微量钪锆对高强耐蚀可焊铝锌镁合金组织和性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题结合国家总装预研项目,以未添加钪锆和添加0.25Sc+0.10Zr的Al-5.7Zn-2.0Mg-0.35Cu (wt-%)两种合金为研究对象,通过材料制备工艺优化方法及显微分析检测手段,对比研究了复合添加微量钪锆在均匀化、热变形及固溶时效过程中对Al-Zn-Mg合金组织性能影响,在此基础上,详细探讨了微量钪锆对Al-Zn-Mg合金再结晶、各向异性、腐蚀及焊接的作用机理。论文获得了以下主要结论:
     (1)复合添加0.10Zr+0.25Sc到Al-5.7Zn-2.0Mg-0.35Cu(wt-%)合金后,铸态晶粒显著细化,晶粒尺寸由78μm下降到了58μm。
     (2)在半连续铸造激冷条件下,铸态合金基体近似为过饱和固溶体,晶界上存在富Zn、Mg低熔点非平衡共晶相和富Fe、Si、Mn难溶杂质相,铸锭必须均匀化处理。随均匀化温度升高,过饱和固溶体析出MgZn2相和T(Mg32(Al, Zn)49)相之后这些相又溶入基体,与此同时晶界上非平衡共晶相溶解。添加微量钪锆的合金均匀化过程中还析出大量细小弥散的Al3(Sc, Zr)粒子,这种合金最佳铸锭均匀化工艺为为350℃/8h+470℃/12h。
     (3)铸锭热变形条件下,随变形温度的增加,两种合金强度单调下降,伸长率先升后降,断口由穿晶断裂转变为晶间断裂,在375-400。C下变形,合金具有较稳定的热变形抗力和较高的热加工塑性,生产现场试验表明铸锭在该温度区间进行热轧,热轧效果较好。添加微量钪锆形成的Al3(Sc, Zr)粒子在热变形中强烈钉轧位错及亚晶界,阻碍位错运动及晶界迁移,提高了这种合金热变形抗力。
     (4)复合添加0.10Zr+0.25Sc到Al-5.7Zn-2.0Mg-0.35Cu(wt-%)合金中,在优化的均匀化处理、热变形和470℃/1h固溶后水淬+120℃/24h时效条件下,合金板材拉伸强度和屈服强度分别提高了12%和22%,且延伸率保持在12%的高水平。微量钪锆在Al-Zn-Mg基合金中的强化机制为晶粒细化强化、亚结构强化和Al3(Sc, Zr)粒子析出强化。
     (5)冷轧板材再结晶退火过程中,复合添加0.10Zr+0.25Sc使Al-5.7Zn-2.0Mg-0.35Cu合金再结晶织构由立方织构转变为轧制织构。考虑具有回复优势(晶界能优势)的形核位置及需要大量的静态回复时间来获取临界尺寸的形核位置,建立了再结晶形核定量模型,计算了钪锆合金不同晶体取向下的储能(驱动力),结果显示受Al3(Sc, Zr)粒子Zener钉扎的影响,钪锆添加使Al-Zn-Mg合金再结晶形核机制由立方形核转变为高储能形核,合金再结晶温度由350℃以下提高到550℃以上。
     (6)研究合金冷轧板材织构主要由立方织构、p纤维轧制织构和少量的高斯织构构成;固溶时效后,Al-Zn-Mg合金主要以立方织构为主,添加钪锆合金主要以轧制织构为主。钪锆添加使Al-5.7Zn-2.0Mg-0.35Cu合金成品板材屈服强度各向异性指数由2.1%增加到7.2%。基于测量的织构数据,计算了成品板材不同拉伸力轴下的Taylor因子,考虑晶界强化、固溶强化及析出强化对屈服强度的影响,建立了成品板材屈服强度各向异性模型,该模型进一步表明织构是引起板材各向异性的主要原因。
     (7)微量钪锆添加及在120℃下延长时效时间均可有效提高Al-5.7Zn-2.0Mg-0.35Cu合金的腐蚀抗力。经120℃/36h时效后Al-5.7Zn-2.0Mg-0.35Cu-0.25Sc-0.10Zr合金的最小抗应力腐蚀敏感因子>95%,最大晶间腐蚀深度<34μm,剥落腐蚀等级达到PA级,强度和耐蚀性都能满足航天用户的要求。腐蚀抗力的提高来源于晶粒细化、PFZ窄化、晶界平衡相粗化和晶界平衡相离散度的增加。
     (8)微量钪锆添加到Al-5.7Zn-2.0Mg-0.35Cu基材中,成品板材焊接接头抗拉强度和屈服强度分别提高了4%和23%,满足了航天对这种合金高焊接性的要求。焊接接头强度的提高归因于微量钪锆形成的弥散Al3(Sc, Zr)粒子抑制了基材焊接接头热影响区的再结晶。
Combined the National Assembly Pre-research Project of China, two kinds of Al-5.4Zn-2.0Mg-0.35Cu (wt.%) alloys with and without Sc and Zr additions (0.25Sc+0.10Zr(wt.%)) were investigated comparatively by the methods of process optimizing and microscope observations. Effects of Sc and Zr microalloying additions on the microstructures and properties of Al-Zn-Mg alloys during the processing of homogenization, hot-deformation and solution-aging were studied. Based on this, the mechanisms of the effects of Sc and Zr minor additions on the recrystallization, anisotropy, corrosion and welding of Al-Zn-Mg alloys were studied in detail. The main results of the research are as follows:
     (1) The as-cast grains of Al-5.7Zn-2.0Mg-0.35Cu (wt.%) ingot were refined from78μm into58μm by adding0.10Zr+0.25Sc (wt.%).
     (2) Under the condition of semi-continuous casting, the matrix is closest to supersaturated solid solutions, non-equilibrium eutectic phases containing Zn and Mg and indissoluble impurity phases containing Fe and Si are concentrated on grain boundaries, and thus it is necessary to homogenize. With the increase of homogenization temperatures, MgZn2and T(Mg32(Al, Zn)49) phases firstly precipitated and then dissolved into matrix, and the non-equilibrium phases distributed on the grain boundaries dissolved. Meantime, in the alloy with Sc and Zr additions, lots of fine and disperse Al3(Sc, Zr) particles precipitated during homogenization, and the proper homogenization process for this alloy is350℃/8h+470℃/12h.
