CO_2浓度升高对冬小麦生长和产量影响的生理基础
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于化石燃料的燃烧及土地利用的变化,全球大气CO_2浓度日益增加,预计到2050年,大气CO_2浓度将升高到550μmol·mol~(-1)。小麦是全球重要的粮食作物。本文利用中国北京豆麦轮作FACE,以强筋冬小麦CA0493和中麦175为供试材料,CO_2浓度处理设对照CO_2浓度(AmbientCO_2,415±16μmol·mol~(-1))和高CO_2浓度(Elevated CO_2,550±17μmol·mol~(-1))两个水平;施N处理设常规施氮(NN,底肥含N118kg·hm~(-2)+追肥含N70kg·hm~(-2))和低氮(LN,底肥含N66kg·hm~(-2)+追肥含N17kg·hm~(-2))两个水平。三次重复。于2007~(-2)010年连续试验,以CO_2浓度升高对冬小麦产量的影响为核心,进一步从光合碳吸收、物质积累和分配、氮素吸收和利用以及灌浆进程几方面深入研究,得出以下主要结论:
     ⑴CO_2浓度升高使冬小麦产量三年平均增加10.71%,其中低氮肥和常规氮肥下增幅分别为10%和12%。主要增加了单位面积穗数(+6.16%)和穗粒数(+4.08%),减少了不孕小穗数(~(-2)1.68%)。
     ⑵CO_2浓度升高使冬小麦花前净光合速率和CO_2日同化量分别增加23.51%和11.91%,从而增加了花前干物质积累,但缩短了花后籽粒生长持续时间。光合碳吸收的促进作用到开花后逐渐减弱。这可能是由于开花后,CO_2浓度升高使籽粒对碳氮的需求增加,促使叶片中氮素向籽粒转移,从而使叶片叶绿素含量下降,出现光合适应。
     ⑶CO_2浓度升高使冬小麦地上部生物量在拔节期、开花期和成熟期显著增加10.25%、17.65%和10.88%。明确了CO_2浓度升高对常规施肥干物质积累明显,特别是茎秆物质贮存增加。CO_2浓度升高使经济系数在低氮肥条件下增加0.97%,在常规氮肥条件下降低5.48%。
     ⑷CO_2浓度升高使冬小麦植株氮积累量在拔节期、开花期和成熟期分别增加5.63%、12.34%和6.12%,氮素物质生产效率和籽粒氮素生产效率分别增加3.56%和3.90%。表明在CO_2浓度升高条件下,冬小麦对氮素的需求增加。为了达到供需平衡,提出未来550μmol mol~(-1)CO_2浓度条件下的推荐施N量为145kg hm~(-2)。根据植物需求控制氮肥用量,提高氮肥利用效率,减少氮肥损失,实现环境友好与增产双赢。在高CO_2浓度条件下,冬小麦产量与开花后植株吸氮量显著正相关,可以调控追肥时间,满足小麦开花后的氮素需求,进一步达到稳产增产的目的。
     CO_2浓度升高使植株含N量在拔节期、开花期和成熟期分别降低3.55%、4.73%和2.94%。CO_2浓度升高,地上部生物量的增幅高于氮吸收量的增幅,这可能稀释植株含N量,是植株含N量在高CO_2浓度下降低的部分原因。另一方面,CO_2浓度升高使小麦旗叶硝酸还原酶活性在两个生育期平均降低22.24%。这说明CO_2浓度升高抑制了NO3ˉ的还原,降低了小麦旗叶的含N量。
     ⑸在高CO_2浓度条件下,中麦175的籽粒灌浆速率增加,而CA0493的籽粒灌浆速率降低。中麦175的旗叶光合功能期比CA0493长,有助于积累更多光合产物,促进灌浆速率。中麦175的单穗粒重比CA0493高45.26%。从源汇平衡角度来看,在高CO_2浓度条件下,中麦175的源端同化物供应能力和库容形成能力均优于CA0493,因而中麦175在高CO_2浓度条件下更加稳产高产。
Fossil fuel combustion and deforestation have resulted in a rapid increase in atmospheric carbon dioxideconcentration ([CO_2]) since the1950’s. It is predicted that atmospheric CO_2concentration will reachabout550mol mol–1in2050. Globally, wheat is a major staple crop. Field experiments were based onthe soybean and wheat rotation Free Air CO_2Enrichment system at Beijing, China, two high glutencultivars of winter wheat (Triticum aestivum L. cv CA0493and Zhongmai175) were test for threegrowing seasons from2007to2010. Wheat was grown to maturity under elevatedCO_2(550±17μmol·mol~(~(-1))) and ambient CO_2(415±16μmol·mol~(~(-1))) rings, with normal nitrogen supply (NN,basal dressing before sowing118kg N·hm~(-2)+side dressing at jointing stage70kg N·hm~(-2))and lownitrogen supply(LN,basal dressing before sowing66kg N·hm~(-2)+side dressing at jointing stage17kgN·hm~(-2)). Each treatment had three replicates. This study focus on the yield response of winter wheat toelevated CO_2, and get more detailed understanding of crop processes under high CO_2, such asphotosynthetic carbon assimilation, biomass production and distribution among wheat tissues, nitrogenuptake and utilization, grain filling rate and duration. Some main findings are listed as follows:
     ⑴Elevated CO_2increased grain yield by10.71%across the three years. CO_2-induced yieldenhancement under low nitrogen and normal nitrogen supply were10%and12%, respectively. Theyield enhancement under elevated CO_2attributed to the increase of square meter panicle number (6.16%)and grain number per panicle (4.08%),and the reduction of infertile spikelet (~(-2)1.68%).
