固体超强碱在羟醛缩合中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们的生活水平不断提高,对化学品的需求不断增加和多样化,推动了化学工业的飞速发展。人们在享受化学工业繁荣带来的巨大财富和方便的同时,化学工业造成的环境污染也不断威胁着人们的健康乃至生存,造成严重的生态灾难。为保护地球——我们共同的家园,世界各国对化学工业发展带来的负面影响进行了沉痛反思。先发展后治理,随发展随治理的发展旧模式正被淘汰和摒弃,从源头上消除化学工业造成的污染,倡导可持续发展的新观念不断深入人心。随着环境保护意识的不断增强,对绿色化学研究的投入不断增加,化学工作者不断探索新的环境友好催化剂和环境友好合成工艺。因此,绿色化学研究得到了迅速的发展,开发对环境友好催化剂和合成新工艺成为当今化学领域研究的热点。
     固体碱、固体超强碱催化剂便是重要的绿色催化剂之一,与Lewis和Brφnsted液体碱性催化剂相比,固体碱催化剂具有明显的优势,尤其是固体超强碱催化剂具有催化活性高、反应温度低、易与反应体系分离、产品后处理简单、不产生环境污染、可再生重复使用等优点,可发展成为新一代对环境友好的催化材料。目前固体碱催化已成为绿色化学研究的重要内容之一,开拓其应用领域,特别是探索在有机合成中的应用研究,已成为化学工作者的使命和研究热点。
     怀着对新催化剂和催化性能探究的兴趣和愿望,笔者对固体超强碱催化剂的制备方法进行了研究,采用负载法把Na~+负载到γ-Al_2O_3载体的表面,合成了γ-Al_2O_2-O_(2-)2Na~+型固体超强碱催化剂,同时对γ-Al_2O_2-O_(2-)2Na~+型固体超强碱催化剂在羰基化合物缩合中的催化应用进行了探索性研究。
     本文第一章,阐述了固体碱催化剂以及固体超强碱催化剂的研究进展。分别对固体碱催化剂的分类、固体超强碱的研究进展、固体超强碱的制备、表征以及在有机催化合成中的应用进行了介绍。总结了现有固体碱催化剂的优点和缺陷,针对现有碱催化剂存在的不足,提出本课题的研究方案。
     第二章,以γ-Al_2O_3为载体,在较高的温度条件下先后与NaOH和Na反应,制备了γ-Al_2O_2-O_(2-)2Na~+型固体超强碱催化剂。并通过XRD、SEM、BET、红外光谱、碱强度和碱浓度测定等测试手段对γ-Al_2O_2-O_(2-)2Na~+型固体超强碱催化剂进行表征与分析。实验结果表明,该催化剂具有比较理想的孔道结构和比表面积,碱强度H-达37,属于固体超强碱的范畴。
     第三章,以γ-Al_2O_2-O_(2-)2Na~+型固体超强碱为催化剂催化合成α,α′-二亚苄基环己酮、α,α′-二亚糠基环己酮、α,α′--二亚糠基丙酮、2,5-二(对甲氧基亚苄基)环己酮及2,5-二(对甲氧基亚苄基)环戊酮,并对产物进行了FT-IR和1H-NMR表征,考察了反应物的摩尔比、反应温度、反应时间以及催化剂用量对产物收率的影响,优化了合成条件。结果表明,该催化剂催化羟醛缩合反应,反应温度低,催化效率高,工艺较简单,并对环境友好,具有广阔的工业应用价值。
With the continuous improvement of living standards, the demand for chemicals is increasingand diversification, the chemical industries have developed rapidly. People get the wealth andconvenience in the development of the chemical industry. The pollution caused by the chemicalindustry is constantly threatening people's health and survival. The chemical pollution is causingserious ecological disaster. For the protection of the Earth-our common home, the worldresponded with bitter reflection. The old mode of production should be eliminated and discarded.We should eliminate the pollution of the chemical industry and implement the sustainabledevelopment. With the growing awareness of social environmental protection, the research ofgreen chemistry is increasing. Chemists continue to explore new environmentally friendlycatalysts and environmentally friendly synthesis process. Therefore, green chemistry has been arapid development. The development of environmentally friendly catalysts and the synthesis ofnew technology become a hot topic in the field of chemical.