     (3) During the hot deformation of the two studied ingots, with the increase of deformation temperatures, the strength decreased, the plasticity increased firstly and then decreased, and the fractures transformed from trans-granular fractures into intergranular fractures. Deformed between375℃and400℃, the alloys have stable deformation resistance and higher hot working plasticity. The actual production of hot rolling proved that375℃-400℃was the proper hot working temperatures for the studied ingots. Besides, during hot deformation, lots of disperse Al3(Sc, Zr) particles in Al-Zn-Mg-Sc-Zr alloy strongly pinned dislocations and subgrain boundaries, inhibiting the movement of dislocations and subgrain boundaries, improving hot deformation resistance.
     (4) Added0.25Sc+0.10Zr into Al-5.7Zn-2.0Mg-0.35Cu alloy, under the optimal homogenization treatment, hot deformation process and solution-aging treatment (470℃/1h, followed by water quenching,+120℃/24h), the ultimate tensile strength and the yield strength increased by12%and22%, meantime, the elongation remained above12%. The strengthening mechanisms of minor Sc and Zr are substructure strengthening, grain refining strengthening and precipitation strengthening of Al3(Sc, Zr) particles.
     (5) During recrystallization annealing,0.10Zr+0.25Sc additions changed the recrystallization textures of Al-5.7Zn-2.0Mg-0.35Cu alloy from cube textures into rolling textures. A recrystallization nucleation model was established successfully where two kinds of nucleation sites were considered:(i) nucleation sites that have a recovery advantage (or have a boundary energy advantage) and (ii) nucleation sites which require a considerable static recovery period in order to reach the critical size. Based on the model, the store energies for different orientations were calculated. Affected by the Zener drag from Al3(Sc, Zr) particles, the mechanisms of recrystallization texture changed from cube nucleation into high stored energy nucleation and the recrystallization temperatures increased from below350℃into above550℃.
     (6) The textures of the cold rolled sheets consisted of Cube, β-fiber rolling and Goss textures. After solution-aging treatment, Cube textures were the dominant textures for Al-Zn-Mg alloy, whereas the main textures of Al-Zn-Mg-Sc-Zr alloy were β-fiber rolling textures. Sc and Zr additions increased the in-plane anisotropy values of yield strength from2.1%into7.2%. Based on the measured texture data, Taylor factors were calculated under different force axis. Considered the effects from grain boundary strengthening, precipitation strengthening and solution strengthening, the model of yield strength in-plane anisotropy for the sheet products was successfully established, exhibiting that textures were the main reason for strength anisotropy.
     (7) Sc and Zr microalloying additions and increasing aging time at120℃can both effectively improve the resistance of stress corrosion cracking, intergranular corrosion and exfoliation corrosion of Al-5.7Zn-2.0Mg-0.35Cu alloy.Aged at120℃for36h, the minimum value of stress corrosion cracking susceptibility was larger than95%, the maximum corrosion depths were smaller than34μm, and the rank of the exfoliation corrosion reached PA in Al-5.7Zn-2.0Mg-0.35Cu-0.25Sc-0.10Zr alloy. The improved corrosion resistance is from inhibiting recrystallization, narrowing PFZ, coarsening grain boundary precipitates and increasing the spacing of grain boundary precipitates.
     (8) Added minor Sc and Zr into Al-5.7Zn-2.0Mg-0.35Cu matrix, ultimate tensile strength and yield strength of the welding for sheet products increased by4%and23%, respectively. The increased welding strength caused by Sc and Zr is from inhibiting recrystallization of the heat affected zones by Al3(Sc, Zr) particles.
引文
[1]J.Royset, N. Ryum.Scandiumin aluminium alloys[J]. Intemational Material Reviews,2005,50(1):19-44.
    [2]林肇琦,马宏声,赵刚.铝-钪合金的发展概况(一)[J].轻金属,1992,(1):54-58.
    [3]林肇琦,马宏声,赵刚.铝一杭合金的发展概况(二)[J].轻金属,1992,(2):53-60.
    [4]A. Lowell. Aliminum scandium alloy. US Patent NQ 3619181, Nov.9,1971.
    [5]刘余九.化工百科全书一冶金和金属材料卷[M].北京:化工出版社,2001.
    [6]王祝堂,田荣璋.铝合金及其加工手册[M].长沙:中南工业大学出版社,2004.
    [7]邓至谦,周善初.金属材料及热处理[M].长沙:中南工业大学出版社,1989.
    [8]《有色金属及其热处理》编写组.有色金属及其热处理[M].北京:国防工业出版社,1981.
    [9]田荣璋.金属热处理[M].北京:冶金工业出版社,1985.
    [10]Y.A. Filatov, V.I. Yelagin, V.V. Zakharov. New Al-Mg-Sc alloys [J]. Materials Science and Engineering A,2000,280:97-101.
    [11]S. Lathabai, P.G. Lloyd. The effects of scandium on the microstructure and mechanical properties and weldability of a cast Al-Mg alloy [J]. Acta Materialia, 2002,50:4275-4292.
    [12]柏振海,赵楠.Sc对Al-Mg合金组织和性能的影响[J].铝加工,2002,(02):17-22
    [13]潘青林,尹志民,邹景霞等.微量Sc在Al-Mg合金中的作用[J].金属学报,2001,(07):749-753.
    [14]K.L. Kendig, D.B. Miracle.Strengthening mechanisms of an Al-Mg-Sc-Zr alloy [J]. Acta Materialia,2002,50:4165-4175.
    [15]Scandium and Prospects of Its Use, Proceedings of International Conference, Moscow, Russia, Oct.18-19,1994.
    [16]V.G Davydov, V.I. Elagin, V.V. Zakharov, et al. Alloying aluminum alloys with scandium and zirconium additives [J]. Metal Science and Heat Treatment,1996, 38(7-8):347-352.
