稻田系统主要矿质元素生物有效性对大气CO_2浓度升高的响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工业革命以来,由于碳源的增加和碳汇的减少,大气CO2浓度增加了100 parts per million (ppm)。预计本世纪下半叶,大气CO2浓度将会倍增。大气CO2浓度的迅速增加将会显著影响生态系统的结构、功能和生态过程。虽然大气CO2浓度升高对生态系统的影响已有较多研究和报道,但对湿地生态系统的研究却较少。稻田是全球最大的人工湿地,除与诸多自然湿地生态系统高度的相似性外,其水土环境还较为稳定,利于系统水平上的采样研究。因此,借助于研究大气CO2浓度升高对稻田主要矿质元素的影响及相关机制可帮助我们认识未来大气模式下,自然湿地生态系统中矿质元素的响应,完善矿质元素循环的理论体系。为此,本研究借助稻田Free Air CO2 Enrichment (FACE)试验平台(位于江苏省江都市,始于2004年,32°35'5"N,119042'0"E,5ma.s.1.), CO2浓度设370μmol·mol-1和570μmol·mol-1两个水平,施N量设250 kg hm-2和125 kg hm-2两个水平,于2007和2008年水稻生长季研究了稻田主要矿质元素生物有效性在植株、田面水、土壤中同步变化及相关机制,以深刻了解大气CO2浓度升高对稻田生态系统矿质元素循环的影响及作用机理。
     主要研究结果如下:
     1.大气CO2浓度升高显著提高了水稻成熟期地上部总生物量及其组分茎、穗的生物量(P<0.05)。两种氮肥水平下,CO2浓度升高使地上部总生物量、茎生物量、穗生物量分别比对照平均提高了19.1%、21.9%、24.0%(P<0.05)。
     2.大气CO2浓度升高提高了水稻成熟期P、Ca、Mg、Fe、Mn、Zn在植株体内的含量。其中,高氮水平下,CO2浓度升高使P和Ca在叶中的含量分别提高了52.4%和19.9%(P<0.05);Fe和Zn在茎中提高了59.5%和61.0%(P<0.05);Ca和Mn在穗中提高了48.3%和47.1%(P<0.05)。
     3.大气CO2浓度升高提高了水稻成熟期其体内各主要矿质元素的累积量。其中,高氮水平下,CO2浓度升高使P在叶中累积量提高了63.8%(P<0.05);Mg、Mn、Zn在茎中提高了35.1%、24.9%、97.4%(P<0.05);N、P、Ca、Mg、Fe、Mn、Zn在穗中提高了29.9%、19.9%、86.0%、28.5%、53.0%、84.9%、38.3%(P<0.05)。低氮水平下,CO2浓度升高使Zn在茎中的累积量提高了86.8%(P<0.05);P、Ca、Mg、Si、Fe、Mn、Zn在穗中提高了31.1%、40.8%、29.4%、39.7%、138.9%、47.8%、35.1%(P<0.05)。
     4.大气CO2浓度升高提高了稻田0-15 cm土层中除N外的主要矿质元素生物有效态含量。两种氮肥水平下,CO2浓度升高使土壤P、K、Ca、Mg、Si、Fe、Mn、Zn生物有效态含量两年平均分别比对照提高了13.6%、9.4%、11.8%、8.3%、14.0%、15.7%、12.8%、196.8%,其中,2007年分别提高了18.5%、15.3%、7.5%、8.9%、19.4%、12.9%、6.8%、190.2%;2008年分别提高了8.7%、3.5%、16.2%、7.6%、8.7%、18.5%、18.7%、203.4%。
     5.大气CO2浓度升高提高了稻田田面水主要矿质元素生物有效态含量。两种氮肥水平下,CO2浓度升高使田面水中N、P、K、Ca、Mg、Si、Fe生物有效态含量两年平均分别比对照提高了14.3%、40.7%、30.3%、33.0%、22.8%、29.7%、26.3%,其中,2007年分别提高了19.4%、43.3%、35.3%、36.5%、25.3%、33.6%、20.8%;2008年分别提高了9.1%、38.2%、25.5%、29.6%、20.3%、25.8%、31.8%。
     6.大气CO2浓度升高改变了水稻土壤相关性状。两种氮肥水平下,CO2浓度升高降低了水稻各生育时期0-15cm土层pH值,使其比对照平均降低了3.3%,其中,使0-1 cm、1-5 cm、5-15 cm土层pH值分别比对照平均降低了5.1%、3.4%、1.2%。随土壤深度的增加,CO2浓度升高对土壤pH值的降低效应减小且土壤pH值逐渐升高。此外,不同氮肥水平下,CO2浓度升高提高了水稻各生育时期0-15 cm土层阳离子交换量,使其比对照平均提高了15.00%,其中,使0-1 cm、1-5 cm、5-15 cm土层阳离子交换量分别比对照平均提高了19.4%、19.3%、16.5%。同CO2浓度升高对土壤pH值效应类似,随土壤深度的增加,这种提高效应减小且土壤阳离子交换量逐渐减小。五年高浓度CO2处理还使不同氮肥水平下稻田0-15 cm、15-30 cm、30-50 cm土层的15N自然丰度比对照平均降低了19.3%(P<0.05)、11.7%(P<0.05)、7.0%。
     7.在降低稻田土壤pH值的同时,CO2浓度升高还降低了田面水pH值,使其比对照两年平均降低了2.3%,其中,2007年平均降低了2.5%;2008年平均降低了2.2%。CO2浓度升高还提高了不同氮肥水平下田面水中的微生物活性。两种氮肥水平下,CO2浓度升高使田面水中的微生物活性两年平均比对照提高了12.9%,其中,2007年提高了9.3%;2008年提高了16.4%。同时,CO2浓度升高还提高了两种氮肥水平下田面水中的微生物数量,使其在2007年比对照平均增加了25.4%(P<0.05)。
     8.除可提高田面水中可溶性氮(Dissolved Nitrogen, DN,即生物有效态氮)含量外,大气CO2浓度升高还提高了田面水中可溶性有机碳(Dissolved Organic Carbon,DOC)含量,使其在两种氮肥水平下两年平均比对照提高了18.0%,其中,2007年提高了28.8%,2008年提高了7.6%。同时,CO2浓度升高提高了不同氮肥水平下水稻各生育时期0-15 cm土层中DOC含量,使其在2008年比对照平均提高了18.5%。0-15 cm土层中DOC和DN含量均随水稻生育进程和土层深度的增加而降低。此外,DOC和DN在0-15 cm土层中的含量显著高于其在田面水中的含量(P<0.05)。
     9.大气C02浓度升高提高了稻田碳氮库容量。2008年,两种氮肥水平下,CO2浓度升高使水稻各生育时期田面水中总有机碳(Total Organic Carbon, TOC)和总氮(Total Nitrogen, TN)含量分别比对照平均提高了7.6%和9.9%。两种氮肥水平下,在FACE系统运行5年后,CO2浓度升高使TOC和TN在0-15 cm土层中含量分别平均提高了12.5%和15.5%(P<0.05);在15-30 cm土层中提高了22.7%和26.0%(P<0.05);在30-50 cm土层中提高了34.5%和35.1%。CO2浓度升高还影响了稻田碳氮比,两种氮肥水平下,使水稻成熟期地上部、叶、茎、穗中碳氮比分别平均提高了9.5%、13.1%、16.5%、5.6%;使水稻各生育时期田面水中的碳氮比平均降低了6.7%;使0-15 cm、15-30 cm、30-50 cm土壤中的碳氮比平均降低了6.5%、10.1%、4.4%;但却使水稻各生育时期0-15 cm土层中DOC/DN平均提高了43.7%。
     全文结论:
     1.大气CO2浓度升高通过显著促进水稻生长,来促使其对矿质元素的吸收,从而提高其成熟期生物量及矿质元素含量和累积量,加速了矿质元素从土壤中向植物体中的迁移。
     2.大气CO2浓度升高可提高主要矿质元素在稻田土壤中的生物有效态含量,同时降低土壤pH值,提高土壤阳离子交换量。CO2浓度升高通过提升植物光合作用,作用于根系-土壤生物学过程,显著增加由根系、微生物、有机质所产生的酸性物质,造成土壤酸化,从而降低土壤pH值,促进土壤中矿质元素从非生物有效态向生物有效态的转化,从而提高土壤中矿质元素生物有效态含量和土壤阳离子交换量。
     3.大气CO2浓度升高可提高主要矿质元素在田面水中的生物有效态含量。CO2浓度升高导致的土壤和田面水pH值下降将会直接促使土壤中矿质元素溶解于田面水中而增加其中的矿质元素生物有效态含量。同时,土壤矿质元素生物有效态含量上升将扩大矿质元素在土壤溶液中和田面水中的浓度差,进而加速其向田面水中扩散,进一步增加田面水中矿质元素生物有效态含量。
     4.大气CO2浓度升高可提高稻田土壤中DOC含量并降低了DN含量。DOC含量的增加主要源于根系分泌物和土壤有机质分解产物的增加。DN含量的减少则主要是由于CO2浓度升高加速了植株和土壤微生物的生长,增加了其需氮量,从而将土壤中更多的DN固定到植株和微生物的生物量中。同时,CO2浓度升高还提高了田面水DOC和DN含量,这主要是因为,土壤中DOC的增加加速了其向水土界面和田面水中的扩散,为其中的微生物提供了更多的碳源,从而提升了微生物的分解作用和生物固氮作用,最终增加了田面水中DOC和DN含量。
     5.大气CO2浓度升高可提高稻田土壤和田面水中TOC和TN含量。土壤中碳氮含量的提高主要是由于CO2浓度升高通过显著促进植株的生长和稻田生态系统的生物固氮作用而增强了稻田生态系统固定碳氮的能力,长期以来,使土壤碳氮库增加。田面水中碳氮含量的提高主要是由于土壤向田面水及水土界面中提供了更多的碳源,促进了其中微生物的生长和生物固氮作用,最终提升了田面水中碳氮含量。
