology, 2004, 40:133-145
    [103] Karl Anders Hoff, Olav Juliussen, Olav Falk-Pedersen, Hallvard F. Svendsen. Modeling and Experimental Study of Carbon Dioxide Absorption in Aqueous Alkanolamine Solutions Using a Membrane Contactor. Ind. Eng. Chem. Res., 2004, 43:4908-4921
    [104] Korikov A P, Sirkar K K. Membrane gas permeance in gas-liquid membrane contactor systems for solutions containing a highly reactive absorbent. Journal of Membrane Science, 2005, 246:27-37
    [105] 王志,龚彦文,袁力,王世昌.中空纤维膜吸收器中CO_2吸收过程模拟.化工学报,2003,54:1563-1568
    [106] 朱宝库,陈炜,王建黎,徐又一,徐志康.膜接触器分离混合气中CO_2的研究.环境科学,2003,24(5):34-38
    [107] 刘涛,史季芬,徐静年,吴祥芝.中空纤维膜气体溶剂的吸收分离过程.化工冶金,1999,20(1):11-16
    [108] 叶向群,孙亮,张林,周志军,陈欢林.中空纤维膜基吸收法脱除空气中二氢化碳的研究.高校化学工程学报,2003,17(3):237-242
    [109] Luo P C, Zhang Z B, Jiao Z, Wang Z X. Investigation in the Design of a CO_2 Cleaner System by Using Aqueous Solutions of Monoethanolamine and Diethanolamine. Ind. Eng. Chem. Res., 2003, 42:4861-4866
    [110] Kreulrn H, Smolders C A, Versteeg G T, van Swaaij W P M. Microporous hollow fiber membrane modules as gas-liquid contactors. Part Ⅰ, Physical mass transfer processes. A specific application: Mass transfer in highly viscous liquids. J. Membr. Sci., 1993, 78: 197-216
    [111] Li K, Kong J F, Wang D, Teo W K. Tailor-Made asymmetric PVDF hollow fibres for soluble gas removal. AIChE J., 1999, 45(6): 1211-1219
    [112] 徐国文,张成芳,钦淑均.CO_2、H_2、N_2在MDEA水溶液中的溶解度.高校化学工程学报,1996,10(4):406-410
    [113] Pacheco Manuel A, Kaganoi Shoichi, Rochelle Gary T. CO_2 absorption into aqueous mixtures of diglycolamine and methyldiethanolamine. Chem. Eng. Sci., 2000, 55: 5125-5140
    [114] 黎四芳,任锋律,李盘生,路琼华.MDEA-MEA混合有机胺水溶液吸收CO_2.化 工学报,1994,45(6):698-703
    [115] 任铮伟,路琼华,李盘生.从富含CO_2的混合气中选择性吸收H_2S.高校化学工程学报,1995,9(2):155-161
    [116] Xia Jian-zhong, Alvaro Perez, Salado Kamps, Gerd Maurer. Solubility of H_2S in (H_2O+piperazine) and in (H_2O+MDEA+piperazine). Fluid Phase Equilibria, 2003, 207:23-34
    [117] Saha A K, Biswas A K, Bandyopadhyay S S. Absorption of CO_2 in a sterically hindered amine: modeling absorption in a mechanically agitated contactor. Separation and Purification Technology, 1999, 15:101-112
    [118] Guido Sartori, Linden N J, Frederic Lederl. Process for removing carbon dioxide containing acidic gases from gaseous mixtures using a basic salt activated with a hindered amine. USP: 4112050, 1978
    [119] Stogryn E L, Sartori E G. Severely sterically hindered tertiary amino compounds. USP: 4405811, 1983
    [120] Bash Warren V. Process for the selective removal of H_2S and COS from light hydrocarbon gases containing CO_2. USP: 4749555, 1988
    [121] Winston Ho W S, Sartori Guido. Addition of severely-hindered amine salts and/or amino-acids to non-hindered amine solutions for the absorption of H_2S. USP: 4892674, 1990
    [122] Iijima M, Misuoka Shigeaki. Process for the removal of CO_2 from gases. EP: 0776687 A1, 1997
    [123] 李晓,李少萍,詹敏等.高选择性脱硫吸收剂的研制.华东理工大学学报,1999,25(3):265-268
    [124] 罗景琼.位阻胺合成原料及产物分析.石油与天然气化工,1990,19(3):46-52
    [125] Yu Wei-chung, Astarita G. Selective absorption of H_2S in tertiary amine. Chem. Eng. Sci., 1987, 42(3): 419-424