    [17]李广汉,尹志民.钪的发展动态和发展战略[J].稀有金属与硬质合金,19963:47-51
    [18]张明杰,梁家晓.铝钪合金的性质及生产[J].材料与冶金学报.2002,6(1):110-114
    [19]李汉广,尹志民等.含钪铝合金的开发应用前景[J].铝加工,1996,(1):45-48.
    [20]J.Royset, N. Ryum. Scandiumin aluminium alloys[J]. International Material Reviews,2005,50(1):19-44.
    [21]V.G. Davydov, T.D. Rostova, V.V. Zakharov, et al. Scientific principles of making an alloying addition of scandium to aluminium alloys[J]. Materials Science and Engineering A,2000,280:30-36.
    [22]V.I. Yelagin, V.V. Zakharov, T.D. Rostova. Features of Sc-bearing aluminium alloy recrystallization[M]. in:Problems of Light Alloy Metallurgy, VILS, Moscow,1991.
    [23]L.S. Toropova, T.V. Dobatkina, M.L. Kharakterova. Phase equilibriums in aluminium-silicon-scandium alloys[M]. in:Metal Science of Light Alloys, VILS, Moscow,1985.
    [24]G. Sha, A. Cerezo. Early-stage precipitation in Al-Zn-Mg-Cu alloy (7050) [J]. Acta Materialia,2004,52(15):4503-4516
    [25]Z.W. Du, Z.M. Sun, B.L. Shao, et al. Quantitative evaluation of precipitates in an Al-Zn-Mg-Cu alloy after isothermal aging[J]. Materials Characterzation,2006, 56(2):121-128
    [26]R. Ferragut, A.Somaza, A.Tolley. Microstructural evolution of 7012 alloy during the early stages of artificial aging[J]. Acta Materialia,1999,47(17):4355-4364
    [27]L.K. Berg, J. GjOnnes, V.Hansen, et al. GP-zones in Al-Zn-Mg alloys and their role in artificial aging[J]. Acta Materialia,2001,49(17):3443-3451
    [28]A.Deschamps, F.Livet, Y.Brechet. Influence of predeformation on ageing in an Al-Zn-Mg alloy:I. Microstructure evolution and mechanical properties[J]. Acta Materialia,1998,47(1):281-292
    [29]X.Z Li, V.Hansen, J. GjOnnes, et al. HREM study and structure modeling of the η'phase, the hardening precipitates in commercial Al-Zn-Mg alloys[J]. Acta Materialia,1999,47(9):2651-2659
    [30]J.K.Park, A.J.Ardell. Microstructures of the commercial 7075 Al alloy in the T651 and T7 tempers[J]. Metalurgical and Materials Transactions A:Phisical Metallurgy and Materials Science,1983,14:1957-1965
    [31]樊喜刚.Al-Zn-Mg-Cu-Zr合金组织性能和断裂行为的研究:[博士学位论文].哈尔滨:哈尔滨工业大学,2007.
    [32]J.Lendvai, G.Honyek, I.Kovacs. Dissolution of second phases in an Al-Zn-Mg alloy investigated by calorimetric method[J]. Scripta Meterialia,1979, 13(7):593-594.
    [33]N.Ryum. Precipitation kinetics in an Al-Zn-Mg alloy[J]. Zeitschrift fur Metallkunde,1975,66(6):339-343.
    [34]W.Lacom, H.P.Desgischer, A.Zahra, et al. Decomposition processes in an Al-5%Zn-l%Mg alloy. Part Ⅲ:Reversion of GP-zones[J]. Zeitschrift fur Metallkunde,1982,72(12):781-785.
    [35]李海.Ag、Sc合金化及热处理工艺对7055铝合金的微观组织与性能影响研究.中南大学博士学位论文.2005.
    [36]S.K.Maloney, K.Hono, I.J.Polmear, et al. The chemistry of precipitates in an aged Al-2.1Zn-1.7Mg at.%alloy[J]. Scripta Meterialia,1999,41(10):1031-1038.
    [37]G.Sha, A.Cerezo. Characterization of precipitates in an aged 7xxx series Al alloys[J]. Surface Science,2004,36(5-6):564-568.
    [38]王涛,尹志民.高强变形铝合金的研究现状和发展趋势[J].稀有金属.2006,30(2):197-202
    [39]H. Schmalzried, V.Gerold. Age-hardening in an Al-Mg-Zn alloy [J]. Zeitschrift fur Metallkunde,1958,49:291-301
    [40]H. Loffler, I. Kovacs, J. Lendvai. Decomposition processes in Al-Zn-Mg alloys[J]. Journal of Materials Science,1983,18:2215-2240
    [41]K.Stiller, P.J. Warren, V. Hansen, et al. Investigation of precipitation in an Al-Zn-Mg alloy after two-step ageing treatment at 100°nd 150℃[J]. Materials Science and Engineering A,1999,270(l):55-63
    [42]A.K. Mukhopadhyay. Guinier-Preston zones in a high-purity Al-Zn-Mg alloy [J]. Philosophical Magazine Letters,1994,70(3):135-140
    [43]O. Blaschko, G. Ernst, P. Fratzl, et al. A neutron scattering investigation of the early stages of Guinier-Preston zone formation in Al-Zn-Mg-(Cu)alloys[J]. Acta Materialia,1982,30(2):547-552
    [44]T. Ungar. The formation of Guinier-Preston zones in the Al-4.8wt%Zn-1.2wt%Mg alloy studied by X-ray small scattering[J]. Zeitschrift fur Metallkunde,1979,70(11):739-745
    [45]J. Lendvai. Precipitation and strengthening in aluminum alloys[J]. Materials Science Forum,1996,217-222:43-56
    [46]J.H.Auld, S.Cousland. The structure of the metastable η'phase in aluminum-zinc-magnesium alloys[J]. Journal of Australia Institute Metals,1974, 19:194-201
    [47]P.J.Warren, C.R.M.Grovenor, J.S.Crompton. Field-ion microscope/atom-probe analysis of the effect of RRA heat treatment on the matrix strengthening precipitates in alloy Al-7150[J]. Surface Science,1992,266(1-3):342-349
    [48]J.Gjφnnes, C.H.R.J. Simensen. An electron microscope investigation of the microstructure in an aluminum-zinc-magnesium alloy [J]. Acta Materialia,1970, 18(8):881-890
    [49]S.S. Brenner, J. Kowalik, M.J. Hua. FIM/atom probe analysis of a heat treated 7150 aluminum alloy [J]. Surface Science,1991,246(1-3):210-217