The atmospheric CO2 concentration has risen 100 ppm since industrial revolution due to the increased carbon source and decreased carbon sink, and it is projected to double during the second half of this century. The rapidly increased atmospheric CO2 will deeply impact the structure, function and process of the ecosystem. Although the effects of elevated CO2 on the ecosystem have intensely studied, the wetland responses to elevated CO2 are poorly understood. Paddy is the largest artificial wetland in the world. Besides the highly similarity with the natural wetlands, it also possesses relatively stable water and soil conditions, facilitating systematic sampling and investigation. Therefore, to study the mineral responses to elevated CO2 at the ecosystem scale in paddy will greatly help us learn the mineral changes in wetlands under future atmospheric CO2 concentration and improve the theoretical system of mineral biogeochemical cycles. So a paddy Free Air CO2 Enrichment (FACE) system was set up in 2004 near Jiangdu city, Jiangsu province, China (32°35'5"N, 119°42'0"E,5 m a.s.l.). The system had two target CO2 concentrations, the ambient and the elevated (ambient+200 ppm), and two N fertilization levels,12.5 g m"2 and 25 gm-2. With the aid of this paddy FACE system, we investigated the mineral bioavailability in paddy at the ecosystem scale in 2007 and 2008. Our aims were to learn the impacts and relative mechanisms of elevated CO2 on the mineral bioavailability and thus understand the responses of mineral cycle in natural wetlands to elevated CO2.
     The results of this study are presented as follows:
     1. The atmospheric CO2 enrichment significantly increased the biomass of aboveground, stem and panicle at rice maturity. Under two N levels, elevated CO2 averagely increased the aboveground biomass, stem biomass and panicle biomass by 19.1%,21.9% and 24.0%, respectively (P<0.05). Under high N level, elevated CO2 averagely increased them by 18.7%,18.3% and 25.2%, respectively (P<0.05), and 1, elevated CO2 averagely increased them by 19.5%,25.8% and 22.7%, respectively, under high N level.
     2. The atmospheric CO2 enrichment increased the concentrations of P, Ca, Mg, Fe, Mn and Zn in the plants at rice maturity. Under high N level, elevated CO2 increased the P and Ca concentrations in leaf by 52.4% and 19.9%, respectively (P<0.05), the Fe and Zn concentrations in stem by 59.5% and 61.0%, respectively (P<0.05), and the Ca and Mn concentrations in panicle by 48.3% and 47.1%, respectively (P<0.05).
     3. The atmospheric CO2 enrichment increased the mineral accumulations in plants at rice maturity. Under high N levels, elevated CO2 increased the accumulations of P in leaf by 63.8% (P<0.05), the Mg、Mn、Zn in stem by 35.1%,24.9%,97.4%, respectively (P< 0.05), N, P, Ca, Mg, Fe, Mn, Zn in panicle by 29.9%,19.9%,86.0%,28.5%,53.0%,84.9%, 38.3%, respectively (P< 0.05). Under high N levels, elevated CO2 increased the accumulations of Zn in stem by 86.8%, respectively (P< 0.05), P, Ca, Mg, Si, Fe, Mn, Zn in panicle by 31.1%,40.8%,29.4%,39.7%,138.9%,47.8%,35.1%, respectively (P< 0.05)。
     4. The atmospheric CO2 enrichment increased the mineral bioavailable contents in 0-15 cm soil layer except for N. Averaged across two N levels and years, elevated CO2 increased the bioavailable contents of P, K, Ca, Mg, Si, Fe, Mn and Zn in the soil by 13.6%,9.4%, 11.8%,8.3%,14.0%,15.7%,12.8%and 196.8%, respectively. And in 2007, elevated CO2 increased them by 18.5%,15.3%,7.5%,8.9%,19.4%,12.9%,6.8% and 190.2%, respectively, across two N levels, and 8.7%,3.5%,16.2%,7.6%,8.7%,18.5%,18.7% and 203.4%, respectively, in 2008.
     5. The atmospheric CO2 enrichment increased mineral bioavailable contents in the surface water. Averaged across two N levels and years, elevated CO2 increased the bioavailable contents of N, P, K, Ca, Mg, Si and Fe in the surface water by 14.3%,40.7%, 30.3%,33.0%,22.8%29.7% and 26.3%, respectively. And in 2007, elevated CO2 increased them by 19.4%,43.3%,35.3%,36.5%,25.3%,33.6% and 20.8%, respectively, across two N levels, and 9.1%,38.2%,25.5%,29.6%,20.3%,25.8% and 31.8%, respectively, in 2008.
     6. The atmospheric CO2 enrichment changed the relative properties of paddy soil. Averaged across N levels and sampling dates, elevated CO2 decreased the 0-15 cm soil pH by 3.3%. And the pH of 0-1 cm,1-5 cm and 5-15 cm soil layers decreased 5.1%,3.4%and 1.2%, respectively, under elevated CO2 averaged across two N levels and sampling dates. With the increased soil depth, the CO2-led deduction effect on soil pH decreased and the soil pH increased. Besides, elevated CO2 increased 0-15 cm soil cation exchange capacity (CEC) by 15.0% averaged across two N levels and sampling dates. And the CEC of 0-1 cm, 1-5 cm,5-15 cm soil layers increased 19.4%,19.3% and 16.5%, respectively, by elevated CO2 averaged across two N levels and sampling dates. With the increased soil depth, both the stimulatory effect on soil CEC led by CO2 and the soil CEC decreased. The five-year CO2 fumigation decreased the natural 15N abundance of 0-15 cm,15-30 cm and 30-50 cm by 19.3% (P< 0.05),11.7%(P< 0.05) and 7.0%, respectively, averaged across two N levels.