     ⑵Elevated CO_2increased the photosynthetic rate and daily integrated carbon assimilation by23.51%and11.91%under elevated CO_2before flowering, thus increase the dry matter accumulation beforeflowering, but shorten the grain filling duration after flowering. The carbon assimilation of CO_2-inducedenhancement reduced gradually after flowering. It might due to the imbalance of carbon and nitrogenbetween source and sink at high CO_2. Wheat plants under elevated CO_2required more carbon andnitrogen after anthesis than ambient CO_2, which may increase the nitrogen transfer from flag leaf.Therefore, leaf chlorophyll concentration and Rubisco content decreased under elevated CO_2,photosynthetic acclimation occurs.
     ⑶Elevated CO_2increased the aboveground biomass at jointing, flowering and ripening stage across thethree years by10.25%,17.65%and10.88%, respectively. The study revealed that CO_2-inducedaboveground biomass enhancement was higher at normal nitrogen than low nitrogen, especially on thestem biomass accumulation. Elevated CO_2increased the harvest index by0.97%under low nitrogeninput, but decreased by5.48%under normal nitrogen input.
     ⑷Elevated CO_2increased the nitrogen accumulation by5.63%,12.34%and6.12%under elevated CO_2at jointing, flowering and ripening stage across three years, respectively. Elevated CO_2increased theaboveground biomass per nitrogen uptake on an area basis and grain yield per nitrogen uptake on anarea basis at ripening stage by3.56%and3.90%. It indicated that winter wheat had larger nitrogen demand under elevated CO_2than ambient CO_2. To establish the new balance of nitrogen demand andsupply, this study estimated the recommended N application as145kg N hm~(-2)at550μmol mol~(-1)[CO_2]in the future. Fertilizer application could be adjusted based on the plant N demand. This strategy couldimprove the nitrogen recovery and reduce nitrogen loss in the soil, thus environment and grain yieldachieve a win-win objective. Grain yield and N uptake after flowering had a significant positivecorrelation at high CO_2, which indicated that regulate on the sidedressing date at jointing stage, couldbecome an effective way to increase the nitrogen uptake after flowering to improve the grain yield.Elevated CO_2decreased plant nitrogen concentration at jointing, flowering and ripening stage by3.55%,4.73%and2.94%across the three years, respectively. The enhancement of aboveground biomass wasmore than nitrogen accumulation under elevated CO_2, which may dilute the nitrogen concentration inplant tissues. On the other hand, elevated CO_2decreased the activity of nitrate reductase of flag leaf by22.24%across the flowering stage and milk stage. It indicated that elevated CO_2inhibited NO_3ˉassimilation, which caused the reduction of N concentration under elevated CO_2.
     ⑸Elevated CO_2promote the grain filling rate of ZM175, but decreased grain filling rate of CA0493.The flag leaf of ZM175had longer photosynthesis function duration than CA0493, which wasbeneficial to accumulation more photoassimilation and transfer from leaf to grain to improve grainfilling rate for ZM175. Individual panicle grain weight for ZM175was45.26%higher than CA0493.From the source-sink balance point of view, the ability of photoassimilation supply from source andestablishment of new carbon sink for ZM175was comparatively favourable with CA0493underelevated CO_2. Therefore, ZM175was a stable and high-yield cultivar at high CO_2.
引文
1.白莉萍,仝乘风,林而达,等.CO2浓度增加对不同冬小麦品种后期生长与产量的影响.中国农业气象,2002,23(2):13-16.
    2.白月明,王春乙,温民.不同CO2浓度处理对冬小麦的影响.气象,1996,22(2):7-11.
    3.崔昊,石祖梁,蔡剑,等.大气CO2浓度和氮肥水平对小麦籽粒产量和品质的影响.应用生态学报,2011,22(4):979-984.
    4.顾世梁,朱庆森,杨建昌,彭少兵.不同水稻材料籽粒灌浆特性的分析.作物学报,2001,27(1):7-14.
    5.韩雪,林而达,郝兴宇,等.FACE条件下冬小麦的光合适应.中国农业气象,2009,30(4):481-485.
    6.胡健,王余龙,杨连新,等.开放式二氧化碳浓度提高对武香14叶片硝酸还原酶活力的影响.应用生态学报,2006,17(11):2179-2184.