    [50]A. Deschamps, A. Bigot, F. Livet, et al. A comparative study of precipitate composition and volume fraction in an Al-Zn-Mg alloy using tomographic atom probe and small angle X-ray scattering [J]. Philosophical Magazine Letters, 2001,81(10):2391-2414
    [51]S.P.Ringer, K.Hono. Microstructural evolution and age hardening in aluminum alloys:atom probe field-ion microscopy and transmission electron microscopy studies [J]. Materials Characterization,2004,44(l):101-131
    [52]H.P. Degisher, W.Lacom, A.Zahra, et al. Decomposition processes in an Al-5%Zn-1%Mg alloy. Part Ⅱ:Electro microscopic investigations [J]. Zeitschrift fur Metallkunde,1980,71:231-238
    [53]A.Deschamps, Y.Brechet. On the influence of dislocations on precipitation in an Al-Zn-Mg alloy [J]. Zeitschrift fur Metallkunde,1997,88:601-606
    [54]S.Sprianno, R.Doglione, M.Baricco. Texture, hardening and mechanical anisotropy in AA 8090-T851 plate[J]. Materials Science and Engineering A, 1998,257(1):134-138
    [55]H.R. Shercliff, M.F.Ashby. A process model for age hardening of aluminum alloys-I.The model[J]. Acta Metallurgica et Materialia,1990,38:1789-1802
    [56]M.J.Starink, P.Wang, Ⅰ.Sinclair, et al. Microstructure and strengthening of Al-Li-Cu-Mg alloys and MMCS:Ⅱ.Modeling of yield strength[J]. Acta Materialia,1999,47(14):3855-3868
    [57]刘刚.含多尺度第二相时效铝合金力学性能的模型化与实验研究:[博士学位论文].西安:西安交通大学,2002.
    [58]E.Orowan. Discussion on internal stresses. Symposium on Internal Stress in Metals and Alloys, Session Ⅲ Discussion, Institute of Metals, London, England, 1948:451-453.
    [59]O.N. Senkov, M.R. Shagiev, S.V. Senkova, et al. Precipitation of Al3(Sc,Zr) particles in an Al-Zn-Mg-Cu-Sc-zr alloy during conventional solution heat treatment and its effect on tensile properties[J]. Acta Materialia,2008,56: 3723-3738.
    [60]R.D. Doherty, G. Gottstein, J.R. Hirsch, et al. in:J.S. Kallend, G Gottstein (Eds.), Panel Discussion on Recrystallization Texture, ICOTOM8, TMS, Warrendale, PA,1988.
    [61]R.D. Doherty. in:R.W. Cahn, P. Haasen (Eds.), Diffusive Phase Transformations in Physical Metallurgy,4th ed., Elsevier, Amsterdam,1996.
    [62]D. Turnbull. in:F. Sietz, D. Turnbull (Eds.), Solid State Physics, vol.3, Academic Press, New York,1956.
    [63]J.W. Christian. The Theory of Transformations in Metals and Alloys,2nd ed., Pergamon Press, Oxford,1975.
    [64]R.D. Doherty. The deformed state and nucleation of recrystallization[J]. Metal Science,1974,8:132-142.
    [65]F.J. Humphreys, M. Hatherly. Recrystallization and Related Annealing Phenomena. Pergamon Press, Oxford,1995.
    [66]R.D. Doherty. in:F. Haessner (Ed.), Recrystallization of Metallic Materials, Dr. Rieder Verlag, Berlin,1978.
    [67]R.W. Cahn. Recrystallization of single crystals after plastic bending[J]. Journal of Institute of Metal,1949,76:121-130.
    [68]M. Hatherly. in:T. Chandra (Ed.), Recrystallization'90, TMS, Warrendale, PA, 1990.
    [69]P. Haasen. How are new orientations generated during primary Recrystallization[J]? Metallurgical Transactions,1993,24A:1001-1015.
    [70]R.D. Doherty, S.F. Baumann, in:J.G Morris, H.D. Merchant, E.J. Westerman, P.L. Morris (Eds.), Aluminum Alloys for Packaging, TMS, Warrendale, PA, 1993.
    [71]S.P. Bellier, R.D. Doherty. The structure of deformed aluminium and its recrystallization-investigations with transmission Kossel diffraction[J]. Acta Metallurgica,1977,25:521-538.
    [72]M. Ferry, F.J. Humphreys. Discontinuous subgrain growth in deformed and annealed{110} (001) aluminium single crystals[J]. Acta Materialia,1996,44: 1293-1308.
    [73]F. Haessner, J. Schmidt. Investigation of the recrystallization of low temperature deformed highly pure types of aluminium[J]. Acta Metallurgica et Materialia, 1993,41:1739-1749.
    [74]J. Hjelen, R. Orsund, E. Nes. On the origin of recrystallization textures in aluminium[J]. Acta Metallurgica et Materialia,1991,39:1377-1404.
    [75]F.J. Humphreys, M.G. Ardakani. The deformation of particle-containing aluminium single crystals[J]. Acta Metallurgica et Materialia,1994,42: 749-741.
    [76]I.L. Dillamore, C.J.E. Smith, T.W. Watson. Oriented Nucleation in the Formation of Annealing Textures in Iron[J]. Metal Science,1967,1:49-56.
    [77]A.R. Jones, B. Ralph, N. Hansen. Subgrain coalescence and the nucleation of recrystallization at grain boundaries in aluminium[J]. Proceedings of the Royal Society of London,1979,368:345-357.
    [78]R.D. Doherty, J. Szpunar, Kinetics of sub-grain coalescence—A reconsideration of the theory[J]. Acta Materialia,1984,32:1789-1798.
    [79]I. Samajdar, R.D. Doherty, Cube recrystallization texture in warm deformed aluminum:understanding and prediction[J]. Acta Materialia,1998, 46:3145-3158.