     7. Along with the CO2-induced soil pH decrement, elevated CO2 also decreased the surface water pH. Averaged across two N levels and years, the surface water pH decreased 2.3%in the FACE plots than in the ambient. And it decreased 2.5% in 2007 and 2.2% in 2008. Additionally, elevated CO2 enhanced the microbial activities in the surface water by 12.9% averaged across two N levels and years. In 2007, the microbial activities increased 9.3% under elevated CO2 averaged across two N levels and sampling dates, and 16.4% in 2008. Along with the enhanced microbial activities, the microbial quantity in the surface water was also increased 25.4%(P< 0.05) by elevated CO2 averaged across two N levels and sampling dates in 2007.
     8. Besisdes the positive effects on the DN content in the surface water, elevated CO2 also increased the dissolved organic carbon (DOC) content in the surface water by 18.0% averaged across two N levels and years. In 2007, DOC contents in the surface water increased 28.8% by elevated CO2 averaged across two N levels and sampling dates, and 7.6% in 2008. Meanwhile, Elevated CO2 increased the DOC content in 0-15 cm soil layer by 26.3% averaged across two N levels and sampling dates in 2008. And in the soil layers of 0-1 cm,1-5 cm and 5-10 cm, DOC contents increased 30.7%,21.4% and 9.5% on average, respectively, by elevated CO2. Both with developed rice growth and increased soil depth, the DOC and DN contents in 0-15 cm soil layer all decreased. Besides, they were significantly higher in the surface soil than in the surface water (P<0.05).
     9. The atmospheric CO2 enrichment increased the accumulations of C and N in the paddy. In 2008 averaged across two N levels and sampling dates, elevated CO2 increased the total organic carbon (TOC) and total organic nitrogen (TN) contents in the surface water by 7.6% and 9.9%, respectively. Under two N levels, after FACE system five years operation, elevated CO2 increased TOC and TN contents in the 0-50 cm soil layer by 12.5% and 15.5%(P< 0.05), respectively, and 22.7% and 26.0%(P< 0.05) in 15-30 cm soil layer, and 34.5% and 35.1% in 30-50 cm soil layer. Elevated CO2 also influenced the C/N in paddy ecosystem. Averaged across two N levels, elevated CO2 increased C/N (represented by biomass/N) of aboveground, leaf, stem and panicle by 9.5%,13.1%,16.5% and 5.6%, respectively, and decreased the C/N of the surface water by 6.7%, and also decreased the C/N in the soil layers of 0-15 cm,15-30 cm and 30-50 cm by 6.5%,10.1% and 4.4%, respectively, but increased the DOC/DN in 0-15 cm soil layer by 43.7%.
     The conclusions are presented as follows:
     1. The atmospheric CO2 enrichment can promote rice growth and thus increase the mineral uptake by rice. So, the biomass, and the mineral concentrations and accumulations in all plant parts can be increased by elevated CO2 at rice maturity. Therefore, elevated CO2 can accelerate the mineral migration from the soil to the plant.
     2. The atmospheric CO2 enrichment can increase mineral bioavailable contents in soil, decrease soil pH and increase soil CEC. Through stimulating photosynthesis, elevated CO2 can significantly influence belowground biological processes and thus increase the acidic agents from roots, microorganisms and organic matter decomposition. The CO2-enhanced acidic agents in the soil can decrease soil pH and thus enhance mineral bioavailability through accelerating the mineral transformation from bio-inactive reservoirs to the bioactive ones.
     3. The atmospheric CO2 enrichment can increase the mineral bioavailable contents in the surface water. On one hand, The CO2-induced pH decrements of soil and the surface water can directly promote soil mineral dissolving into the surface water to increase their bioavailable contents. On the other hand, the CO2-enhanced mineral bioavailable content in the soil will enlarge the mineral concentration difference between the soil solution and the surface water. So this will accelerate the mineral diffusion from the soil to the surface water, further increasing the mineral bioavailable contents in the surface water.
     4. The atmospheric CO2 enrichment can increase DOC contents but decreased DN contents in the paddy soil. The CO2-enhanced root exudates and soil organic matter decomposition both contribute to the DOC increment. Through accelerating the growth of plant and microorganisms, elevated CO2 can increase N uptake by them. Therefore, more DN is assimilated into plant and microorgnism biomass and thus the DN content in the soil is decreased. At the same time, the CO2-led DOC increment in the soil can enlarge the difference of DOC concentration difference between the soil and the surface water. So, this will increase the DOC diffusion from the soil to the surface water to enhance the C source for microorganisms in the surface water. As a result, the microorganism-mediated biological processes (e.g. decomposition and biological N fixation) will increase. And finally, the DOC and DN content in the surface water increase.
     5. The atmospheric CO2 enrichment can increase the contents of TOC and TN in the surface water and soil. The increments of TOC and TN in the soil are mainly attributed to the stimulatory effects of elevated CO2 on the plant growth and biological N fixation in paddy ecosystem, which will result in the increments of C and N accumulations in the paddy ecosystem in the long term. Due to elevated CO2 promote more C source to the surface water and the interface of soil and water from the soil, the microorganisms growth and activities are increased there, including the biological N fixation. As a result, the TOC and TN contents in the surface water are increased by elevated CO2.
引文
1. Acock B. Effects of CO2 on photosynthesis, plant growth and other processes. In:Imball BA, Rosenberg NJ and Allen LH Jr. eds. In impact of CO2, trace gases, and climate change on global agriculture, ASA special publication No.53. American Society of Agronomy, Madison, Wisconsin, 1990,45-60.
    2. Ainsworth EA, Long SP. What have we learned from 15 years of free air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phtologyist,2005,165:351-372.
    3. Andrews JA, Schlesinger WH. Soil CO2 dynamics, acidification, and chemical weathering in a temperate forest with experimental CO2 enrichment. Global Biogeochemical Cycles.2001,15: 149-126.
    4. Baker JT. Yield responses of southern US rice cultivars to CO2 and temperature. Agricultural and Forest Meteorology,2004,122:129-137.
    5. Ball AS, Drake BG. Stimulation of soil respiration by carbon dioxide enrichment of marsh vegetation. Soil Biology & Biochemistry,1998,30:1203-1205
    6. Banfield JF, Barker WW, Welch SA, Taunton A. Biological impact on mineral dissolution: Application of the lichen model to understanding mineral weathering in the rhizosphere. Proceedings of the National Academy of Sciences of the United States of America,1999,96: 3404-3411.
    7. Berner RA. The rise of plants and their effect on weathering and atmospheric CO2. Science,1997, 276:544-546.
    8. Berntson GM, Bazzaz FA. Elevated CO2 and the magnitude and seasonal dynamics of root production and loss in Betula papyrifera. Plant and Soil,1997:190:211-216.
    9. Blank RR, Derner JD. Effects of CO2 enrichment on plant-soil relationships of Lepidium latifolium. Plant and Soil,2004,262:159-167.
    10. Booker FL, Maier CA.2001. Atmospheric carbon dioxide, irrigation, and fertilization effects on phenolic and nitrogen concentrations in loblolly pine (Pinus taeda) needles. Tree Physiology 21: 609-616.
    11. Bormann BT, Wang D, Bormann FH, Benoit G, April R, Snyder MC. Rapid, plant-induced weathering in an aggrading experimental ecosystem. Biogeochemistry.1998,43,129-155.
    12. Bridgham SD, Megonigal JP, Keller JK, Bliss NB, Trettin C. The carbon balance of north American wetlands. Wetlands,2006,26,889-916.
    13. Bruce KD, Jones TH, Bezemer TM, Thompson LJ, Ritchie DA. The effect of elevated atmospheric carbon dioxide levels on soil bacterial communities. Global Change Biology,2000,6: 427-434.
    14.蔡昆争,骆世明,段舜山.水稻根系的空间分布及其与产量的关系.华南农业大学学报(自然科学版),2003,24(3):1-4.