    [126] Rinker E B, Ashour S S, Sandall O C. Kinetics and modeling of CO_2 absorption into aqueous solution of MDEA. Chem. Eng. Sci., 1995, 50:755-768
    [127] Ko Jiun-jie, Li Meng-hui. Kinetics of absorption of carbon dioxide into solutions of N-methyldiethanolamine+water. Chem. Eng. Sci., 2000, 55:4139-4147
    [128] Blauwhoff P M M, Versteeg G F, van Swaaij W P M. A study on the reactions between CO_2 and alkanolamines in aqueous solutions. Chem. Eng. Sci., 1984, 39(2): 207-225
    [129] Weiland R H, Sivasubramanian M S, Dingman J C. Effective Amine Technology: Controlling Selectivity, Increasing Slip, and Reducing Sulfur. The 53~(rd) Annual Laurence Reid Gas Condition Conference, Norman, OK, 24 February 2003
    [130] Ko J-J, Li M-H. Kinetics of Absorption of Carbon Dioxide into Solutions of N-Methyldiethanolamine + Water. Chem. Eng. Sci., 2000, 55: 4139-4141
    [131] Alper E. Reaction Mechanism and Kinetics of Aqueous Solutions of 2-Amino-2-methyl-l-propanol and Carbon Dioxide. Ind. Eng. Chem. Res., 1990, 29:1725-1728
    [132] Rinker E B; Ashour S S, Sandall O C. Kinetics and Modeling of Carbon Dioxide Absorption into Aqueous Solutions of Diethanolamine. Ind. Eng. Chem. Res., 1996, 35:1107-1710
    [133] Li M-H, Chang B C. Solubilities of Carbon Dioxide in Water + Monoethanolamine + 2-Amino-2-methyl-1-propanol. J. Chem. Eng. Data, 1994, 39, 448-450
    [134] Rinker E B, Ashour S S, Sandall O C. Absorption of Carbon Dioxide into Aqueous Blends of Diethanolamine and Methyldiethanolamine. Ind. Eng. Chem. Res., 2000, 39: 4346-4349
    [135] Weiland R H, Chakravarty T, Mather A E, Solubility of carbon dioxide and hydrogen sulfide in aqueous alkanolamines, Ind. Eng. Chem. Res., 1993, 32: 1419-1430
    [136] Markus Bolhar-Nordenkampf, Anton Friedl, Ulrich Koss , Thomas Tork. Modelling selective H_2S absorption and desorption in an aqueous MDEA-solution using a rate-based non-equilibrium approach. Chemical Engineering and Processing, 2004, 43: 701-715
    [137] Nadhir A Al-Baghli, Steven A Pruess, Victor F Yesavage, Sami M Selim. A rate-based model for the design of gas absorbers for the removal of CO_2 and H_2S using aqueous solutions of MEA and DEA. Fluid Phase Equilibria, 2001,185: 31-43
    [138] Mandal B P, Biswas A K, Bandyopadhyay S S. Selective absorption of H_2S from gas streams containing H_2S and CO_2 into aqueous solutions of N-methyldiethanolamine and 2-amino-2-methyl-1-propanol. Separation and Purification Technology, 2004, 35:191-202
    [139] Hiren K Shethna, Gavin P Towler. Design of mixed-solvent processes for chemisorption with ultrahigh recovery. Ind. Eng. Chem. Res., 1997, 36: 5307-5320
    [140] Asit K Saha, Symalendu S Bandyopadhyay, Sajuf P and Asok K Biswast. Selective Removal of H_2S from Gases Containing H_2S and CO_2 by Absorption into Aqueous Solutions of 2-Amino-2-methyl- 1 -propanol. Ind. Eng. Chem. Res., 1993, 32: 3051-3055
    [141] Winston Ho W S, Sartori Guido. Addition of severely-hindered amine salts and/or amino-acids to non-hindered amine solutions for the absorption of H_2S. USP: 4892674, 1990.