    [80]D. Juul Jensen, in:N. Hansen, D. Juul Jensen, Y.L. Liu, B. Ralph (Eds.), Microstructural and Crystallographic Aspects of Recrystallization,16th RisΦ International Symposium on Materials Science, RisΦ National Lab., Roskilde, Denmark,1995.
    [81]R.D. Doherty, I. Samajdar, C.T. Necker, H.E. Vatne, E. Nes,in:N. Hansen, D. Juul Jensen, Y.L. Liu, B. Ralph (Eds.), Microstructural and Crystallographic Aspects of Recrystallization,16 RisΦ International Symposium on Materials Science, RisΦ National Lab., Roskilde, Denmark,1995.
    [82]曹楚南.腐蚀电化学[M].北京:化学工业出版社,1994.
    [83]R.T.Foley. Localized corrosion of aluminum alloys-Areview[J]. Corrosion,1986, 42(5):277-288.
    [84]赵麦群,雷阿丽.金属的腐蚀与防护[M].北京:国防工业出版社,2002.
    [85]何建平,陈文理,许玮等.恒温剥蚀对LC4CS铝合金结构和力学性能的影响[J].南京航空航天大学学报,1999,31(5):575-579.
    [86]贺斌,孙有朝,樊蔚勋.剥蚀对铝合金疲劳性能的影响[J].南京航空航天大学学报,1998,30(3):306-310.
    [87]朱祖芳.有色金属的耐腐蚀性及其应用[M].北京:化学工业出版社,1995.
    [88]吴荫顺,方智,何积锉.腐蚀试验方法与防腐蚀检测技术[M].北京:化学工业 出版社,1996.
    [89]G. Deshais, S.B.Nneweomb.The influence of microstructure on the formation of stress corrosion cracks in 7xxx series aluminum alloys[J]. Materials Science Forum,2000,331-337:1635-1640.
    [90]W.T Tsai, J.B. Duh, J.J. Yeh, et al. Effect of PH on stress corrosion cracking of 7050-T7451 aluminum alloy in 3.5%NaCI solution[J]. Corrosion 1990,46(5): 444.449.
    [91]R. Braun. Slow strain rate testing of aluminum alloy 7050 in different tempers using various synthctic environments[J]. Corrosion,1997,53(3):467-474.
    [92]Y.D. Rangu, B. Bayle, R. Dif, et al. Hydrogen effects during SCC propagation of Al-Mg in 30g/L NaCl solutions[J]. Materials Science Forum,2000,331-337: 1659-1664.
    [93]X.M. Li, M.J. Starink. Analysis of Precipitation and dissolution in over aged 7xxx aluminum alloys using DSC[J]. Materials Science Forum,2000,331-337: 1071-1076.
    [94]G. Roniino, S. Abis, P. Mengucci. DSC investigation of natural ageing in high copper AlCuMg alloys[J]. Materials Science Forum,2000,331-337:1025-1030.
    [95]J.S. Robinson, R.L. Cudd. Electric conductivity variations in X2096,8090,7010 and an experimental aluminun lithium alloy[J]. Materials Science Forum,2000, 331-337:971-976.
    [96]水野政夫等著,许慧姿等译.铝及其合金的焊接[M].北京:冶金工业出版社,1985.
    [97]周振丰,张文钺.焊接冶金与金属焊接性[M].北京:机械工业出版社,1998.
    [98]L.L. Rokhlin, T.V. Dobatkina, N.R. Bochvar, et al.. Investigation of phase equilibria in alloys of the Al-Zn-Mg-Cu-Zr-Sc system[J] Journal of Alloys and Compounds,2004,367:10-16.
    [99]YD. Xiao, L.J. Huang, W.X.Li. Effect of scandium on microstructures and tensile properties of 7005 alloy [J]. Chinese Journal of Rare Metals,1999,23 (2): 113-116
    [100]K.B. Hyde, A.F. Norman, P.B. Prangnell. The effect of cooling rate on the morphology of primary Al3Sc intermetallic particles in Al-Sc alloys[J].Acta Materialia,2001,49:1327-1337.
    [101]V.G. Davydov, V.I. Elagin, V.V. Zakharov, et al. Alloying aluminum alloys with scandium and zirconium additives[J]. Metal Science and Heat Treatment,1996, 38:347-350.
    [102]V.I. Elagin, V.V. Zakharov, T.D. Rostova. Scandium-alloyed aluminum alloys[J]. Metal Science and Heat Treatment,1994,36:375-380.
    [103]C.B. Fuller, A.R. Krause, D.C. Dunand, et al. Microstructure and mechanical properties of a 5754 aluminum alloy modified by Sc and Zr additions [J]. Materials Science and Engineering A,2002,338:8-16.
    [104]W. Guojun, X. Baiqing, Z.Yongan, et al. Microstructural characterization of ascast and homogenized 2D70 aluminum alloy [J]. International Journal of Minerals, Metallurgy and Materials,2009,16(4):427-431.
    [105]万里,邓运来,张云崖等.Al-(7.8-9.0)Zn-1.6Mg-(1.0-2.2)Cu合金铸态及其均匀化组织[J].中国有色金属学报,2010,20(9):1698-1704.
    [106]高凤华,田妮,孙兆霞等.Al-6.5Zn-2.4Mg-2.3Cu铝合金半连续铸锭的均匀化处理[J].东北大学学报:自然科学版,2008,29(8):1118-1121.
    [107]李松瑞,周善初.金属热处理[M].长沙:中南大学出版社,2005.
    [108]Z.H. Jia, G.Q. Hu, B. Forbors, et al. Effect of homogenization and alloying elements on recrystallization resistance of AlZrMn alloys[J]. Materials Science and Engineering A,2007,444(1/2):284-290.
    [109]Y. Totik, R. Sadeler, I. Kaymaz, et al. The effect of homogenisation treatment on cold deformations of AA 2014 and AA 6063 alloys[J]. Journal of Materials Processing Technology,2004,147(1/2):60-64.
    [110]G. Meng, B.L. Li, H.M. Li, et al. Hot deformation behavior of an A15.7wt.%Mg alloy with erbium [J]. Materials Science and Engineering A,2010,516(1/2): 131-137.