    15. Cao H, Sun H, Yang H, Sun B, Zhao Q. A review:soil enzyme activity and its indication for soil quality. Chinese Journal of applied Environment and Biology,2003,9(1):105-109.
    16. Chaudhuri UN, Kirkham MB, Kanemasu ET. Root growth of winter wheat under elevated carbon dioxide and drought. Crop Science,1990,30:853-857.
    17. Cheng W, Inubushi K, Yagi K, Sakai H, Kobayashi K. Effects of elevated carbon dioxide concentration on biological nitrogen fixation, nitrogen mineralization and carbon decomposition in submerged rice soil. Biology and Fertility of Soils,2001,34:7-13.
    18.陈改苹,朱建国,程磊.高CO2浓度下根系分泌物的研究进展.土壤,2005,37(6):602-606.
    19.程磊,朱建国,陈改苹,周淼,曾青,谢祖彬,庞静.大气CO2浓度升高和氮肥施用对小麦生长期间土壤溶液阴离子含量的影响.土壤,2005,37(1):80-84.
    20. Cheng L, Zhu J, Chen G, Zheng X, Oh NH, Rufty TW, Richter DD, Hu S.2010. Atmospheric CO2 enrichment facilitates cation release from soil. Ecology Letters,13:284-291.
    21.陈利军,武志杰,黄国宏,周礼恺.大气CO2增加对土壤脲酶、磷酸酶活性的影响.应用生态学报,2002,13(10):1356-1357.
    22. Cheng W, Johnson DW. Elevated CO2, rhizosphere process and soil organic matter decomposition. Plant and Soil,1998,202:167-174.
    23. Cleveland CC, Townsend AR, Schimel DS, Fisher H, Howarth RW, Hedin LO, Perakis SS, Latty EF, Fischer JCV, Elseroad A, Wasson MF. Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochemical Cycles,1999,13,623-645.
    24. Cook BD, Allan DL. Dissolved organic carbon in old field soils:compositional changes during the biodegradation of soil organic matter. Soil Biology & Biochemistry,1992,24,595-600.
    25. Cure JD, Acock B. Crop responses to carbon dioxide doubling:A literature survey. Agricultural and Forest Meteorology,1986:38:127-145.
    26. Currie WS, Aber JD, McDowell WH, Boone RD, Magill AH. Vertical transport of dissolved organic C and N under long-term N amendments in pine and hardwood forests. Biogeochemistry, 1996,35:471-505.
    27. Curtis PS, Balduman LM, Drake BG, Whigham DF. Elevated atmospheric CO2 effects on belowground progresses in C3 and C4 estuarine marsh communities. Ecology,1990,71, 2001-2006.
    28. Dacey JWH, Drake BG, Klug MJ. Stimulation of methane emission by carbon dioxide enrichment of marsh vegetation. Nature,1994,370,47-49.
    29. Dakora FD, Drake BG. Elevated CO2 stimulates associative N2 fixation in a C3 plant of the Chesapeake Bay wetland. Plant Cell & Environment 2000,23:943-953.
    30. Dexter PB.1998. Rice fortification for developing countries. Opportunities for micronutrient interventions (OMNI), the USAID micronutrient program (MOST), International Science & Technology Institute, Arlington, VA.
    31. Dhillion SS, Roy J, Abrams M. Assessing the impact of elevated CO2 on soil microbial activity in a Mediterranean model ecosystem. Plant and Soil,1996,187:333-342.
    32. Diaz S, Grime JP, Harris J, Mcpherson E. Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide. Nature,1993:364:616-617.
    33. Ebersberger D, Niklaus PA, Kandeler E. Long term CO2 enrichment stimulates N-minerralisation and enzyme activities in calcareous grass and Soil. Soil Biology & Biochemistry,2003,35: 951-965.
    34. Erickson JE, Megonigal JP, Peresta G, Drake BG. Salinity and sea level mediate elevated CO2 effects on C3-C4 plant interactions and tissue nitrogen in a Chesapeake Bay tidal wetland. Global Change Biology,2007,13:202-215.
    35. Fangmeier A, Gruters U, Hogy P, Vermehren B, Jager HJ.1997. Effects of elevated CO2, nitrogen supply and tropospheric ozone on spring wheat-Ⅱ. nutrients (N, P, K, S, Ca, Mg, Fe, Mn, Zn). Environmental Pollution 96:43-59.
    36. Fenner N, Ostle NJ, McNamara N, Sparks T, Harmens H, Reynolds B, Freeman C. Elevated CO2 effects on peatland plant community carbon dynamics and DOC production. Ecosystems,2007, 10:635-647.
    37. Finzi AC, Moore DJP, Delucia EH, Lichter J, Hofmockel KS, Jackson RB, Kim HS, Matamala R, Mccarthy HR, Oren R, Pippen JS, Schlesinger WH. Progressive nitrogen limitation of ecosystem processes under elevated CO2 in a warm-temperate forest. Ecology,2006,87:15-25.
    38. Fischer ES, Bremer E. Influence of magnesium deficiency on rates of leaf expansion, starch and sucrose accumulation, and net assimilation in Phaseolus vulgaris. Physiologia Plantarum,1993, 89:271-276.
    39. Freeman C, Evans CD, Monteith DT, Reynolds B, Fenner N. Export of organic carbon from peat soils. Nature,2001,412:785.
    40. Freeman C, Fenner N, Ostle NJ, Kang H, Dowrick DJ, Reynolds B, Lock MA, Sleep D, Hughes S, Hudson J. Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature,2004,430,195-198.
    41. Fuhrer J. Agroecosystem response to combinations of elevated CO2, ozone and global climate change. Agriculture, Ecosystems and Environment,2003,97:1-20.
    42. Gill RA, Anderson LJ, Polley HW, Johnson HB, Jackson RB. Potential nitrogen constraints on soil carbon sequestration under low and elevated atmospheric CO2. Ecology,2006,87:41-52.
    43. Gong M, Chen SN, Song Y, Li Z. Effect of calcium and calmodulin on intrinsic heat tolerance in relation to antioxidant system in maize seedling. Australian Journal of Plant Physiology,1997,24: 371-379.
    44. Guo J, Zhang M, Zhang L, Deng A, Bian X, Zhu J, Zhang W. Responses of dissolved organic carbon and dissolved nitrogen in surface water and soil to CO2 enrichment in paddy field. Agriculture, Ecosystems & Environment,2011,140:273-279.
    45. Hassink J. Effects of soil texture and grassland management on soil organic C and N and rates of C and N mineralization. Soil Biology & Biochemistry,1994,26:1221-1231.
    46. Haynes RJ, Swift RS. Effects of soil acidification on the chemical extractability of Fe, Mn, Zn and Cu and the growth and micronutrient uptake of highbush blueberry plants. Plant and Soil, 1985,84:201-212.
    47. Hedin LO, Armesto JJ, Johnson AH. Patterns of nutrient loss from unpolluted oldgrowth temperate forest:evaluation of biogeochemical theory. Ecology,1995:76:493-509.
    48. Hodge A, Paterson E, Grayston SJ, Campbell CD, Ord BG, Killham K. Characterization and microbial utilisation of exudate material from the rhizosphere of lolium perenne grown under CO2 enrichment. Soil Biology & Biochemistry,1998,30:1033-1043.
    49. Hoque MM, Inubushi K, Miura S, Kobayashi K, Kim HY, Okada M, Yabashi S. Biological dinitrogen fixation and soil microbial biomass carbon as influenced by free-air carbon dioxide enrichment (FACE) at three levels of nitrogen fertilization in a paddy field. Biology and Fertility of Soils,2001,34:453-459.
    50. Hoque MM, Inubushi K, Miura S, Kobayashi K, Kim HY, Okada M, Yabashi S. Nitrogen dynamics in paddy field as influenced by free-air CO2 enrichment (FACE) at three levels of nitrogen fertilization. Nutrient Cycling in Agroecosystems,2002,63:301-308.