    [142] Guldo Sartorl and David W Savage. Sterically Hindered Amines for CO_2 Removal from Gases. Ind. Eng. Chem. Fundam., 1983,22, 239-249
    [143] Sartori G, Savage D W. Sterically hindered amines for CO_2 removal from gases. Ind. Eng. Chem. Fundam., 1983,22: 239-249
    
    [144] Sartori G,Ho W S, Savag D W, Chludzinski G R, Wiechert S. Sterically-hindered amines for acid-gas absorption. Separation and purification methods, 1987, 16(2): 171-200.
    [145] Danckwerts P V. The reactions of CO_2 with ethanolamines. Chem.Eng. Sci., 1979, 34:443.446
    
    [146] Saha A K, Bandyopadhyay S S, Biswas A K. Kinetics of absorption of CO_2 into aqueous solutions of 2-amino-2-methyl-l-propanol, Chem. Eng. Sci., 1995, 50: 3587-3598
    
    [147] Alper E. Reaction mechanism and kinetics of aqueous solutions of 2-amino-2-methyl-l-propanol and carbondioxide. Znd. Eng. Chem. Res., 1990, 29: 1725-1728
    [148] Yu Wei-chung, Astarita G. Selective absorption of H_2S in tertiary amine. Chem Eng Sci, 1987, 42(3): 419-424
    [149] Ko Jiun-jie, Li Meng-hui. Kinetics of absorption of carbon dioxide into solutions of N-methyldiethanolamine+water. Chem. Eng. Sci., 2000, 55: 4139-4147
    [150] Cornelissen A E. Absorption of H_2S and CO_2 into aqueous alkanolamines. Trans. Znst. Chem. Eng., 1980, 58: 242-250
    [151] Treybal R E. Mass-Transfer Operations, 3rd ed., Singapore: McGraw-Hill Book Company, 1980
    [152] Onda K, Takeuchi H, Okumoto Y. Mass transfer coefficients between gas and liquid phases in packed columns. J.Chem. Eng. Jpn., 1968,1 (1): 56-60
    [153] Yaws C L. Thermodynamic and physical property data. Houston: Gulf, 1992
    [154] Geankoplis C J. Transport Processes and Unit Operations, 3rd ed. NJ: Prentice Hall, Englewood Cliffs, 1993
    
    [155] Onda K, Sada E, Murase, Liquid-Side Y. Mass Transfer Coefficients in Packed Towers. AIChE J., 1959, 5: 235-239
    [156] XuY, Wang J, Xu Z, et al. Separation and fixation of carbon dioxide by PP hollow fiber membrane contactor. International Symposium on Membrane Technology and Environmental Protection, Beijing, China, 2000
    [157] Chen H L, Sun L, Zhou Z J, et al. Study on CO_2 removal from air by hollow fiber membrane contactor. International Symposium on Membrane Technology and Envimnmental Protection, Beijing, China, 2000
    [158] Mavroudi M, Kaldis S P, Sakellaropoulos G. P. Reduction of CO_2 emissions by a membrane contacting process. Fuel, 2003, 82:2153~2159
    [159] Nishikawa N, Ishibashi M, Ohta H, Akutsu N, et al. CO_2 removal by hollow-fiber gas-liquid contactor. Energy Convers. Mgrnt., 1995, 36(6-9): 415~418
    [160] Kumar P S, Hogendoorn J A, Feron P H M, Versteeg G F. New absorption liquids for the removal of CO_2 from dilute gas streams using membrane contactors. Chemical Engineering Science, 2002, 57:1639~1651
    [161] Bessarabov D G, Jacobs E P, Sanderson R D, Beckman I N. Use of nonporous polymeric flat-sheet gas-separation membranes in a membrane-liquid contactor: experimental studies. Journal of Membrane Science, 1996, 113: 275~284