    7.雷振生,陈钦高.黄淮麦区高产小麦品种的产量结构及其生理基础的研究.华北农学报,1996,11(1):70-75.
    8.李伏生,康绍忠.CO2浓度升高,氮和水分对春小麦养分吸收和土壤养分的效应.植物营养与肥料学报,2002,8(3):303-309.
    9.李伏生,康绍忠.两种氮水平下CO2浓度升高对冬小麦生长和氮磷浓度的影响.土壤学报,2003,40(4):599-605.
    10.李果梅,史奕,陈欣.二氧化碳和臭氧浓度升高对春小麦生长及次生代谢的影响.应用生态学报,2008,19(6):1283-1288.
    11.廖轶,陈根云,张道允,等.冬小麦光合作用对开放式空气CO2浓度增高(FACE)的非气孔适应.植物生理与分子生物学学报,2008,(6):494-500.
    12.鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,1999.
    13.马红亮,朱建国,谢祖彬,等.开放式空气CO2浓度升高对冬小麦生长和N吸收的影响.作物学报,2006,31(12):1634-1639.
    14.彭永欣,郭文善.小麦产量生理调节机理及应用技术研究.国外农学:麦类作物,1995,15(2):36-38.
    15.宋建民,田纪春,赵世杰.植物光合碳和氮代谢之间的关系及其调节.植物生理学通讯,1998,34(3):230-238.
    16.王春乙,白月明.臭氧和气溶胶浓度变化对农作物的影响研究.北京:气象出版社,2007.
    17.王修兰,徐师华,李佑祥.CO2浓度倍增对小麦生育性状和产量构成的影响.生态学报,1996,3:328-332.
    18.魏燮中.小麦株型结构分析与产量育种咨询系统.南京:东南大学出版社,1994.
    19.温民,王春乙,高素华,等.CO2浓度倍增对冬小麦生长发育产量形成及发芽率的影响.中国生态农业学报,1994,2(2):37-42.
    20.吴冬秀,王根轩,白永飞,等.CO2浓度升高和干旱对春小麦生长和水分利用的生态效应(英文). Acta Botanica Sinica,2002,44(12):1477-1483.
    21.吴越,胡静,宋学堂,等.开放式空气CO2浓度升高对中筋小麦扬麦14产量形成的影响.浙江农业科学,2011(1):150-154.
    22.香港天文台. http://www.weather.gov.hk/
    23.徐恒永,赵君实.高产冬小麦的冠层光合能力及不同器官的贡献.作物学报,1995,21(2):204-209.
    24.徐玲,赵天宏,胡莹莹,等.CO2浓度升高对春小麦光合作用和籽粒产量的影响.麦类作物学报,2008,28(5):867-872.
    25.许大全.光合作用及有关过程对长期高CO2浓度的响应.植物生理学通讯,1994,30(2):81-87.
    26.杨连新,黄建晔,李世峰,等.开放式空气二氧化碳浓度增高对小麦氮素吸收利用的影响.应用生态学报,2007c,18(3):519-525.
    27.杨连新,李世峰,王余龙,等.开放式空气二氧化碳浓度增高对小麦产量形成的影响.应用生态学报,2007a,18(1):75-80.
    28.杨连新,王余龙,李世峰,等.开放式空气二氧化碳浓度增高对小麦物质生产和分配的影响.应用生态学报,2007b,18(2):339-346.
    29.张志良,翟伟菁.植物生理学实验指导.北京:高等教育出版社,2005.
    30.中国气象局,中国地面国际交换站气候标准值月值数据集(1971-2000年).http://cdc.cma.gov.cn/shuju/search1.jsp?dsid=SURF_CLI_CHN_MUL_MMON_19712000_CES&tpcat=SURF&type=table&pageid=3. Retrieved2010-05-20.
    31.朱德群,冬小麦主茎旗叶光合性状的相关性.作物学报,1982,8(3):199-204.
    32. Ainsworth E.A. and Long S.P., What have we learned from15years of free-air CO2enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopyproperties and plant production to rising CO2. New Phytologist,2005,165(2):351-371.
    33. Ainsworth E.A. and Rogers A., The response of photosynthesis and stomatal conductance torising CO2: mechanisms and environmental interactions. Plant, Cell and Environment,2007,30(5):258-270.
    34. Ainsworth E.A., Rice production in a changing climate: a meta-analysis of responses toelevated carbon dioxide and elevated ozone concentration. Global Change Biology,2008,14(7):1642-1650.
    35. Ainsworth E.A., Rogers A., Blum H., et al. Variation in acclimation of photosynthesis inTrifolium repens after eight years of exposure to free air CO2enrichment (FACE). Journal ofExperimental Botany,2003,54:2769-2774.
    36. Ainsworth E.A., Rogers A., Nelson R., et al., Testing the “source-sink” hypothesis ofdown-regulation of photosynthesis in elevated CO2in the field with single gene substitutionsin Glycine max. Agricultural and Forest Meteorology,2004,122:85-94.