    51. Hornung M, Reynold B. The effects of natural and anthropogenic environmental changes on ecosystem processes at the catchment scale. Trends in Ecology & Evolution,1995,10,443-449.
    52. Houle D, Ouimet R, Couture S, Gagnon C. Base cation reservoirs in soil control the buffering capacity of lakes in forested catchments. Canadian Journal of Fisheries and Aquatic Sciences, 2006,63,471-474.
    53. Hu S, Chapin Ⅲ FS, Firestone MK, Field CB, Chiariello NR. Nitrogen limitation of microbial decomposition in a grassland under elevated CO2. Nature,2001,409:188-191.
    54. Hu S, Firestone MK, Chapin Ⅲ FS. Soil microbial feedbacks to atmospheric CO2 enrichment. Trends in Ecology & Evolution,1999,14:433-437.
    55. Hu S, van Bruggen AHC. Microbial dynamics associated with multiphasic decomposition of 14C-labeled cellulose in soil. Microbial Ecology,1997,33:134-143.
    56. Hungate BA, Holland EA, Jackson RB, Chapin Ⅲ FS, Mooney HA, Field CB. The fate of carbon in grasslands under carbon dioxide enrichment. Nature,1997,388:576-579.
    57. Hungate BA, Johnson DW, Dijkstra P, Hymus G, Stiling P, Megonigal JP, Pagel AL, Moan JL, Day F, Li J, Hinkle CR, Drake BG. Nitrogen cycling during seven years of atmospheric CO2 enrichment in a scrub oak woodland. Ecology,2006,87:26-40.
    58. Idso SB, Kimball BA. Seasonal fine-root biomass development of sour orange trees grown in atmospheres of ambient and elevated CO2 concentration. Plant Cell & Environment,1992,15: 337-341.
    59. Inubushi K, Cheng W, Aonuma S, Hoque MM, Kobayashi K, Miura S, Kim HY, Okada M. Effects of free-air CO2 enrichment (FACE) on CH4 emission from a rice paddy field. Global Change Biology,2003,9:1458-1464.
    60. Inubushi K, Hoque MM, Miura S, Kobayashi K, Kim HY, Okuda M, Yabashi S. Effects of free-air CO2 enrichment (FACE) on microbial biomass in paddy field soil. Soil Science & Plant Nutrient, 2001,47 (4):737-745.
    61. IPCC. Summary for Policymakers. In:Climate Change 2007:The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.2007
    62.贾夏.高浓度CO2下红松和长白赤松土壤微生物活性研究.沈阳:中国科学院沈阳应用生态研究所,2005.
    63. Jeziorski A, Yan ND, Paterson AM, DeSellas AM, Turner MA, Jeffries DS, Keller B, Weeber RC, McNicol DK, Palmer ME, McIver K, Arseneau K, Ginn BK, Cumming BF, Smol JP. The widespread threat of calcium decline in fresh waters, Science,2008,322,1374-1377.
    64. Jin C, Du S, Chen W, Li G, Zhang Y, Zheng S.. Elevated carbon dioxide improves plant Fe nutrition through enhancing the Fe-deficiency-induced responses under Fe-limited conditions in tomato (Lycopersicon esculentum Mill). Plant Physiology,2009, doi:10.1104/pp.109.136721.
    65. Jones DL, Willett VB. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biology & Biochemistry,2006,38: 991-999.
    66. Kampichler C, Kandeler E, Bardgett RD, Jones TH, Thompson LJ. Impact of elevated atmospheric CO2 concentration on soil microbial biomass and activity in a complex, weedy field model ecosystem. Global Change Biology,1998,4:335-346.
    67. Kandeler E, Tscherko D, Bardegett RD, Hobbs PJ, Kampichler C, Jones TH. The response of soil microorganisms and roots to elevated CO2 and temperature in a terrestrial model ecosystem. Plant and Soil,1998,202:251-262.
    68. Kaye JP, Hart SC. Competition for nitrogen between plants and soil microorganisms. Trends in Ecology & Evolution 1997,12:139-143.
    69. Keller JK, Wolf AA, Weisenhorn PB, Drake BG, Megonigal JP. Elevated CO2 affects porewater chemistry in a brackish marsh. Biogeochemistry,2009,96:101-117.
    70. Kerr SC, Shafer MM, Overdier J, Armstrong DE. Hydrologic and biogeochemical controls on trace element export from northern Wisconsin wetlands. Biogeochemistry,2008,89:273-294.
    71. Kim HY, Lieffering M, Miura S, Kobayashi K, Okada M. Growth and nitrogen uptake of CO2-enriched rice under field conditions. New Phytologist,2001,150:223-229.
    72. Kim HY, Lieffering M, Kobayashi K, Okada M. Miura S. Seasonal changes in the effects of elevated CO2 on rice at three levels of nitrogen supply:a free air CO2 enrichment (FACE) experiment. Global Change Biology,2003,9:826-837.
    73. Kimball BA, Kobayashi K, Bindi M.. Responses of agricultural crops to Free-air CO2 Enrichment. Advances in Agronomy,2002:77,293-368.
    74. Kyaw KM, Toyota K, Okazaki M, Motobayashi T, Tanaka H. Nitrogen balance in a paddy field planted with whole crop rice (Oryza sativa cv. Kusahonami) during two rice-growing seasons. Biology and Fertility of Soils,2005,42:72-82.
    75. Ladha JK. Watanabe I, Roger PA. Biological nitrogen fixation in wetland rice. In:Proceedings of a conference on women in rice farming systems.1983.
    76. Langley JA, McKee KL, Cahoon DR, Cherry JA, Megonigal JP. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise. Proceedings of the National Academy of Sciences of the United States of America,2009,106:6182-6186.
    77. Langley JA, Megonigal JP. Ecosystem response to elevated CO2 levels limited by nitrogen-induced plant species shift. Nature,2010,466:96-99.
    78. Larson JL, Zak DR, Sinsabaugh RL. Extracellular enzyme activity beneath temperate trees growing under elevated carbon dioxide and ozone. Soil Science Society of America Journal 2002, 66:1848-1856.
    79. Lewis JD, Wang X, Griffin KL, Tissue DT. Age at flowering differentially affects vegetative and reproductive responses of a determinate annual plant to elevated carbon dioxide. Oecologia,2004: 135:194-201.
    80. Li Q, Liang W, Jiang Y, Shi Y, Zhu J, Neher DA. Effect of elevated CO2 and N fertilisation on soil nematode abundance and diversity in a wheat field. Applied Soil Ecology,2007,36,63-69.
    81.李延,唐建海,李秀芳.水稻镁肥肥效及镁素营养诊断指标的研究.中国农学通报,1994,10(2):12-14.
    82.李杨,徐国强,黄国宏,史奕.开放式空气二氧化碳浓度增高(FACE)对稻麦轮作土壤微生物数量的影响.应用生态学报,2004,15:1847-1850.
    83.廖轶,陈根云,张海波,蔡时青,朱建国,韩勇,刘钢,许大全.应用生态学报,2002,13(10):1205-1209.
    84. Likens GE, Driscoll CT, Buso DC. Long-term effects of acid rain:Response and recovery of a forest ecosystem. Science,1996,272:244-246.
    85. Likens GE, Driscoll CT, Buso DC, Siccama TG, Johnson CE, Lovett GM, Fahey TJ, Reiners WA, Ryan DF, Martin CW, Bailey SW. The biogeochemistry of calcium at Hubbard Brook, Biogeochemistry,1998,41,89-173.
    86.刘钢,韩勇,朱建国,冈田益己,中村浩史,吉本真由美.稻麦轮作FACE系统平台Ⅰ.系统结构与控制.应用生态学报,2002,13(10):1253-1258.
    87. Liu H, Yang L, Wang Y, Huang J, Zhu J, Wang Y,, Dong G, Liu G. Yield formation of CO2-enriched hybrid rice cultivar Shanyou 63 under fully open-air field conditions. Field Crops Research,2008,108:93-100.