    [111]X.D. Huang, H. Zhang, Y. Han, et al. Hot deformation behavior of 2026 aluminum alloy during compression at elevated temperature[J]. Materials Science and Engineering A,2010,527(1/2):485-490.
    [112]L.M. Wu, M. Seyring, M. Rettenmayr. Characterization of precipitate evolution in an artificially aged Al-Zn-Mg-Sc-Zr alloy [J]. Materials Science and Engineering:A,2010,527 (1-2):1068-1073.
    [113]S. Iwamura, Y. Miura. Loss in coherency and coarsening behavior of Al3SC precipitates[J]. Acta Materialia,2004,52:591-600.
    [114]L.K. Berg, J. Gjφnnes, V. Hansen, et al. GP-zones in Al-Zn-Mg alloys and their role in artificial aging [J]. Acta Materialia,2001,49:3443-3451.
    [115]L.M. Wu, W.H. Wang, Y.F. Hsub, et al. Effects of homogenization treatment on recrystallization behavior and dispersoid distribution in an Al-Zn-Mg-Sc-Zr alloy[J]. Journal of Alloys and Compounds,2008,456:163-169.
    [116]K.L. Kendig, D.B. Miracle. Strengthening mechanisms of an Al-Mg-Sc-Zr alloy[J]. Acta Materialia,2002,50:4165-4175.
    [117]C.B. Fuller, D.N. Seidman, D.C. Dunand. Mechanical properties of Al (Sc, Zr) alloys at ambient and elevated temperatures[J]. Acta Materialia,2003,51: 4803-4814.
    [118]N. Hansen. Hall-Petch relation and boundary strengthening[J]. Scripta Materialia,2004,51:801-806.
    [119]E. Bonetti, L. Pasquini, E. Sampaolesi. Grain size, strain rate, and temperature dependence of flow stress in ultra-fine grained and nanocrystalline Cu and Al: Synthesis, experiment, and constitutive modeling [J]. Acta Materialia,1997,9: 611-614.
    [120]H. Jazaeri, F.J. Humphreys. The transition from discontinuous to continuous recrystallization in some aluminium alloys:I-the deformed state[J]. Acta Materialia,2004,52(11):3239-3250.
    [121]H. Jazaeri, F.J. Humphreys. The transition from discontinuous to continuous recrystallization in some aluminium alloys:Ⅱ-annealing behaviour[J]. Acta Materialia,2004,52(11):3251-3262.
    [122]M.L. Taheri, D. Molodov, G Gottstein, et al. Grain boundary mobility under a stored-energy driving force:a comparison to curvature-driven boundary migration[J]. Zeitschrift fur Metallkunde,2005,96(10):1166-1170.
    [123]H.E. Vatne, R. E. Shahanf, Nes. Deformation of cube-oriented grains and formation of recrystallized cube grains in a hot deformed commercial AlMgMn aluminium alloy [J]. Acta Materialia,1996,44(11):4447-4462.
    [124]H.E. Vatne, T. Furu, R.φrsund, et al. Modelling recrystallization after hot deformation of aluminium[J]. Acta Materialia,1996,44(11):4463-4473
    [125]H.E. Vatne, S. Benum, O. Daaland, et al. The effect of particles on recrystallization textures and microstructures[J]. Textures and Microstructures, 1996,26-27:385
    [126]A. Duckham, O. Engler, R.D. Knutsen. Moderation of the recrystallization texture by nucleation at copper-type shear bands in Al-lMg[J]. Acta Materialia, 2002,50(11):2881-2893.
    [127]Ⅰ. Samajdar, R.D. Doherty. Cube recrystallization texture in warm deformed aluminum:understanding and prediction [J]. Acta Materialia,1998,46(9): 3145-3158.
    [128]I.L. Dillamore, J.G. Roberts, A.C. Bush. Occurrence of shear bands in heavily rolled cubic metals[J]. Metal Science,1979;13(2):73-77
    [129]W.C. Liu, J.G Morris. Recrystallization textures of the M{113} (110) and P{011} (455) orientations in a supersaturated Al-Mn alloy [J]. Scripta Materialia,2007,56(3):217-220
    [130]H. Jazaeri, F.J. Humphreys. Quantifying recrystallization by electron backscatter diffraction[J]. Journal of Microscopy,2004,213(3):241-246.
    [131]Ⅰ. Samajdar, P. Ratchev, B. Verlinden, et al. Hot working of AA1050-relating the microstructural and textural developments[J]. Acta Materialia,2001, 49(10):1759-1769.
    [132]M.H. Alvi, S.W. Cheong, J.P. Suni, et al. Cube texture in hot-rolled aluminum alloy 1050 (AA1050)-nucleation and growth behavior[J]. Acta Materialia, 2008,56(13):3098-3108.
    [133]de La Chapelle S. Cube texture in hot-rolled aluminum alloy 1050 (AA1050)-nucleation and growth behavior[J]. Scripta Materialia,2001,45(12): 1387-1391
    [134]O. Daaland, E. Nes. Recrystallization texture development in commercial Al-Mn-Mg alloys[J]. Acta Materialia,1996,44 (4):1413-1435.
    [135]J. Li, W.C. Liu, T. Zhai, et al. Comparison of recrystallization texture in cold-rolled continuous cast AA5083 and 5182 aluminum alloys[J]. Scripta Materialia,2005,52(3):163-168
    [136]I. Samajdar, P. Ratchev, B. Verlinden, et al. Dislocation cell formation and hot ductility in an Al-Mg-Cu alloy [J]. Materials Science and Engineering A,1998, 247(1-2):58-66.
    [137]P. Wagner, O. Engler, K. Liicke. Formation of Cu-type shear bands and their influence on deformation and texture of rolled fcc{112}<111> single crystals[J]. Acta Metallurgica et Materialia,1995,43(10):3799-3812.
    [138]O. Daaland, E. Nes. Recrystallization texture development in commercial Al-Mn-Mg alloys[J]. Acta Materialia,1996,44(4):1413-1435.