    37. Amthor J.S., Effects of atmospheric CO2concentration on wheat yield: review of results fromexperiments using various approaches to control CO2concentration. Field Crops Research,2001,73(1):1-34.
    38. Aranjuelo I., Cabrera-Bosquet L., Morcuende R., et al., Does ear C sink strength contribute toovercoming photosynthetic acclimation of wheat plants exposed to elevated CO2? Journal ofExperimental Botany,2011,62(11):3957-3969.
    39. Asseng S., Jamieson P.D., Kimball B., et al., Simulated wheat growth affected by risingtemperature, increased water deficit and elevated atmospheric CO2. Field Crops Research,2004,85:85-102.
    40. Batts G.R., Ellis R.H., Morison J.I.L., et al., Yield and partitioning in crops of contrastingcultivars of winter wheat in response to CO2and temperature in field studies usingtemperature gradient tunnels. The Journal of Agricultural Science,1998,130:17-27.
    41. Biswas D.K., Xu H., Li Y.G., et al., Genotypic differences in leaf biochemical, physiologicaland growth responses to ozone in20winter wheat cultivars released over the past60years.Global Change Biology,2008,14:46-59.
    42. Bloom A.J., Burger M., Asensio J.S.R., et al., Carbon dioxide enrichment inhibits nitrateassimilation in wheat and Arabidopsis. Science,2010,328(5980):899-903.
    43. Bloom A.J., Smart D.R., Nguyen D.T., et al., Nitrogen assimilation and growth of wheat underelevated carbon dioxide. PNAS,2002,99(3):1730-1735.
    44. Bowes G. Facing the inevitable: Plants and increasing atmospheric CO2. Aunu. Rev. PlantPhysiol. Plant Mol. Biol.,1993,44:309-332.
    45. Champigny M.L., Integration of photosynthetic carbon and nitrogen metabolism in higherplants. Photosynthesis Research,1995,46(1):117-127.
    46. Chen C.L., Li C.C., Sung J.M., Carbohydrate metabolism enzymes in CO2-enricheddeveloping rice grains of cultivars varying in grain size. Physiologia Plantarum,1994,90(1):79-85.
    47. CO2Now.org. http://co2now.org/
    48. Cotrufo M.F., Ineson P., Scott A., Elevated CO2reduces the nitrogen concentration of planttissues. Glob Change Biology,1998,4:43-54.
    49. Cui Z., Chen X., Zhang F., Current nitrogen management status and measures to improve theintensive wheat-maize system in China. AMBIO: A Journal of the Human Environment,2010,39(5-6),376-384.
    50. Cure J.D. and Acock B., Crop responses to carbon dioxide doubling: A literature survey.Agricultural and Forest Meteorology,1986,38(1/3):127-145.
    51. de Graaff M.A., van Groenigen K.J., Six J., et al., Interactions between plant growth and soilnutrient cycling under elevated CO2: a meta-analysis. Global Change Biology,2006,12,2077-2091.
    52. den Hertog J., Stulen I., Fonseca F., et al. Modulation of carbon and nitrogen allocation inUrtica dioica and Plantago major by elevated CO2: Impact of accumulation of nonstructuralcarbohydrates and ontogenetic drift. Physiologia Plantarum,1996,98(1):77-88.
    53. Dijkstra P., Schapendonk A.H.M.C., Groenwold K., et al., Seasonal changes in the response ofwinter wheat to elevated atmospheric CO2concentration grown in Open-Top Chambers andfield tracking enclosures. Global Change Biology,1999,5:563-576.
    54. Drake B.G., Gonzalez-Meler M.A., Long S.P., More efficient plants: a consequence of risingatmospheric CO2? Annual Review of Plant Physiology and Plant Molecular Biology,1997,48:609-639.
    55. Evans J.R., Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.).Plant Physiology,1983,72(2):297-302.
    56. Fangmeier A., Chrost B., Hogy P., et al., CO2enrichment enhances flag leaf senescence inbarley due to greater grain nitrogen sink capacity. Environmental and Experimental Botany,2000,44(2):151-164.
    57. Fangmeier A., Gruters U., Hertstein U., et al., Effects of elevated CO2nitrogen supply andtropospheric ozone on spring wheat. I. Growth and yield. Environ Pollution,1996,91(3):381-390.
    58. FAOSTAT. http://faostat.fao.org/
    59. Farquhar G.D., Caemmerer S., Berry J.A., A biochemical model of photosynthetic CO2assimilation in leaves of C3species. Planta,1980,149(1):78-90.
    60. Feng Z.Z., Kobayashi K., Ainsworth E.A., Impact of elevated ozone concentration on growth,physiology, and yield of wheat (Triticum aestivum L.): a meta-analysis. Global ChangeBiology,2008,14(11):2696-2708.
    61. Fischer R.A., Irrigated spring wheat and timing and amount of nitrogen fertilizer. II.Physiology of grain yield response. Field Crops Research,1993,33,57–80.