    88. Loladze I. Rising atmospheric CO2 and human nutrition:toward globally imbalanced plant stoichiometry? Trends in Ecology & Evolution,2002,17:457-461.
    89. Long SP, Ainsworth EA, Leakey ADB, Nosberger J, Ort DR. Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science,2006 312: 1918-1921.
    90.鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,2000.
    91.罗卫红,Yoshimoto M,戴剑峰,朱建国,韩勇,刘刚.开放式空气CO2浓度增高对水稻冠层 能量平衡的影响.应用生态学报,2002,13(10):1235-1239.
    92.罗艳.土壤微生物对大气CO2浓度升高的响应.生态环境,2003,12(3):357-360.
    93. Luo Y, Su B, Currie WS, Dukes JS, Finzi A, Hartwig U, Hungate B, McMurtrie RE, Oren R, Parton WJ, Pataki DE, Shaw MR, Zak DR, Field CB. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience,2004,54:731-739.
    94. Ma H, Zhu J, Liu G, Xie Z, Wang Y, Yang L, Zeng Q. Availability of soil nitrogen and phosphorus in a typical rice-wheat rotation system under elevated atmospheric [CO2]. Field Crops Research, 2007,100:44-51.
    95. Ma H, Zhu J, Xie Z, Liu G, Zeng Q, Han Y. Responses of rice and winter wheat to free-air CO2 enrichment (China FACE) at rice/wheat rotation system. Plant and Soil,2007,294:137-146.
    96.马红亮,朱建国,谢祖彬,张雅丽,刘刚,曾青.开放式空气CO2浓度升高对水稻土壤可溶性C、N和P的影响.土壤,2004,36(4):392-372.
    97. Manderscheid R, Bender J, Jager HJ, Weigel HJ.. Effects of season long CO2 enrichment on cereals. II. Nutrient concentrations and grain quality. Agriculture, Ecosystems and Environment, 1995,54:175-185.
    98. Markewitz D, Davidson EA, de O. Figueiredo R, Victoria RL, Krusche AV. Control of cation concentrations in stream waters by surface soil processes in an Amazonian watershed. Nature,410: 802-805.
    99. Marsh AS, Rasse DP, Drake BG, Megonigal JP. Effect of elevated CO2 on carbon pools and fluxes in a brackish marsh. Estuaries,2005,28:694-704.
    100. Matamala R, Drake BG.. The influence of atmospheric CO2 enrichment on plant-soil nitrogen interactions in a wetland plant community on the Chesapeake Bay. Plant and Soil,1999,210: 93-101.
    101. Mayr C, Miller M, Insam H. Elevated CO2 alters commmunity-level physiological profiles and enzymes activities in alpine grassland. Journal of Microbiology Methods,1999,36:35-43.
    102. McGuire AD, Melillo JM, Joyce LA. The role of nitrogen in the response of forest net primary production to elevated atmospheric carbon dioxide. Annual Review of Ecology, Evolution, and Systematics,1995,26:473-503.
    103. Merckx R, van Ginkel JH, Sinnaeve J, Cremers A. Plant-induced changes in the rhizosphere of maize and wheat II. Complexation of cobalt, zinc and manganese in the rhizosphere of maize and wheat. Plant and Soil,1986,96,95-107.
    104. Meybeck M. Carbon, nitrogen, and phosphorus, transport by world rivers. American Journal of Science,1982,282:401-450.
    105. Montealegre CM, van Kessel C, Russelle MP, Sadowsky MJ. Changes in microbial activity and composition in a pasture ecosystem exposed to elevated atmospheric carbon dioxide. Plant and Soil,2002,243:197-207.
    106. Moorhead DL, Linkins AE. Elevated CO2 alters below-ground exoenzyme activities in tussock tundra. Plant and Soil,1997,189:321-329.
    107. Niklaus PA, Korner C. Responses of soil microbiota of a late successional alpine grassland to long term CO2 enrichment. Plant and Soil,1996,184:219-229.
    108. Norby RJ, Iversen CM. Nitrogen uptake, distribution, turnover, and efficiency of use in a CO2-enriched sweetgum forest. Ecology,2006,87:5-14.
    109. Norby RJ, O'Neill EG, Hood WG, Luxmoore RJ. Carbon allocation, root exudation and mycorrhizal colonization of Pinus echinata seedlings grown under CO2 enrichment. Tree Physiol., 1987,3:203-210.
    110. Okada M, Lieffering M, Nakamura H, Yoshimoto M, Kim HY, Kobayashi K. Free-air CO2 enrichment (FACE) using pure CO2 injection:system description. New Phytologist,2001,150: 251-260.
    111. Okazaki R, Smith HW, Moodie CD. Development of a cation-exchange capacity procedure with few inherent errors. Soil Science,1962,93:343-349.
    112. Olivie-Lauquet G, Gruau G, Dia A, Riou C, Jaffrezic A, Henin O. Release of trace elements in wetlands:role of seasonal variability. Water Research,2001,35,943-952.
    113. Olk DC, Brunetti G, Senesi N. Decrease in humification of organic matter with intensified lowland rice cropping:a wet chemical and spectroscopic investigation. Soil Science Society of America Journal,2000,64:1337-1347.
    114. Oren R, Ellsworth DS, Johnsen KH, Phillips N, Ewers BE, Maier C, Schafer KVR, McCarthy H, Hendrey G, McNulty SG, Katul GG. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature,2001,411:469-472.
    115. Pan G, Li L, Wu L, Zhang X. Storage and sequestration potential of topsoil organic carbon in China's paddy soils. Global Change Biology,2003,10:79-92.
    116.庞静,朱建国,谢祖彬,陈改苹,刘刚,张雅丽.自由空气CO2浓度升高对水稻营养元素吸收和籽粒中营养元素含量的影响.中国水稻科学,2005,19(4):350-354.
    117. Paterson E, Hall JM, Rattray EAS, Griffiths BS, Ritz K, Killham K. Effect of elevated CO2 on rhizosphere carbon flow and soil microbial processes. Global Change Biology,1997,3:363-377.
    118. Perakis SS, Hedin LO. Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds. Nature,2002,415:416-419.
    119. Phillios DA, Newell KD, Hassell SA, Felling CE. The effect of CO2 enrichment on root nodule development and symbiotic N2 reduction in pisum sativum L. American Journal of Botany,1976, 63:356-362.
    120. Phillips RL, Zak DR, Holmes WE, While DC. Microbial community composition and function beneath temperate trees exposed to elevated atmospheric carbon dioxide and ozone. Oecologia, 2002,131:236-244.
    121. Prior SA, Rogers HH, Rrunion GB, Hendrey GR. Free-air CO2 enrichment of cotton:vertical and lateral root distribution patterns. Plant and Soil,1994,165:33-44.
    122. Prior SA, Torbert HA, Runion GB, Rogers HH, Wood CW, Kimball BA, Lamorte RL, Pinter PJ, Wall GW. Free-air carbon dioxide enrichment of wheat:soil carbon and nitrogen dynamics. Journal of Environmental Quality,1997,26:1161-1166.
    123.任思荣.高CO2浓度对稻田土壤养分有效性的影响:[硕士学位论文].南京:南京农业大学,2007.
    124.任思荣,朱建国,李辉信,王小治,谢祖彬,曾青.大气CO2浓度升高对稻田土壤中微量元素的影响.生态环境,2007,16(3):982-986.
    125. Reich PB, Hobbie SE, Lee T, Ellsworth DS, West JB, Tilman D, Knops JMH, Naeem S, Trost J. Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature,2006,440: 922-925.
    126. Reuss JO, Cosby BJ, Wright RF. Chemical processes governing soil and water acidification. Nature,1987,329:27-32.
    127. Rice CW, Garcia FO, Hampton CO, Owensby CE. Soil microbial response in tall grass prairie to elevated CO2. Plant and Soil,1994,165:67-74.