    [162] Yongtaek Lee, Richard D Noble, Yeom Bong-Yeol, et al. Analysis of CO_2 removal by hollow fiber membrane contactors. J. Membr. Sci., 2001, 194:57~67
    [163] Roman Gawronski, Bogumila Wrzesinska. Kinetics of solvent extraction in hollowfiber contactors. J. of Memb. Sci., 2000, 168:213~222
    [164] Schoner P, Plucinski P, Nitsch W, Daiminger U. Mass transfer in the shell side of cross flow hollow fiber modules. Chemical Engineering Science, 1998, 53(13): 2319~2326
    [165] Matevz Vospemik, Albin Pintar, Gorazd Bercic, Janez Levee. Mass transfer studies in gas-liquid-solid membrane contactors. Catalysis Today, 2003, 79-80:169-179
    [166] Jasmin W, Vicki Chen. Shell-side mass transfer performance of randomly packed hollow fiber modules. Journal of Membrane Science, 2000, 172:59~74
    [167] 王建黎,徐又一,徐志康,徐红.膜接触器从混合气中脱氨性能的研究.环境化学.2001,20(6):587~594
    [168] 贺增弟,晋日呀,翁霁,刘幼平.膜吸收处理铜洗再生气的研究.河南科学.2002,12:14~16
    [169] 金美芳,曹义鸣,邢丹敏,李晖,等.膜吸收法脱除二氧化硫.膜科学与技术.1999,19(3):44~46
    [170] 郭占虎,史季芬,徐静年,魏素英,等.中空纤维膜组件分离酸性气体.化工冶 金.2000,21(3):268~273
    [171] 张慧峰,张卫东,张泽廷,史季芬.中空纤维膜吸收法脱除SO_2的实验研究.环境科学与技术.2003,26(5):8~10
    [172] 蒋硕健,丁有骏,李明谦.有机化学,第二版.北京:北京大学出版社,1998:278~279
    [173] Bosch H, Versteeg G F, Swaaij W P M. Gas-Liquid mass transfer with parallel reversible reactions. I Absorption of CO_2 into solutions of sterically hindered amines. Chem. Eng. Sci., 1989, 44(11): 2723~2734
    [174] Donaldson T L, Nguyen Y N. Carbon dioxide reaction and transport in aqueous amine membranes. Ind. Eng. Chem. Fundam., 1980, 19:260~266
    [175] Little R J, Versteeg G F, van Swaaij W P M. Kinetics of CO_2 absorption into MDEA aqueous solution. AICHE J., 1991, 36:1633~1640
    [176] Spears M L, Hagan K M, Bullin J A, Michalik C J. Converting to DEA/MDEA Mix Ups Sweetening Capacity. Oil and Gas Journal, 1996, 94(33): 63-65
    [177] Glasscock D A, Critchfield J E, Rochelle G T. CO_2 absorption/desorption in mixture of methyldiethanolamine with monoethanolamine or diethanolamine. Chem. Eng. Sci., 1991,46: 2829-2833
    [178] Xu Guowen, Zhan Chengfang, Qin Shujun. Kinetics Study on Absorption of Carbon Dioxide into Solution of Activated Methyldiethanolamine. Ind. Eng. Chem. Res., 1992, 31: 921-927
    [179] 刘华兵,吴勇强,张成芳.MDEA-PZ-H_2O溶液中CO_2溶解度及其模型.华东理工大学学报,2000,26(2):121-125
    [180] 孙羽蒙.低压连续催化合成哌嗪.高校化学工程学报,1999,13(2):178-181
    [181] 吴刚健,严之光.由N-羟乙基乙二胺合成哌嗪.华东理工大学学报,2001,27(1):30-37
    [182] 王晓季,陈立功,张晓茹,等.乙二腔气固相催化环合哌嗪的研究.化学工业与工程,2001,18(3):141-145
    [189] 王多禄,许正双,陈立功,等.哌嗪合成的研究.天津大学学报,1999,32(4):500-503
    [190] Edward W J, Victoria E. Catalysis of Condensation Reactions. EP.. 069 322A1, 1983
    [191] Meissner R E, Wagner U. Low-Energy Process Recovers CO_2. Oil & Gas J., 1983, 6(2): 55-58
    [192] Xu Guo-Wen, Zhang Cheng-Fang, Qin Shu-Jun, Zhu Bin-Chen. Desorption of CO_2 from MDEA and Activated MDEA Solutions. Ind. Eng. Chem. Res., 1995, 34: 874-880