    62. Flores E., Romero J.M., Guerrero M.G., et al., Regulatory interaction of photosynthetic nitrateutilization and carbon dioxide fixation in the cyanobacterium Anacystis nidulans. Biochimicaet Biophysica Acta (BBA)-Bioenergetics,1983,725(3):529-532.
    63. Gifford R.M., Barrett D.J., Lutze J.L., The effects of elevated CO2on the C:N and C:P massratios of plant tissues. Plant and Soil,2000,224(1):1-14.
    64. Gunderson C.A. and Wullschleger S.D., Photosynthetic acclimation in trees to risingatmospheric CO2: A broader perspective. Photosynthesis Research,1994,39(3):369-388.
    65. Hao X.Y., Han X., Lam S.K., et al, Effects of Fully Open-air CO2Elevation on LeafUltrastructure, Photosynthesis and Yield of Two Soybean Cultivars.2012, Photosynthetica, inpress.
    66. Hebeisen T., Luscher A., Zanetti S., et al., Growth response of Trifolium repens L. and Loliumperenne L. as monocultures and bi-species mixture to free air CO2enrichment andmanagement. Global Change Biology,1997,3(2):149-160.
    67. Hirose T., Takano M., Terao T., Cell wall invertase in developing rice caryopsis: molecularcloning of OsCIN1and analysis of its expression in relation to its role in grain filling. Plantand Cell Physiology,2002,43(4):452-459.
    68. Hocking P.J. and Meyer C.P. Effects of CO2enrichment and nitrogen stress on growth, andpartitioning of dry matter and nitrogen in wheat and maize. Australian Journal of PlantPhysiology,1991,18(4):339-356.
    69. H gy P., Wieser H., K hler P., et al., Effects of elevated CO2on grain yield and quality ofwheat: results from a3-year free-air CO2enrichment experiment. Plant Biology,2009,11:61-69.
    70. Hovenden M.J., Newton P.C.D., Carran R.A., Warming prevents the elevated CO2-inducedreduction in available soil nitrogen in a temperate, perennial grassland. Global ChangeBiology,2008,14(5):1018-1024.
    71. Huber S.C. and Huber J.L., Role and regulation of sucrose-phosphate synthase in higherplants. Annual Review of Plant Physiology and Plant Molecular Biology,1996,47:431-444.
    72. Hungate B.A., Johnson D.W., Dijkstra P., et al., Nitrogen cycling during seven years ofatmospheric CO2enrichment in a scrub oak woodland. Ecology,2006,87:26-40.
    73. Hungate B.A., Lund C.P., Pearson H.L., Elevated CO2and nutrient addition alter soil Ncycling and N trace gas fluxes with early season wet-up in a California annual grassland.Biogeochemistry,1997,37:89-109.
    74. Huppe H. and Turpin D. Integration of carbon and nitrogen metabolism in plant and algalcells. Annual Review of Plant Biology,1994,45(1):577-607.
    75. Hussain M.W., Allen L.H., Bowes G., Up-regulation of sucrose phosphate synthase in ricegrown under elevated CO2and temperature. Photosynthesis Research,1999,60:199-208.
    76. Hymus G.J., Ellsworth D.S., Baker N.R., et al., Does free-air carbon dioxide enrichment affectphotochemical energy use by evergreen trees in different seasons? A chlorophyll fluorescencestudy of mature loblolly pine. Plant Physiology,1999,120:1183-1191.
    77. IPCC. Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge UniversityPress,2007.
    78. IPCC. Intergovernmental Panel on Climate Change. Climate Change2001: the scientific basis.Cambridge, UK: Cambridge University Press,2001.
    79. Isopp H., Frehner M., Long S.P., et al., Sucrose-phosphate synthase responds differently tosource-sink relations and to photosynthetic rates: Lolium perenne L. growing at elevatedpCO2in the field. Plant, Cell and Environment,2000,23(6):597-607.
    80. Ju X., Xing G., Chen, X., et al., Reducing environmental risk by improving N management inintensive Chinese agricultural systems. PNAS. USA,2009,106(9):3041-3046.
    81. Kauder F., Ludewig F., Heineke D., Ontogenetic changes of potato plants during acclimationto elevated carbon dioxide. Journal of Experimental Botany,2000,51:429-437.
    82. Kim H.Y., Lieffering M., Kobayashi K., et al.,2003b. Seasonal changes in the effects ofelevated CO2on rice at three levels of nitrogen supply: a free air CO2enrichment (FACE)experiment. Global Change Biology,2003a,9:826-837.
    83. Kim H.Y., Lieffering M., Kobayashi K., et al., Effects of free-air CO2enrichment and nitrogensupply on the yield of temperate paddy rice crops.Field Crops Research,2003b,83(3):261-270.
    84. Kim H.Y., Lieffering M., Miura S., et al., Growth and nitrogen uptake of CO2-enriched riceunder field conditions. New Phytologist,2001,150(2):223-229.