     Solid base and solid super base is the important one of the green catalyst. Compared with theLewis and Brφnsted catalyst, solid base have some obvious advantages. Because solid base andsolid super base have high catalytic activity, low reaction temperature, and easy to be separatedfrom the reaction, gain the products easily, no pollution to environment. Solid base and solidsuper base can be used as a new generation of environmentally friendly catalytic materials.
     Solid super base has become an important part of green chemistry research. Developingthe applications of solid super base, especially exploring the application of research in organicsynthesis has become a mission and research to chemists.
     With Interesting in new catalysts and catalytic properties, the preparation method of solidsuper base catalyst was studied. With γ-Al_2O_3sieve as the carrier, Na+was loaded in the carriersurface. A solid super base γ-Al_2O_2-O_(2-)2Na~+was prepared successfully. The applications of thesolid super base catalyst in organic synthesis were studied preliminary.
     In the first chapter of this paper, the research of solid base catalyst and solid super basecatalyst was summarized. Such as the classification, preparation of the solid super base catalysts,methods of superficial syndrome and the application in the organic synthesis and so on. Theadvantages and disadvantages of the solid base catalyst were summarized. And the topic researchplan was proposed.
     In the second chapter of this paper, based on the existing research of our laboratory, the catalyst γ-Al_2O_2-O_(2-)2Na~+was improved. The structure and surface properties of the obtainedmaterials were character by XRD, FT-IR, SEM, BET and the base strength of determination. Theresults showed that the catalyst had ideal structure. The base strength was H-≥37, and theγ-Al_2O_2-O_(2-)2Na~+is solid super base catalyst.
     In the third chapter of this paper, the solid super base catalyst γ-Al_2O_2-O_(2-)2Na~+was used inpreparation of α,α'-bis(benzylidene)cyclohexanones, α,α'-bis(furfuryl)cyclohexanones, α,α'-Difurf urylacetones,2,5-di(p-methoxy)cyclohexanones,2,5-di(p-methoxy)cyclopentanones. TheFT-IR and1H-NMR were characterized. The dosage of the solvent, reaction temperature,reaction time and the modification of the dosage of the super base catalyst were assessed. Theresults showed that the catalyst used in aldol reaction, the reaction temperature is low, highcatalytic efficiency, simple in the process, and environmentally friendly. The γ-Al_2O_2-O_(2-)2Na~+solid super base catalyst has a broad industrial application.
引文
[1] Hjeresen D L, Schuff D L, Boese J M, Green chemistry and education[J]. Journal ofChemical Education,2000,77(12).
    [2] Graedel T E. Green chemistry as systems science[J]. Pure and Applied Chemistry,2001,73(8):1243-1246.
    [3]朱清时.绿色化学与可持续发展[J].中国科学院院刊,1997,(6):415-420.
    [4]汞长生,张龙.绿色化学[M].武汉:华中科技大学出版社,2008,6:7-8.
    [5] Winterton N. Solubilization of polymers by ionic liquids[J].4281-4293
    [6] Tanabe K, Holderich W F, Industrial application of solid acid-base catalysts[J]. ApplCatal A:General,1999,181:399-434.
    [7] Ono Y. Solid base catalysts for the synthesis of fine chemicals[J]. J Catal,2003,216:406-415.
    [8]田部浩三.固体酸碱及其催化性质[M].北京:化学工业出版社,1979,5.
    [9]田部浩三.触媒,1985,27(3):198.
    [10] Pacheco M A, Marshall C L. Review of Dimethyl Carbonate (DMC) Manufacture andIts Characteristics as a Fuel Additive [J]. Energy&Fuels,1997,11:2-29.
    [11] Lin X,Chuah G K, Jaenicke S. Base-functionalized MCM-41as catalysts for thesynthesis of monoglycerides[J]. J Mol Catal A:Chemical,1999,150(1-2):287-294.
    [12]陈忠明,陶克毅.固体碱催化剂的研究进展[J].化工进展,1994,(2):18-25.
    [13] Hattori H. Heterogeneous basic catalysis[J]. J Chem Rev,95(3):537-558
    [14] Hattori H. Solid basic catalysis:generation of basic sites and application to organicsynthesis[J]. Appl Catal A:General,2001,222:247-259.