    128. Roger PA, Ladha JK. Biological N2 fixation in wetland rice fields:estimation and contribution to nitrogen balance. Plant and Soil,1992,141:41-55.
    129. Rogers HH, Peterson CM, Mccrimmon JN, Cure JD. Response of plant roots to elevated atmospheric carbon dioxide. Plant, Cell & Environment,1992,15:749-752.
    130. Ronn R, Gavito M, Larsen J, Jakobsen I, Frederiksen H, Christensen S. Response of free-living soil protozoa and microorganisms to elevated atmospheric CO2 and presence of mycorrhiza. Soil Biology & Biochemistry,2002,34:923-932.
    131. Ross DT, Saggar S, Tate KR, et al Elevated CO2 and temperature on soil carbon and nitrogen cycling in ryegrass/white clover turves of a Psammaquept soil. Plant and Soil,1996,182: 185-198.
    132. Ross DT, Tate KR, Newton PCD. Elevated CO2 and temperature on soil carbon and nitrogen cycling in ryegrass/white clover turves of an Endoaquept soil. Plant and Soil,1995,176:37-49.
    133. Rovira A D. Plant root exudates. The Botanical Review,1969,35:35-57.
    134. Runion GB, Curl EA, Rogers HH, Backman PA, Kabana RR, Helms BE. Effects of free-air CO2 enrichment on microbial population in the rhizosphere and phyllosphere of cotton. Agricultural and Forest Meteorology,1994,70:117-130.
    135. Sabine CL, Heimann M, Artaxo P, Bakker DCE, Chen CTA, Field CB, Gruber N, Le Quere C, Prinn RG, Richey JE, Lankao PR, Sathaye JA, Valentini R. Current status and past trends of the carbon cycle. In "Toward CO2 stabilization, issues, strategies, and consequences", Island Press, Washington, DC, USA.2004.
    136. Sanchez PA, Swaminathan MS. Cutting world hunger in half. Science,2005,307:357-359.
    137. Sass RL, Cicerone RJ. Photosynthate allocations in rice plants:Food production or atmospheric methane? Proceedings of the National Academy of Sciences of the United States of America, 2002,99:11993-11995.
    138. Sauer D, Saccone L, Conley DJ, Herrmann L, Sommer M. Review of methodologies for extracting plant-available and amorphous Si from soils and aquatic sediments. Biogeochemistry, 2006:80:89-108.
    139. Savithri P, Perumal R, Nagarajan R. Soil and crop management technologies for enhancing rice production under micronutrient constraints. Nutrient Cycling in Agroecosystems,1999 53:83-92.
    140. Schlesinger WH. Biogeochemistry:An Analysis of Global Change. Academic Press, San Diego, CA.1997
    141. Shaul O. Magnesium transport and function in plants:the tip of the iceberg. BioMetals,2002,15: 309-323.
    142. Shearer G, Kohl DH, Chien SH. The nitrogen-15 abundance in a wide variety of soils. Soil Science Society of America Journal,1978,42:899-902.
    143. Shearer GB, Kohl DH, Commoner B. The precision of determinations of the natural abundance of nitrogen-15 in soils, fertilizers, and shelf chemicals. Soil Science,1974,118:308-316.
    144.史建伟,王孟本,张育平,李俊英.大气CO2浓度升高对植物细根影响的研究进展.农业环境科学学报,2007,26(增刊):334-339.
    145. Solomon S, Qin D, Manning M, Alley RB, Berntsen T, Bindoff NL, Chen Z, Chidthaisong A, Gregory JM, Hegerl GC, Heimann M, Hewitson B, Hoskins BJ, Joos F, Jouzel J, Kattsov V, Lohmann U, Matsuno T, Molina M, Nicholls N, Overpeck J, Raga G, Ramaswamy V, Ren J, Rusticucci M, Somerville R, Stocker TF, Whetton P, Wood RA, Wratt D. Technical Summary. In: Climate Change 2007:The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. and Miller, H.L. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.2007.
    146. Sowerby A, Blum H, Gray TRG, Ball AS. The decomposition of Lolium perenne in soils exposed to elevated CO2:Comparisons of mass loss of litter with soil respiration and soil microbial biomass. Soil Biology & Biochemistry,2000,32:1359-1366.
    147. Stafford N. The other greenhouse effect. Nature,2007448,526-528.
    148.孙瑞莲,赵秉强,朱鲁生,徐晶,张夫道.长期定位施肥对土壤酶活性的影响及其调控土壤肥力的作用.植物营养与肥料学报,2003,9(4):406-410.
    149. Thomas SM, Whitehead D, Adams JA, Reid JB, Sherlock RR, Leckie AC. Seasonal root distribution and soil surface carbon fluxes for one-year-old Pinus radiate trees growing at ambient and elevated carbon dioxide concentration. Tree Physiology,1996,16:1015-1021.
    150. 田玉华,贺发云,尹斌,朱兆良.不同氮磷配合下稻田田面水的氮磷动态变化研究.土壤,2006,38(6):727733.
    151.田玉华,尹斌,朱兆良.稻田氮素淋洗损失研究.安徽农业科学,2006,34(12):2792-2794.
    152. Uselman SM, Qualls RG, Thomas RB. A test of a potential short cut in the nitrogen cycle:The role of exudation of symbiotically fixed nitrogen from the roots of a N-fixing tree and the effects of increased atmospheric CO2 and temperature. Plant and Soil,1999,210:21-32.
    153. Uselman SM, Qualls RG, Thomas RB. Effects of increased atmospheric CO2, temperature, and soil N availability on root exudation of dissolved organic carbon by a N-fixing tree(Robinia pseudoacacia L.). Plant and Soil,2000,222:191-202.
    154. van Der Heijden E, Verbeek SK, Kuiper PJC. Elevated atmospheric CO2 and increased nitrogen deposition:effects on C and N metabolism and growth of the peat moss Sphagnum recurvum P. Beauv. var. mucronatum (Russ.) Warnst. Global Change Biology,2000,6:201-212.
    155. van Groenigen KJ, Six J, Hungate BA, de Graaff MA, van Breemen N, van Kessel C. Element interactions limit soil carbon storage. Proceedings of the National Academy of Sciences of the United States of America,2006,103:6571-6574.
    156. Vitousek PM, Howarth RW. Nitrogen limitation on land and in the sea-how can it occur. Biogeochemistry,1991,13:87-115.
    157. VU JCV, JR LHA, Boote KJ, Bowes G. Effects of elevated CO2 and temperature on photosynthesis and Rubisco in rice and soybean. Plant, Cell & Environment,1997,20:68-76.
    158.王大力,林伟宏.CO2浓度升高对水稻根系分泌物的影响—总有机碳、甲酸和乙酸含量的变化.生态学报,1999,19(4):570-572.
    159.王德建,张刚,汪军,王灿,刘勤.水稻基肥尿素干施与湿施对氮素损失及水稻氮素吸收的影响.土壤学报,2010,47,483-489.
    160.王纪华,崛野俊郎.中日不同来源粟品种籽粒中氮素及矿质元素含量的比较.作物学报,1999,25(5):654-656.
    161.王小治,孙伟,封克,任思荣,谢祖彬,朱建国.大气CO2浓度升高和施氮对麦季土壤有效态微量元素含量的影响.农业环境科学学报,2008,27:530-534.
    162. Weaver RM, Syers JK, Jackson ML (1968) Determination of silica in citrate-bicarbonate-dithionite extracts of soils. Soil Science Society of America Journal,32, 497-501.
    163. Welch RM, Graham RD. Breeding for micronutrients in staple food crops from a human nutrition perspective. Journal of Experimental Botany,2004,55,353-364.
    164. Whipps JM. Effect of CO2 concentration on growth, carbon distribution and loss of carbon from the roots of maize. Journal of Experimental Botany,1985,36:644-651.