    85. Kim H.Y., Lim S.S. Kwak J.Y., et al., Dry matter and nitrogen accumulation and partitioningin rice (Oryza sativa L.) exposed to experimental warming with elevated CO2. Plant and Soil,2011,342(1-2):59-71.
    86. Kimball B.A., Carbon dioxide and agricultural yield: an assemblage and analysis of430priorobservations. Agronomy Journal,1983,75(5):779-788.
    87. Kimball B.A., Kobayashi K., Bindi M., Responses of agricultural crops to free-air CO2enrichment. Advances in Agronomy,2002,77:293-368.
    88. Kimball B.A., Pinter Jr.P.J., Garcia R.L., et al., Productivity and water use of wheat underfree-air CO2enrichment. Global Change Biology,1995,1(6):429-442.
    89. Kleinhofs A. and Warner R.L., Advances in nitrate assimilation. In 'The Biochemistry ofPlants. Intermediary Nitrogen Metabolism'.(Eds Miflin B.J. and Lea P.J.),1990,16:89-120.
    90. Kuehny J.S., Peet M.M., Nelson P.V., et al., Nutrient dilution by starch in CO2-enrichedChrysanthemum. Journal of Experimental Botany,1991,42(6):711-716.
    91. Lam S.K., Chen D., Norton R., et al., Nitrogen demand and the recovery of15N-labelledfertilizer in wheat grown under elevated carbon dioxide in southern Australia. NutrientCycling in Agroecosystems,2012a,92(2):133-144.
    92. Lam S.K., Han X., Lin E.D., et al., Does elevated atmospheric carbon dioxide concentrationincrease wheat nitrogen demand and recovery of nitrogen applied at stem elongation?Agriculture, Ecosystem and Environment,2012b,155:142-146.
    93. Lea P.J., Robinson S.A., Stewart G.R., The enzymology and metabolism of glutamine,glutamate and asparagine. In: Miflin B.J., Lea P.J., eds. Intermediary nitrogen metabolism.The biochemistry of plants, London: Academic Press,1990,16:121-159.
    94. Leakey A.D.B., Ainsworth E.A., Bernacchi C.J., et al., Elevated CO2effects on plant carbon,nitrogen, and water relations: six important lessons from FACE. Journal of ExperimentalBotany,2009,60(10):2859-2876.
    95. Li A.G., Hou Y.S., Wall G.W., et al., Free-Air CO2Enrichment and Drought stress effects ongrain filling rate and duration in spring wheat. Crop Science,2000,40(5):1263-1270.
    96. Long S.P. and Bernacchi C.J., Gas exchange measurements, what can they tell us about theunderlying limitations to photosynthesis? Procedures and sources of error. Journal ofExperimental Botany,2003,54(392):2393-2401.
    97. Long S.P., Ainsworth E.A., Leakey A.D.B., et al., Food for thought: lower-than-expected cropyield stimulation with rising CO2concentrations. Science,2006,312:1918-1921.
    98. Long S.P., Ainsworth E.A., Rogers A., et al., Rising atmospheric carbon dioxide: plants FACEthe future. Annual Review of Plant Biology,2004,55:591-628.
    99. Long, S.P., Virtual Special Issue on food security-greater than anticipated impacts ofnear-term global atmospheric change on rice and wheat. Global Change Biology,2012,18(5):1489-1490.
    100. Ludewig F. and Sonnewald U., High CO2-mediated down-regulation of photosynthetic genetranscripts is caused by accelerated leaf senescence rather than sugar accumulation. FebsLetters,2000,479(1-2):19-24.
    101. Luo Y., Su B., Currie W.S., et al., Progressive nitrogen limitation of ecosystem responses torising atmospheric carbon dioxide. Bioscience,2004,54(8):731-739.
    102. Lüscher A., Hartwig U.A., Suter D., et al., Direct evidence that symbiotic N2fixation in fertilegrassland is an important trait for a strong response of plants to elevated atmospheric CO2.Global Change Biology,2000,6:655-662.
    103. Lüscher A., Hendrey G.R., Nosberger J., Long-term responsiveness to free air CO2enrichmentof functional types, species and genotypes of plants from fertile permanent grassland.Oecologia,1997,113(1):37-45.
    104. Ma H., Zhu J., Xie Z., et al., Responses of rice and winter wheat to free-air CO2enrichment(China FACE) at rice/wheat rotation system. Plant Soil,2007,294:137-146.
    105. McLeod A.R. and Long S.P., Free-air carbon dioxide enrichment (FACE) in global changeresearch: a review. Advances in Ecological Research,1999,28:1-56.
    106. Miller A., Tsasi C.H., Hemphill D., et al, Elevated CO2effects during leaf ontogeny-a newperspective on acclimation. Plant Physiology,1997,115:1195-1200.
    107. Moore B.D., Cheng S.H., Rice J., et al., Sucrose cycling, Rubisco expression, and predictionof photosynthetic acclimation to elevated atmospheric CO2. Plant, Cell and Environment,1998,21:905-915.