    [15]裴文,董志刚.金属氧化物固体碱在有机合成中的应用[J].有机化学,2010,30(9),1410-1418.
    [16]高智勤,江琦.固体碱催化剂及其催化机理[J].精细石油化工,2006,23(4),62-65.
    [17]高根之,刘洪润,顾珊珊.一种固体强碱和超强碱催化剂的制备工艺[P]. CN:101612559A,2009-12-30.
    [18] Pacheco M A,Marshall C L. Energy&Fuels,1997,11:2-29.
    [19]东北师范大学,华南师范大学等编.有机化学(下册),北京:高等教育出版社,1992:88-89.
    [20] Lin X,Chuah G K,Jaenicke S J. Mol. Catal. A: Chemical,1999,150:287-294.
    [21]黄志良.磷灰石矿物材料:化学工业出版社,2008,10:137-141.
    [22] FuY,BabaT,OnoY.APPI. Catal.A:General,1998,166:425-430.
    [23] Zhu J H, Wang Y, ChunYetal[J]. Am. Chem. Soe,Faraday Trans,1998,94:1163-1169.
    [24] Handa H,Baba T, Ono Y J. Chem. Soe. Faraday Trans.1998,94:451-454
    [25] Tanabe K,Holderich W F. Appl. Catal. A: General,199,181:399-434.
    [26]朱建华,淳远,王英等.科学通报,1999,44:897-902.
    [27]李修刚. SO42-/MxOy固体超强酸及γ-Al2O3-NaOH-Na固体超强碱的研究应用[D].曲阜:曲阜师范大学,2008.
    [28]单斌,韩新昶,林永祥.2Na+O2-/Al-MCM-41型固体超强碱催化剂的制备及表征[J].工业催化.
    [29] S V Bordawekar, E J Doskocil, R J Davis·Microcalorimetric study of CO2and NH3adsorption on Rb-and Sr-modified catalyst supports[J]. Langmuir,1998,14(7):1734-1738.
    [30] J H Zhu, Y Wang, Y Chun,etal. Dispersion of potas-sium nitrate and the resultingbasicity on alumina andzeolite NaY[J]. J Chem Soc Faraday Trans,1998,94(8):1163-1169.
    [31] K Tanabe, W F·Holderich, Industrial application of solid acid-base catalysts[J]. ApplCatal A: General,1999,181(2):399-434.
    [32] H Handa, T Baba, Y Ono. H-D exchange between methane and deuteriated potassiumamide supported on alumina[J]. J Chem Soc Faranday Trans,1998,94(3):451-454.
    [33]肖晓明.固体超强碱催化剂及其在有机合成中的应用[J].石油化工,1994,23(5):342-345.
    [34] Fadini A, Schnepel F M. Viffractional Spectroscopy. Chichests: Ellis Horwood Ltd,1989.
    [35] Knozinger H, Ratnasamy P. Catal Rev Sci Eng,19878,17:31.
    [36] Van Veen J A R, Weltmaaat F T G, Jonkers G. J Chem Soc Chem Commun,1985,1656.
    [37] Bish D I, Post J E, Structures and Structure Determination.Springer,1999.
    [38] Bark R T K, Catal Rev Sci Eng,1979,19:161.
    [39] Kim, H. J Kang B S, Kim M J et al. Transesterification of vegetable oil to biodieselusing heterrogeneous base catalyst[J]. Catalysis today,2004,93-95(1):315-320.
    [40] Lei, J. X; Shi, Q. J. Chem. Ind. Times2005,19(2),49.
    [41] HattoriH. Solid base catalysts generation of basic sites and application to organicsynthesis[J]. Applied Catalys is A: General2001,222(1):247-259.
    [42] Matsuhashi H, Hattori H[J]. Catal,1984;85:457.
    [43] Hattori A, Hattori H,Tanabe K. Double-bond migration of allylamine to enamine overbasi eoxide catalysts[J]. Catal,1980,65:246.
    [44] Srivastava V K, Bajaj H C, Jasra R V, et al Solid Base Catalysts for Isom erization of1-Methoxy-4-(2-Propen-1-Yl)Benzene to1-Methoxy-4-(1-Propen-1-Yl) Benzene CatalCommun,2003,4:543-548.