    [139]O. Engler, J. Hirsch, K. Lticke. Texture development in Al-1.8 wt% Cu depending on the precipitation state-Ⅱ. Recrystallization textures[J]. Acta Metallurgica et Materialia,1995,43(1):121-138
    [140]F.J. Humphreys. The nucleation of recrystallization at second phase particles in deformed aluminium[J]. Acta Metallurgica et Materialia,1977, 25(11):1323-1344.
    [141]F.J. Humphreys. Local lattice rotations at second phase particles in deformed metals[J]. Acta Metallurgica et Materialia,1979,27:1801-1814.
    [142]D.J. Jensen, N. Hansen, F.J. Humphreys. Texture development during recrystallization of aluminium containing large particles[J]. Acta Metallurgica, 1985,33(12):2155-2162
    [143]J. Gil Sevillano, P. Van Houtte, E. Aernoudt. Large strain work hardening and textures[J]. Progress in Materials Science,1981,25(2-4):69-134.
    [144]A.A. Ridha, W.B. Hutchinson. Recrystallisation mechanisms and the origin of cube texture in copper[J]. Acta Metallurgica et Materialia,1982, 30(10):1929-1939
    [145]W.T. Read, W. Shockley. Dislocation models of crystal grain boundaries[J]. Physical Review,1950,78(3):275-289
    [146]Ying Deng, Zhimin Yin, Jiaqi Duan, et al. Evolution of microstructure and properties in a new type 2 mm Al-Zn-Mg-Sc-Zr alloy sheet, Journal of Alloys and Compounds,2012,517:118-126
    [147]G. Guiglionda, A. Borbely, J.H. Driver. Orientation-dependent stored energies in hot deformed Al-2.5%Mg and their influence on recrystallization. Acta Mater 2004; 52(12):3413-23.
    [148]F.R. Castro-Fernandez, C.M. Sellars, J.A. Whitemann. Changes of flow stress and microstructure during hot deformation of Al-1Mg-1Mn[J]. Materials Science and Technology,1990,6(5):453-460.
    [149]M.J. Jones, F.J. Humphreys. Interaction of recrystallization and precipitation: The effect of Al3Sc on the recrystallization behaviour of deformed aluminium[J]. Acta Metallurgica,2003,51(8):2149-2159.
    [150]P.S. Bate, Y. Huang, F.J. Humphreys. Development of the "brass" texture component during the hot deformation of Al-6Cu-0.4Zr[J]. Acta Metallurgica, 2004,52(14):4281-4289.
    [151]S.H. Hong, D.N. Lee. The evolution of the cube recrystallization texture in cold rolled copper sheets[J]. Materials Science and Engineering A,2003,351(1-2): 133-147
    [152]F.J. Humphreys, M. Hatherly. Recrystallization and related annealing phenomena. Oxford:Pergamon,2004.
    [153]L. Kestens, J.J. Jonas. Modeling texture change during the static recrystallization of interstitial free steels[J]. Metallurgical and Materials Transactions A,1996,27(1):155-164.
    [154]R.D. Doherty, D.A. Hughes, F.J. Humphreys, et al. Current issues in recrystallization:a review[J]. Materials Science and Engineering A,1997, 238(2):219-274.
    [155]R.D. Doherty, I. Samajdar, C.T. Necker, H.E. Vatne, E. Nes, in:N. Hansen, D. Juul Jensen, Y.L. Liu, B. Ralph (Eds.), Microstructural and Crystallographic Aspects of Recrystallization,16 Risφ International Symposium on Materials Science, Risφ National Lab., Roskilde, Denmark,1995.
    [156]R.K Singh, A.K Singh, N.E. Prasad. Texture and mechanical property anisotropy in an Al-Mg-Si-Cu alloy[J]. Material Science and Engineering A, 2000,277:114-122
    [157]K.V. Jata, A.K. Hopkins, R.J. Rioja. The anisotropy and texture of Al-Li alloys[J]. Materials Science Forum,1996,217-222:647-652
    [158]M. J. Starink, S. C. Wang. A model for the yield strength of overaged Al-Zn-Mg-Cu alloys [J]. Acta Materialia,2003,51:5131-5150
    [159]郭加林,尹志民,商宝川等.2524铝合金薄板平面各向异性研究[J].航空材料学报,2009,29(1):1-6.
    [160]段佳琦.1970铝锌镁钪合金板材组织与性能:[硕士学位论文].长沙:中南大学,2012.
    [161]杨进,尹志民,杨国涛.用双晶近似Schmid因子法处理铝合金板材的各项异性[J].理化检验-物理分册,2005,41(7):348-350
    [162]J. Zander, R. Sandstro. One parameter model for strength properties of hardenable aluminium alloys [J]. Materials & Design,2008,29:1540-1548
    [163]O. R. Myhr,0. Grong, S. J. Andersen. Modelling of the age hardening behaviour of Al-Mg-Si alloys [J]. Acta Materialia,2001,49:65-75
    [164]K. El-Menshawy, A.W.A. El-Sayed, M.E. El-Bedawy, et al. Effect of aging time at low aging temperatures on the corrosion of aluminum alloy 6061[J]. Corrosion. Science,2012,54:167-173.
    [165]R. K. Viswanadham, T. S. Sun, J. A. S. Green. Grain boundary segregation in Al-Zn-Mg alloys-Implications to stress corrosion cracking[J]. Metallurgical and Materials Transaction A,1980,11:85-89.
    [166]S.P. Knight, N. Birbilis, B.C. Muddle, et al. Correlations between intergranular stress corrosion cracking, grain-boundary microchemistry, and grain-boundary electrochemistry for Al-Zn-Mg-Cu alloys[J].2010,52:4073-4080.
    [167]J. Wloka, T. Hack, S. Virtanen. Influence of temper and surface condition on the exfoliation behaviour of high strength Al-Zn-Mg-Cu alloys[J]. Corrosion Science,2007,49:1437-1449.
    [168]F. Andreatta, H. Terryn, J.H.W. de Wit. Corrosion behaviour of different tempers of AA7075 aluminium alloy[J]. Electrochimestry Acta,2004,49: 2851-2862.