    [193] Xu Guo-Wen, Zhang Cheng-Fang, Qin Shu-Jun, Gao Wei-Hong, Liu Hua-Bin. Gas-Liquid Equilibrium in a CO_2-MDEA-H_2O System and the Effect of Piperazine on It. Ind. Eng. Chem. Res., 1998, 37: 1473-1477
    [194] Sanjay Bishnoi and Gary T Rochelle. Absorption of CO_2 in aqueous piperazine- MDEA. AIChE J., 2002, 48: 2788-2799
    [195] Tim Cullinane J, Gary T Rochelle. Carbon dioxide absorption with aqueous potassium carbonate promoted by piperazine. Chemical Engineering Science, 2004, 59: 3619-3630
    [196] Sun Wei-Chen, Yong Chia-Bao, Li Meng-Hui. Kinetics of the absorption of carbon dioxide into mixed aqueous solutions of 2-amino-2-methyl-1-propanol and piperazine. Chemical Engineering Science, 2005, 60: 513-516
    [197] Aroua M K, Haji-Sulaiman M Z, Ramasamy K. Modelling of carbon dioxide absorption in aqueous solutions of AMP and MDEA and their blends using Aspenplus. Separation and Purification Technology, 2002, 29: 153-162
    [198] Versteeg G F and van Swaaij P M. Solubility and Diffusivity of Acid Gases (CO_2, N_2O) in Aqueous alkanolamine Solutions. J. Chem. Eng. Data, 1988, 33: 29-34
    [199] Hanna Kierzkowska-Pawlak, Roman Zarzycki. Solubility of CO_2 and N_2O in Water + Methyldiethanolamine and ethanol + Methyldiethanolamine Solutions. J. Chem. Eng. Data, 2002, 47:1506-1509
    [200] Alvaro Perez-Salado Kamps, Xia Jianzhong. solubility of CO_2 in (H_2O+Piperazine) and in (H_2O+MDEA+Piperazine). AIChE J., 2003,49: 2662-2670
    [201] Saha A K, Bandyopadhyay S S. Solubility and diffusivity of N_2O and CO_2 in aqueous solution of AMP. J. Chem. Eng. Data, 1993, 38: 78
    [202] Resting R E, Fritzsche A. K. Polymer gas separation membranes. New Youk: John Willy & Sons. Inc., 1993
    [203] Coulson J M, Richardson J F. Chemical Engineering, Volume six. London: Pergamon Press, 1983
    [204] Sun Wei-Chen, Yong Chia-Bao, Li Meng-Hui. Kinetics of the absorption of carbon dioxide into mixed aqueous solutions of 2-amino-2-methyl-l-propanol and piperazine. Chemical Engineering Science, 2005, 60: 503 - 516
    [205] Iversen S B, Bhatia V K, Dam-Johansen K, Jonsson G. Characterization of microporous membranes for use in membrane contactors. J. Membr. Sci., 1997,130: 205-217
    [206] Kamo J, Hirai T, Kamada K. Solvent induced morphological change of microporous hollow fiber membranes. J. Membr. Sci., 1992, 70:216-218
    [207] 金美花,冯琳,封心建,等人.阵列聚合物纳米柱膜的超疏水性研究.高等学校化学学报,2004,25(7):1375-1377
    [208] 李欢军,王贤宝,江雷,等人.超疏水多孔阵列碳纳米管薄膜.高等学校化学学报,2001,22(5):759—761
    [209] 李书宏,冯琳,李欢军,等人.柱状结构阵列碳纳米管膜的超疏水性研究.高等学校化学学报,2003,24(2):340—342
    [210] 丁莹如.固体的表面化学.上海:上海科技出版社,1988
    [211] Tohnson R. E. Conflicts between Gibbsian Thermodynamics and Recent Treatments of Interracial Energies in Solid-Liquid-Vapor. J. Phyc. Chem., 1959, 63: 1655-1658
    [212] Edward B Rinker, Samis S Ashour, Orville C Sandall. Chemical Engineering Science, 1995, 50(5): 755-768
    [213] 张成芳.气液反应和反应器.北京:化学工业出版社,1985
    [214] Coulson J M and Richardson J F. Chemical Engineering: An Introduction to Chemical Engineering Design. London: PERGAMON PRESS, 1983