    [45]铃鸭刚夫,深尾正美,特公.1987,434,62-96.
    [46] Kabashima H, Tsuji H, Shibuya T, Hattori H, J Mol. Catal. A: Chem.2000,155,23.
    [47] Bhaskar V, Jean M C, Francois F. Adv. Synth. Catal.2005,347,767.
    [48]刘艳侠,孙鲲鹏,徐贤伦,分子催化,2008,22(3),205.
    [49] Podall H Foster W E. The side chain alkylation of toluol with olefinc over graphitecatalysts by the eombination of potassiumion. J org Chem,1958,23:401.
    [50]张怀彬,贾同文等.沸石分子筛在精细化工中的应用[J].精细石油化工,1992,21(1):6.
    [51] SidorenkoY N, Galieh P N, Gutyrya V S,etal. Catalyic activities of X-zeolite for theside chain alkylation of toluene with methamol. Dokl Akad Nauk SSSR,1967,173:132.
    [52]雷经新,石秋杰.化工时刊.2005,19(2):49-53.
    [53] Yadav V K, Kapoor K K. Tetrahedron,1996,52:3659.
    [54]刘水刚,黄世勇等,石油化工,2007,36(12),1250
    [55]陈英,韩金玉,刘艳平,天津大学学报,2007,40(3),285.
    [56] Yan, J. Mach. Cereals Oil Food Proc.2005,(8),47.
    [57] Gryglewicz, S. Bio. Tech.1999,70,249.
    [58]刘红润,顾珊珊等.固体超强碱催化合成生物柴油[J].辽宁石油化工大学学报,2009,29(1):38-41.
    [59] Roelofs J C A A, A J van Dillen, Jong K P de. Catal Lett,2001,74:91-95.
    [60] Climent M J, Fornes A C V, Guil-Lopez R,etal.Aldo.condensations on solid catalysts: Acooperative effect between weak acid and base site[J]. Adv Synth Catal,2002,344:1090-1096.
    [61] Ramani, A.; Chanda, B. M.; Velu, S. Green Chem.1999,1(3),163.
    [62] Cauval A, Renard G Brunel D. J Org Chem,1997,62:749-758.
    [63] Fraile J M, Garcia J, Mayoral J S. Catal Today,2000,57:3-8.
    [64]崔昌亿,王浔等.乙烯基降冰片烯异构化研究[J].吉林科技,1997,5,(3):17-24
    [65]丁元生,罗志臣,王浔等. Na-Na2CO3/γ-Al2O3型固体超强碱催化剂的制备及表征[J].精细石油化工,2004,1:31-33.
    [66] Kim, H. J Kang B S, Kim M J et al. Transesterification of vegetable oil to biodieselusing heterrogeneous base catalyst[J]. Catalysis today,2004,93-95(1):315-320.
    [67]王兵,覃超国,崔昌亿.固体超强碱Na-NaOH/γ-Al2O3碱性测定方法的研究[J].应用化工,2005,34(12):766-768.
    [68] FUSON RC, SAN T, DIEKMANN, Condensation of benzalacetophenone withphenylmagne sium bromide2-benzhydry-2-hydroxy-3,3-diphenylpropionic acid[J]. JOrg Chem,1962,27(A):1211-1223.
    [69] DELL J, LORAND T, SZABO D, et al. Cyclic and alicyclic ketones as precursorsforpyrimidine synthesis[J]. Pharmazie,1984,39:539-542.
    [70] WEI XiLian, Fu ShiZhou, WANG DaQ,et.Synthesis of2,6-bis(benzylidene) cyclohexanone and study of liquid crystal Behavior[J]. Science In China Press,2009,54(5):590-595.
    [71] Mazza L, Guarna A. An Improved Synthsis of1,3-Diphenyl-2-buten-1-ones (β-Methylchal cones)[J]. Synthesis,1980,(1):41.
    [72] Nakano T, Migita T. A convenient synthesis of α,α′-bis(benzylidene) cyclohexanone [J].Chem Lett,1993,12:2157~2158.
    [73]周建峰,徐继明,魏海等.固相合成α,α′-双亚苄基环烷酮[J].有机化学,2001,21:322-324.