    165. Williams EL, Walter LM, Ku TCW, Kling GW, Zak DR. Effects of CO2 and nutrient availability on mineral weathering in controlled tree growth experiment. Global Biogeochemical Cycles.2003, 17:1001-1011.
    166. Williams MA, Rice CW, Owensby CE. Carbon dynamics and microbial activity in tall grass prairie exposed to elevated CO2 for 8 years. Plant and Soil 2000,227:127-137.
    167. Witt C, Cassman KG, Olk DC, Biker U, Liboon SP, Samson MI, Ottow JCG. Crop rotation and residue management effects on carbon sequestration, nitrogen cycling and productivity of irrigated rice systems. Plant and Soil,2000,225:263-278.
    168. Wolf AA, Drake BG, Erickson JE, Megonigal JP. An oxygen-mediated positive feedback between elevated carbon dioxide and soil organic matter decomposition in a simulated anaerobic wetland. Global Change Biology,2007,13:2036-2044.
    169. Wood CW, Torbert HA, Rogers HH, et al Free-air CO2 enrichment effects on soil carbon and nitrogen. Agricultural and Forest Meteorology,1994,70:103-116.
    170.吴越FACE对中筋小麦扬麦14产量形成和品质的影响:[硕士学位论文].扬州:扬州大学,2007.
    171. Xie Z, Cadisch G, Edwards G, Baggs EM, Blum H. Carbon dynamics in a temperate grassland soil after 9 years exposure to elevated CO2 (Swiss FACE). Soil Biology & Biochemistry,2005,37: 1387-1395.
    172. Xie Y, Xiong Z, Xing G, Yan X, Shi S, Sun G, Zhu Z. Source of nitrogen in wet deposition to a rice agroecosystem at Tai lake region. Atmospheric Environment,2008,42:5182-5192.
    173.谢祖彬,朱建国,张雅丽,马红亮,刘钢,韩勇,曾青,蔡祖聪.水稻生长及其体内C、N、P组成对开放式空气CO2浓度增高和N、P施肥的响应.应用生态学报,2002,13(10):1223-1230.
    174.徐国强,李杨,史奕,黄国宏.开放式空气CO2浓度增高(FACE)对稻田土壤微生物的影响.应用生态学报,2002,13(10):1358-1359.
    175. Yamakawa Y, Saigusa M, Okada M, Kobayashi K. Nutrient uptake by rice and soil solution composition under atmospheric CO2 enrichment. Plant and Soil,2004,259:367-372.
    176. Yan X, Akiyama H, Yagi K, Akimoto H. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines. Global Biogeochemical Cycles,2009,23, GB2002, doi:10.1029/2008GB003299.
    177. Yang D, Gao Z, Sun P, Li M, Qu Y. Mechanism of nutrient silicon and water temperature influences on phytoplankton growth. Marine Science Bulletin,2006,8(2):49-59.
    178. Yang L, Huang J, Yang H, Zhu J, Liu H, Dong G, Liu G, Han Y, Wang Y. The impact of free-air CO2 enrichment (FACE) and N supply on yield formation of rice crops with large panicle. Field Crops Research,2006,98:141-150.
    179. Yang L, Huang J, Yang H, Dong G, Liu G, Zhu J, Wang Y. Seasonal changes in the effects of free-air CO2 enrichment (FACE) on dry matter production and distribution of rice (Oryza sativa L.). Field Crops Research,2006,98:12-19.
    180. Yang L, Liu H, Wang Y, Zhu J, Huang J, Liu G, Dong G, Wang Y. Impact of elevated CO2 concentration on inter-subspecific hybrid rice cultivar Liangyoupeijiu under fully open-air field conditions. Field Crops Research,2009a,112:7-15.
    181. Yang L, Liu H, Wang Y, Zhu J, Huang J, Liu G. Dong G, Wang Y. Yield formation of CO2-enriched inter-subspecific hybrid rice cultivar Liangyoupeijiu under fully open-air field condition in a warm sub-tropical climate. Agriculture, Ecosystems and Environment,2009b,129: 193-200.
    182. Yang L, Wang Y, Dong G, Gu H, Huang J, Zhu J, Yang H, Liu G, Han Y. The impact of free-air CO2 enrichment (FACE) and nitrogen supply on grain quality of rice. Field Crops Research,2007, 102:128-140.
    183. Yang L, Wang Y, Huang J, Zhu J, Yang H, Liu G, Liu H, Dong G, Hu J. Seasonal changes in the effects of free-air CO2 enrichment (FACE) on phosphorus uptake and utilization of rice at three levels of nitrogen fertilization. Field Crops Research,2007,102:141-150.
    184. Yang L, Wang Y, Kobayashi K, Zhu J, Huang J, Yang H, Wang Y, Dong G, Liu G, Han Y, Shan Y, Hu J, Zhou J. Seasonal changes in the effects of free-air CO2 enrichment (FACE) on growth, morphology and physiology of rice root at three levels of nitrogen fertilization. Global Change Biology,2008,14:1844-1853.
    185.杨连新,王余龙,黄建晔,杨洪建,刘红江.开放式空气CO2浓度增高对水稻生长发育影响的研究进展.应用生态学报,2006,17(7):1331-1337.
    186. Yeates GW, Newton PCD, Ross DJ. Response of soil nematode fanuna to naturally elevated CO2 levels influenced by soil pattern. Namatology,1999,1:285-293.
    187. Yoon CG. Wise use of paddy rice fields to partially compensate for the loss of natural wetlands. Paddy Water Environment,2009,7:357-366.
    188. Yue J, Shi Y, Zheng X, Huang G, Zhu J. The influence of free-air CO2 enrichment on microorganisms of a paddy soil in the rice-growing season. Applied Soil Ecology,2007,35: 154-162.
    189.苑学霞,林先贵,尹睿,褚海燕,张华勇.大气CO2浓度升高对稻田中小麦秸秆分解的影响.农业环境科学学报,2005,24(2):242-246.
    190.苑学霞,林先贵,褚海燕,尹睿,张华勇,胡君利,朱建国.大气CO2浓度增高对不同施氮土壤酶活性的影响.生态学报,2006,26(1):48-53.
    191. Zak DR, Pregitzer KS, King JS, Holmes WE. Elevated atmospheric CO2, fine roots and the response of soil microorganisms:a review and hypothesis. New Phytologist,2000,147:201-222.
    192. Zak DR, Pregitzer KS, Curtis PS, Teeri JA, Fogel R, Randlett DL. Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles. Plant and Soil,1993,151:105-117.
    193.张丽莉,张玉兰,陈利军,武志杰.稻-麦轮作系统土壤糖酶活性对开放式CO2浓度增高的响应.应用生态学报,2004,15(6):1019-1024.
    194.张玉兰,张丽莉,陈利军,武志杰.稻-麦轮作系统土壤水解酶及氧化还原酶活性对开放式CO2浓度增高的响应.应用生态学报,2004,15(6):1014-1018.
    195.张玉屏,朱德峰,林贤青,焦桂爱,黄群.田间条件下水稻根系分布及其与土壤容重的关系.中国水稻科学,2003,17(2):141-144.郑洪元,张德生.土壤动态生物化学研究法.北京:科学出版社,1982:125-150.
    196.赵斌,何绍江.微生物学实验.北京:科学出版社,2003.69-75
    197. Zheng X, Zhou Z, Wang Y, Zhu J, Wang Y, Yue J, Shi Y, Kobayashi K, Inubushi K, Huang Y, Han S, Xu Z, Xie B, Butterbach-Bahl K, Yang L. Nitrogen-regulated effects of free-air CO2 enrichment on methane emissions from paddy rice fields. Global Change Biology,2006,12: 1717-1732.
    198. Zhong Z, Makeschin F. Soluble organic nitrogen in temperate forest soils. Soil Biology & Biochemistry,2003,35:333-338.
    199. Zsolnay A. Dissolved organic matter:artifacts, definitions, and functions. Geoderma,2003,113: 187-209.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700