    [215] Guijt C M, Racz I G, Reith T, de Haan A B. Determination of membrane properties for use in the modelling of a membrane distillation module. Desalination, 2000, 132: 255-261
    [216] ydney A L, Aimar P, Meireles M, Pimley J M, Belfort G. Use of the log-normal probability density function to analyze membrane pore size distributions: functional forms and discrepancies. J. Membr. Sci., 1994, 91:293-298
    [217] Wang R, Li D F, Zhoub C, Liu M, Liang D T. Impact of DEA solutions with and without CO_2 loading on porous polypropylene membranes intended for use as contactors. J. Membr. Sci., 2004, 229:147-157
    [218] 王挹薇,张成芳,钦淑均.MDEA溶液吸收CO_2动力学研究.化工学报,1991,(4):466-474
    [219] Johnson D W, Semmens M J, Gulliver J S. Diffusive transport across unconfined hollow fiber membranes. J. Membr. Sci., 1997, 128:67-81
    [220] 陆建刚,王连军,刘晓东,李健生,孙秀云.湿润率对疏水性膜传质性能的影响.高等学校化学学报,2005,26:912-917
    [221] Bosch H, Versteeg G F and van Swaaij W P M. Gas-liquid mass transfer with parallel reversible reactions-Ⅲ. Absorption of CO_2 into solutions of blends of amines. Chem. Eng. Sci., 1989, 44(10): 2745-2750
    [222] 钟战铁.有机胺溶液吸收二氧化碳基础研究.(硕士学位论文),杭州:浙江大学,2002
    [223] Mason E A, Malinauskas A P. Gas transport in porous media: the dusty gas model. Chem. Eng. Monograph 17, Elsevier, Amsterdam, 1983
    [224] Versteeg G F, van Dijck L A J, and van Swaaij W P M. On the kinetics between CO_2 and alkanolamines both in aqueous and non-aqueous solutions. An overview. Chemical Engineering Communications, 1996, 144:113-158
    [225] Liu H B, Zhang C F, Xu G. W. A Study on Equilibrium Solubility for Carbon Dioxide in MDEA-PZ-H_2O Solution. Ind. Eng. Chem. Res., 1999, 38:4032-4036
    [226] Xu Zhang, Zhang Cheng-Fang, Qin Shu-Jun, Zheng Zhi-Sheng. A Kinetics Study on the Absorption of Carbon Dioxide into a Mixed Aqueous Solution of Methyldiethanolamine and Piperazine. Ind. Eng. Chem. Res., 2001, 40:3785-3791
    [227] van Swaaij W P M, Versteeg G F. Mass transfer accompanied with complex reversible reactions in gas-liquid systems: an overview. Chem. Eng. Sci., 1997, 47:3181-3195
    [228] Haimour N, Bidarian A, Sandall O C. Kinetics of the reaction between carbon dioxide and methyldiethanolamine. Chem. Eng. Sci., 1987, 42:1393-1399
    [229] Hanl A AI-Ghawas, Daniel P Hagewlesche, Gabriel Rulz-Ibanez, Orville C Sandal. Physicochemical Properties Important for Carbon Dioxide Absorption in Aqueous Methyldiethanolamine. J. Chem. Eng. Data, 1989, 34:385-391
    [230] Sanjay Bishnoi and Gary T. Rochelle. Thermodynamics of Piperazine-Methyldiethanolamine- Water-Carbon Dioxide. Ind. Eng. Chem. Res. 2002, 41: 604-612
    [231] Bishnu P Mandal, Madhusree Kundu. Density and Viscosity of aqueous solutions of (MDEA+MEA), (MDEA+DEA), (AMP+MEA), (AMP+DEA). J. Chem. Eng. Data, 2003, 48:703-707
    [232] Senthil P Kumar, Hogendoorn J A, Feron P H M, Versteeg G F. Density, Viscosity, Solubility, and Diffusivity of N_2O in Aqueous Amino Acid Salt Solutions. J. Chem. Eng. Data, 2001, 46:1357-t361