    [74] Den G, Ren T.Indium Trichloride Catalyzed Aldol Condensations of Aldehydes andketones[J]. Synthetic Commwn,2003,33:2995-3001.
    [75] Aoyama Y, Tanaka Y, Yoshida T, Toi H, Ogoshi H.Catalytic Reactions of Metalloporphyrins: II. Activation and Catalytic Aldol Condensation of Ketone with Rhodi-um(III)-porphyrin Perchlorate under Neutral and Mild Conditions[J]. J Organometal Chem,1987,329:251-266.
    [76] Nakano T, Migita T. A convenient synthesis of α,α′-bis(benzylidene) cyclohexanone [J].Chem Lett,1993,12:2157-2158.
    [77] Zhang X Y, Fan X S, Niu H Y, Wang J. An Ionic Aas a Recyclable Medium for theGreen Preparation of α,α′-Bis(benzylidene)cycloalkanones Catalyzed FeCl3·6H2O[J].Green Chemt,2003,5:267-269.
    [78]陈良壁.常温微波催化合成二糠叉环己酮[J].南平师专学报,2006,25(2).
    [79]高南,张亚峰,等.改性糠醛的合成、表征及其在环氧灌浆材料中的应用[J].新型建筑材料.2010,5:70-74.
    [80]坛露璐,钱君律等.羟醛缩合催化剂研究进展[J].化学工业与工程,2006,23(1)69-74.
    [81]田部浩三,御园生诚等.新固体酸和碱及其催化作用[M].北京,化学工业出版社,1992.27,219-269.
    [82]刘秀娟,孙凌峰,叶文峰等.糠醛的碱性缩合反应及其在香料合成中的应用,2000,21(6):36-39.
    [83] Minai M. Moriyama process for the preparation of aromatic aldehydes[P]. US:4335363,1982-06-15.
    [84]黄应辉,徐兰杰,蒋燕兮等.亚糠基丙酮改性环氧树脂的结构与性能的研究[J].热固性树脂,1989,1:14-17.
    [85]黄成华,刘春玉.医药中间体糠叉丙酮合成条件的探讨[J].内江师范学院学报,2001,17(2):19-21.
    [86]刘洋,李帅,廖蓉苏等.亚糠基丙酮的合成工艺研究[J].精细化工中间体,2008,28(4):44-48.
    [87] Lee K H, Mar E C, Okamot o M et al. J Med Chem,1987,21(8):819
    [88] Hall I, Lee K H, Mar E C et al. J Med Chem,1977,20(3):333
    [89]杨玲,路军,白银娟.无溶剂InCl3·4H2O催化下微波促进芳香醛与环酮的缩合反应[J].有机化学,2003,23:659-661.
    [90]杨文智,李海鹰,黄顺生等.分子筛固载氟化钾催化芳香醛与环酮的缩合反应[J].有机化学,2005,25:994-996.
    [91]曾鸿耀,尹述凡,梦继本等.无溶剂NH2SO3H催化下超声促进环酮与芳香醛的Aldol缩合[J].有机化学,2007,27:528-531.
    [92]谭露璐,钱君律,伍艳辉.羟醛缩合催化剂研究进展[J].化学工业与工程,2006,23(1):70-74.
    [93] Deli J, Lorand T, Szabo D, Foldesi A. Potential Bio-activePyrimidine Derivatives.2-Amin-4-aryl-8-aryliden-3,4,5,6,7,8-hexahydroquinazdines[J]. Pharmazi,1984,39:539-540.
    [94] Hathaway B A.An Aldol Condensation Experiment using a Number of Aldehydes andKetones[J]. J Chem Educ,1987,64:367-368.
    [95] Nakano T, Migita T. A Convenient Synthesis of α,α′-Bis(benzylidene)cycloalkanones[J]. Chem Lett,1993,12:2157-2158.
    [96] Zheng M,Wang L,Shao J,Zhong Q. A Facile Synthesis of Bis(benzylidene)cycloalkanones Catalyzed by Bis(p-methoxyphenyl)telluroxide(BMPTO) under MicrowaveIr-radiation[J]. Synthetic Commu,1997,27:351-354.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700