    108. Morgan P.B., Ainsworth E.A., Long S.P., How does elevated ozone impact soybean? Ameta-analysis of photosynthesis, growth and yield. Plant, Cell and Environment,2003,26(8):1317-1328.
    109. Nakamura Y., Yuki K., Park S.Y., et al., Carbohydrate metabolism in the developingendosperm of rice grains. Plant and Cell Physiology,1989,30(6):833-839.
    110. Nakano H., Amane M., Tadahiko M., The effect of elevated Partial Pressure of CO2on therelation between Photosynthesis capacity and N content in rice leaves. Plant Physiol.,1997,115:19-198.
    111. Nowak R.S., Ellsworth D.S., Smith S.D., Functional responses of plants to elevatedatmospheric CO2–do photosynthetic and productivity data from FACE experiments supportearly predictions? New Phytologist,2004,162(2):253-280.
    112. Pal M., Rao L.S., Jain V., et al., Effects of elevated CO2and nitrogen on wheat growth andphotosynthesis. Biologia Plantarum,2005,49(3):467-470.
    113. Pearson M., Brooks G.L., The influence of elevated CO2on growth and age-related changes inleaf gas exchange. Journal of Experimental Botany,1995,46:1651-1659.
    114. Peet M.M., Huber S.C., Patterson D.T., Acclimation to high carbon dioxide in monoeciouscucumbers (Cucumis sativus): II. Carbon exchange rates, enzyme activities, and starch andnutrient concentrations. Plant Physiology,1986,80:63-67.
    115. Pinter Jr.P.J., Kimball B.A., Wall G.W., et al. Free air CO2enrichment (FACE): Blower effectson wheat canopy microclimate and plant development. Agricultural and Forest Meteorology,2000,103(4):319-333.
    116. Pinter Jr.P.J., Kimball B.A., Wall G.W., et al., Effects of elevated CO2and soil nitrogenfertilizer on final grain yields of spring wheat. Annual Research Report: Phoenix, USA. U. S.Water Conservation Laboratory, Agricultural Research Service, U.S. Department ofAgriculture,1997,71-74.
    117. Poorter H. and Navas M.L., Plant growth and competition at elevated CO2: on winners, losersand functional groups. New Phytologist,2003,157(2):175-198.
    118. Raun W.R. and Johnson G.V., Improving nitrogen use efficiency for cereal production.Agronomy Journal,1999,91:357-363.
    119. Rawson H.M., Yield responses of two wheat genotypes to carbon dioxide and temperature infield studies using temperature gradient tunnels. Australian Journal of Plant Physiology,1995,22(1):23-32.
    120. Reich P.B., Hobbie S.E., Lee T., et al., Nitrogen limitation constrains sustainability ofecosystem response to CO2. Nature,2006,440:922-925.
    121. Retuerto R., Woodward F.I., The influences of increased CO2and water-supply on growth,biomass allocation and water-use efficiency of Sinapis alba L. Grown under different windspeeds. Oecologia,1993,94:415-427.
    122. Rogers A. and Ainsworth E.A., The response of foliar carbohydrates to elevated carbondioxide concentration. In Managed Ecosystems and CO2: Case Studies, Processes andPerspectives (eds N sberger J., Long S.P., Norby R.J., et al.),2006,293-308. Springer-Verlag,Heidelberg, Germany.
    123. Rogers G.S., Milham P.J., Gillings M., et al., Sink strength may be the key to growth andnitrogen responses in N-deficient wheat at elevated CO2. Australian Journal of PlantPhysiology,1996,23(3):253-264.
    124. Sage R.F., A model describing the regulation of ribulose-1,5-bisphosphate carboxylase,electron transport and triose phosphate used in response to light intensity and CO2in C3plants.Plant Physiology,1990,94:1728-1734.
    125. Sage R.F., Sharkey T.D., Seemann J.R., Acclimation of photosynthesis to elevated CO2in fiveC3species. Plant Physiology,1989,89(2):590-596.
    126. Seneweera S., Makino A., Hirotsu N., et al., New insight into photosynthetic acclimation toelevated CO2: The role of leaf nitrogen and ribulose-1,5-bisphosphate carboxylase/oxygenasecontent in rice leaves. Environmental and Experimental Botany,2011,71(2):128-136.
    127. Seneweera S.P., Basra A.S., Barlow E.W., et al., Diurnal regulation of leaf blade elongation inrice by CO2: is it related to sucrose-phosphate synthase activity? Plant Physiology,1995,108:1471-1477.
    128. Seneweera S.P., Conroy J.P., Ishimaru K., et al., Changes in source–sink relations duringdevelopment influence photosynthetic acclimation of rice to free air CO2enrichment (FACE).Functional Plant Biology,2002a,29:945-953.
    129. Seneweera, S., Conroy J., Kobayashi K., Photosynthetic acclimation of rice to free air CO2enrichment (FACE) depend on carbon and nitrogen relationship during ontogeny. Plant andCell Physiology,2002b,42:119-128.