    [233] Miqueu C, Mendiboure B, Graciaa C, Lachaise J. Modelling of the surface tension of binary and ternary mixtures with the gradient theory of fluid interfaces. Fluid Phase Equilibria, 2004, 218:189-203
    [234] Sang Hyun Park, Ki Bong Lee, Jae Chun Hyun, and Sung Hyun Kim. Correlation and Prediction of the Solubility of Carbon Dioxide in Aqueous Alkanolamine and Mixed Alkanolamine Solutions. Ind. Eng. Chem. Res., 2002, 41:1658-1665
    [235] Tongfan Sun and Amyn S Teja. Density, Viscosity and Thermal Conductivity of Aqueous Solutions of Propylene Glycol, Dipropylene Glycol, and Tripropylene Glycol between 290 K and 460 K. J. Chem. Eng. Data, 2004, 49:1311-1317
    [236] 刘士星.化工原理.合肥:中国科学技术大学出版社,1994
    [237] 朱步瑶,赵国玺.液体表(界)面张力的测定.化学通报,1981,(6):21-26
    [238] Kumar P S, Hogendoorn J A, Versteeg G F, Feron P H M. Kinetics of the Reaction of Carbon Dioxide with Aqueous Potassium Salt Solutions of Tanrine and Glycine. AIChE J., 2003, 49:203-213
    [239] Hook R J. An Investigation of some sterically hindered amines as potential carbon dioxide scrubbing compounds. Ind. Eng. Chem. Res., 1997, 36:1779-1790
    [240] 马显光,翟建才.用奥氏黏度计测定液体的表明张力系数.电子科技大学学报,1997,26:308-311
    [241] 化工部化工设计院主编.氮肥工艺设计手册-物化数据分册.北京:石油化学工业出版社,1977.
    [242] 熊艰.滴体积测表面张力实验中滴管口径的逼近求法.大学化学,2000,15(6):40-43
    [243] Seo Dong-Joo and Hong Won-Hi. Solubilities of Carbon Dioxide in Aqueous Mixtures of Diethanolamine and 2-Amino-2-methyl-1-Propanol. J. Chem. Eng. Data, 1996, 4:258-260
    [244] Maham Y, Mather A E. Surface thermodynamics of aqueous solutions of alkylethanolamines. Fluid Phase Equilibria, 2001, 182:325-336
    [245] Nies N P, Gampbell G W. Boron Metallo-Boron compound and Borates. New York: Wiley, 1964
    [246] Weisenberger S, Schumpe A. Estimation of gas solubilities in salt solutions at temperatures from 273K to 363K. AIChE Journal, 1996, 42:298-300
    [247] Nishikawa N, Ishibashi M, Ohta H, Akutsu N, Matsumoto H, Kamata T, Kitamura H. CO_2 Removal by hollow-fiber gas-liquid contactor. Energy Conversion and Management, 1995, 36(6-9): 414-418
    [248] Feron P H M, Jansen A E. Capture of carbon-dioxide using membrane gas absorption and reuse in the horticultural industry. Energy Conversion and Management, 1995, 36(6- 9): 411-414
    [249] Penny D E, Ritter T J. Kinetic study of the reaction between carbon dioxide and primary amines. Journal of Chemical Society Faraday Society, 1983, 79:2103-2109
    [250] Jensen A, Faurholt C. Studies on Carbamates V. The carbamates of α-Alanine and β-Alanine. Acta Chemica Scandinavica, 1952, 6: 385-394
    [251] Jensen A, Jensen J B, Faurholt C. Studies on carbamates VI. The carbamate of Glycine. Acta Chemica Scandinavica, 1952, 6: 395-397
    
    [252] 赵殊,刘本才,廖蓉苏. 氨基酸在水溶液中的行为. 东北林业大学学报,2004, 32(4): 105-107
    [253] Kreulen H, Smolders C A, Versteeg G F, van Swaaij W P M. Microporous hollow fiber membrane modules as gas-liquid contactors. Part 2. Mass transfer with chemical reaction. J. Membr. Sci., 1993a, 78: 217-238
    [254] DeCoursey W J. Absorption with chemical reaction: development of a new relation for the Danckwerts model. Chem. Eng. Sci., 1974,29: 1867-1872
    [255] Hogendoorn J A, Bhat R D V, Kuipers J A M, van Swaaij W P, DeCoursey W J M, Versteeg G F. Approximation for the enhancement factor applicable to reversible reactions of finite rate in chemically loaded solutions. Chem. Eng. Sci., 1997, 52 (24): 4547—4559
    [256] Kreulen H, Smolders C A, Versteeg G F, van Swaaij w P M. Microporous hollow fiber membrane modulesas gas-liquid contactors. Part 1 Physical mass transfer processes. J. Membr. Sci., 1993, 78: 197—216
    [257] Wilke C R, Chang P. Correlation of diffusion coefficients in dilute solutions. AIChE J., 1955,1:264-270
    [258] Penny D E, Ritter T J. Kinetic study of the reaction between carbon dioxide and primary amines. Journal of Chemical Society Faraday Society, 1983, 79: 2103-2109
    [259] Pinsent B R W, Pearson L, Roughton F J M. The kinetics of combination of CO_2 with OH. Tranas. Faraday Soc, 1956, 52:1512-1520
    
    [260] Bosch H, Versteeg G F, van Swaaij W P M. Kinetics of the reaction of CO_2 with the sterically hindered amine 2-amino-2-methyl-1-propanol at 298 K. Chem. Eng. Sci., 1990,45: 1167-1173
    [261] Read A J. The first ionization constant of carbonic acid from 25 to 250℃ and to 2000 bar. J. Solution Chem., 1975,4: 53-70
    [262] Barth D, Tondre C, Lappai G, et al. Kinetic study of carbon dioxide reaction with tertiary amines in aqueous solutions. Phys. Chem., 1981, 85: 3660-3667
    [263] Danckwerts P V, Sharma M M. The absorption of carbon dioxide into solutions of alkalis and amines (with some notes on hydrogen sulphide and carbonyl sulphide). Chem. Eng., 1966, 44: 244-280
    [264] Oloffson Hepler L G. Thermodynamics of ionization of water over wide ranges of temperature and pressure. Solution Chem., 1975, 4(2): 127-143
    [265] Dindore V Y, Brilman D W F, Versteeg G F. Shell-side dispersion coefficients in a rectangular cross-flow hollow fiber membrane module. Chem. Eng. Res. Design, 2005, 83 (A3): 1-9
    [266] Dindore V Y, Brilman D W F, Versteeg G F. Modelling of cross-flow membrane contactors: Mass transfer with chemical reactions. J. Membr. Sci., 2005, 255: 275-289
    [267] Zhu Z, Hao Z, Shen Z, Chen J. Modified modeling of the effect of pH and viscosity on the mass transfer in hydrophobic hollow fiber membrane contactors. J. Membr. Sci., 2005, 250:269-276
    [268] Zhang X, Zhang Z, Zhang W, Hao X. Mathematic Model of Unsteady Penetration Mass Transfer in Randomly Packed Hollow Fiber Membrane Module. Chinese J. Chem. Eng., 2004, 12(2): 185-190.
    [269] David deMontigny, Paitoon Tontiwachwuthikul, Amit Chakma. Comparing the Absorption Performance of Packed Columns and Membrane Contactors. Ind. Eng. Chem. Res. 2005, 44:5726-5732
    [270] Smith M H. Unit Operations of Chemical Engineering, 6th ed. New York: McGraw-Hill Inc., 2001
    [271] 黄华江.实用化工计算机模拟——Matlab在化学工程中的应用.北京:化学工业出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700