    130. Sharkey T.D., Bernacchi C.J., Farquhar G.D., et al., Fitting photosynthetic carbon dioxideresponse curves for C3leaves. Plant, Cell and Environment,2007,30:1035-1040.
    131. Sicher R.C., Kremer D.F., Bunce J.A., Photosynthetic acclimation and photosynthatepartitioning in soybean leaves in response to carbon dioxide enrichment. PhotosynthesisResearch,1995,46(3):409-417.
    132. Socias F.X., Medrano H., Sharkey T.D., Feedback limitation of photosynthesis of Phaseolusvulgaris L. grown in elevated carbon dioxide. Plant, Cell and Environment,1993,16:81-86.
    133. Stitt M. and Krapp A., The interaction between elevated carbon dioxide and nitrogen nutrition:the physiological and molecular background. Plant, Cell and Environment,1999,22:583-621.
    134. Taub D.R. and Wang X.Z., Why are nitrogen concentrations in plant tissues lower underelevated CO2? A critical examination of the hypotheses. Journal of Integrative Plant Biology,2008,50:1365-1374.
    135. Tubiello F.N., Amthor J.A., Boote K., et al., Crop response to elevated CO2and world foodsupply. A comment on “Food for thought…” by Long et al., Science312:1918-1921,2006. Eur.J. Agron.,2007,26:215-223.
    136. Vézina L.P., Hope H.J., Joy K.W., Isoenzymes of glutamine synthetase in roots of pea (Pisumsativum L. cv Little Marvel) and alfalfa (Medicago media Pers. cv Saranac). Plant Physiology,1987,83(1):58-62.
    137. von Caemmerer S., Ghannoum O., Conroy J.P., et al, Photosynthetic responses of temperatespecies to free air CO2enrichment (FACE) in a grazed New Zealand pasture. AustralianJournal of Plant Physiology,2001,28(6):439-450.
    138. Wall G.W., Garcia R.L., Kimball B.A., et al., Interactive effects of elevated carbon dioxideand drought on wheat. Agronomy Journal,2006,98:354-381.
    139. Wand S.J.E., Midgley G.F., Jones M.H., et al. Responses of wild C4and C3grass (Poaceae)species to elevated atmospheric CO2concentration: a meta-analytic test of current theoriesand perceptions. Global Change Biology,1999,5(6):723-741.
    140. Wang N. and Nobel P.S., Doubling the CO2concentration enhanced the activity ofcarbohydrate-metabolism enzymes, source carbohydrate production, photoassimilate transport,and sink strength for Opuntia ficus-indica. Plant Physiology,1996,110:893-902.
    141. Wechsung G., Wechsung F., Wall G.W., et al.,1999. The effects of free-air CO2enrichmentand soil water availability on spatial and seasonal patterns of wheat root growth. GlobalChange Biology,1999,5:519-529.
    142. Wheeler T.R., Hong T.D., Ellis R.H., et al., The duration and rate of grain growth, and harvestindex, of wheat (Triticum aestivum L.) in response to temperature and CO2. Journal ofExperimental Botany,1996,47(5):623-630.
    143. White J.W., Kimball B.A., Wall G.W., et al. Responses of time of anthesis and maturity tosowing dates and infrared warming in spring wheat. Field Crops Research,2011,124(2):213-222.
    144. Wong S.C., Elevated atmospheric partial pressure of CO2and plant growth. II. Non-structuralcarbohydrate content in cotton plants and its effect on growth parameters. PhotosynthesisResearch,1990,23:171-180.
    145. Woodrow I.E., Optimal acclimation of the C3photosynthetic system under enhanced CO2.Photosynthesis Research,1994,39(3):401-412.
    146. Yamakawa Y., Saigusa M., Okada M., et al., Nutrient uptake by rice and soil solutioncomposition under atmospheric CO2enrichment. Plant and Soil,2004,259(1-2):367-372.
    147. Yang L., Huang J., Yang H., et al., Seasonal changes in the effects of free-air CO2enrichment(FACE) on nitrogen (N) uptake and utilization of rice at three levels of N fertilization. FieldCrops Research,2007,100(2-3):189-199.
    148. Yang, L., Huang J. Yang H., et al., Seasonal changes in the effects of free-air CO2enrichment(FACE) on dry matter production and distribution of rice (Oryza sativa L.). Field CropsResearch,2006a,98(1):12-19.
    149. Yang, L., Huang J.Yang H., et al., The impact of free-air CO2enrichment (FACE) and Nsupply on yield formation of rice crops with large panicle. Field Crops Research,2006b,98(2-3):141-150.
    150. Zhu X.K., Feng Z.Z., Sun T.F., et al., Effects of elevated ozone concentration on yield of fourChinese cultivars of winter wheat under fully open-air field conditions. Global ChangeBiology,2011,17:2697-2706.
    151. Zhu Z.L. and Chen D.L., Nitrogen fertilizer use in China-Contributions to food production,impacts on the environment and best management strategies. Nutrient Cycling inAgroecosystems,2002,63(2-3):117-127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700