    [169]T. Marlaud, B. Malki, A. Deschamps, et al. Electrochemical aspects of exfoliation corrosion of aluminum alloys:The effects of heat treatment[J]. Corrosion Science,2011,53:1394-1400.
    [170]T.C. Tsai, T.H. Chuang. Role of grain size on the stress aluminum corrosion cracking of 7475 alloys [J]. Materials Science and Engineering A,1997, 225:135-144.
    [171]M. Bobby Kannan, V.S. Raja. Enhancing stress corrosion cracking resistance in Al-Zn-Mg-Cu-Zr alloy through inhibiting recrystallization[J]. Engineering Fracture Mechanics,2010,77:249-256
    [172]Y.P. Xiao, Q.L. Pan, W.B. Li, et al. Influence of retrogression and re-aging treatment on corrosion behaviour of an Al-Zn-Mg-Cu alloy[J]. Materials & Design,2011,32:2149-2156.
    [173]K. El-Menshawy, A.W.A. El-Sayed, M.E. El-Bedawy, et al. Effect of aging time at low aging temperatures on the corrosion of aluminum alloy 6061[J]. Corrosion Science,2012,54:167-173
    [174]J. Wloka, T. Hack, S. Virtanen. Influence of temper and surface condition on the exfoliation behaviour of high strength Al-Zn-Mg-Cu alloys [J]. Corrosion Science,2007,49:1437-1449.
    [175]L.P. Huang, K.H. Chen, S. Li, et al. Influence of retrogression and reaging on microstructure, mechanical properties and susceptibility to stress corrosion cracking of an Al-Zn-Mg alloy[J]. Materials Corrosion,2004,55:77-87
    [176]Y. Reda, R. Abdel-Karim, I. Elmahallawi. Improvements in mechanical and stress corrosion cracking properties in Al-alloy 7075 via retrogression and reaging[J]. Materials Science and Engineering A,2008,485:468-475.
    [177]G.T. Burstein, G.O. Ilevbare. The effect of specimen size on the measured pitting potential of stainless[J]. Corrosion Science,1996,38:2257-2265.
    [178]G.T. Burstein, R.M. Organ. Repassivation and pitting of freshly generated aluminium surfacesin acidic nitrate solution[J].Corrosion Science,2005,47: 2932-2955.
    [179]G.T. Burstein. A hundred years of Tafel's Equation:1905-2005[J]. Corrosion Science,2005,47:2858-2870
    [180]K.D. Ralston, D. Fabijanic, N. Birbilis. Revealing the relationship between grain size and corrosion rate of metals[J]. Electrochimestry Acta,2011, 56:1729-1736
    [181]K.D. Ralston, N. Birbilis, C.H.J. Davies. Effect of grain size on corrosion of high purity aluminium, Scripta Materialia,2010,63:1201-1204
    [182]A. Zaki, U.H. Anwar, B.J. Abdul-Aleem, The corrosion behavior of scandium alloyed Al 5052 in neutral sodium chloride solution[J]. Corrosion Science, 2001,43:1227-1243.
    [183]H.C. Fang, K.H. Chen, X. Chen, et al. Effect of Cr, Yb and Zr additions on localized corrosion of Al-Zn-Mg-Cu alloy [J]. Corrosion Science,2009,51: 2872-2877
    [184]L.P Huang, K.H. Chen, S. Li, et al. Influence of high-temperature pre-precipitation on local corrosion behavior of Al-Zn-Mg alloy [J]. Scripta Materialia,2007,56:305-308.
    [185]A. Conde, J. de Damborenea. Electrochemical modelling of exfoliation corrosion behaviour of 8090 alloy[J]. Electrochimestry Acta,1998,43: 849-860
    [186]H. Tanaka, H. Esaki, K. Yamada, et al. Improvement of mechanical properties of 7475 based aluminum alloy sheets by controlled warm rolling[J]. Metallurgical and Materials Transactions A,2004,45:69-74
    [187]T. Minoda, H. Yoshida. Effect of grain characteristic on intergranular corrosion resistance of 6061 aluminum alloy extrusion[J]. Metallurgical and Materials Transactions A,2002,33:2891-2898.
    [188]D. Najjar, T. Magnin, T.J. Warner. Influence of critical surface defects and localized competition between anodic dissolution and hydrogen effects during stress corrosion cracking of a 7050 aluminium alloy[J]. Materials Science and Engineering:A,1997,238:293-302.
    [189]Y. L. Wu, F. H. Froes, A. Alvarez, et al. Microstructure and properties of a new super-high-strength Al-Zn-Mg-Cu alloy C912[J]. Materials & Design,1997, 18:211-215
    [190]D. Nguyen, A.W. Thompson, I.M. Bernstein. Microstructural effects on hydrogen embrittlement in a high purity 7075 aluminum alloy[J]. Acta Metallurgica,1987,35:2417-2425.
    [191]J. Albrecht, I.M. Bernstein, A.W. Thompson. Evidence for Dislocation Transport of Hydrogen in Aluminum[J]. Metallurgical and Materials Transactions A,1982,13:811-820.
    [192]J.K. Park, A.J. Ardell. Effect of retrogression and reaging treatments on the microstructure of Al-7075-T651[J]. Metallurgical and Materials Transactions A,1984,15:1531-1543.
    [193]L. Christodoulou, H.M. Flower. Hydrogen embrittlement and trapping in Al-6%Zn-3%Mg[J]. Acta Metallurgica,1980,28:481-487
    [194]L.P. Huang, K.H. Chen, S. Li, et al. Influence of retrogression and reaging on microstructure, mechanical properties and susceptibility to stress corrosion cracking of an Al-Zn-Mg alloy[J], Materials Corrosion,2004,55:77-87.
    [195]Y. Reda, R. Abdel-Karim, I. Elmahallawi. Improvements in mechanical and stress corrosion cracking properties in Al-alloy 7075 via retrogress and reaging[J]. Materials Science and Engineering A,2008,485:468-475.
    [196]尹志民,潘清林,姜峰等.钪和含钪合金[M].长沙:中南大学出版社,2007.
    [197]胡尊艳.焊后时效对6061-T6铝合金搅拌摩擦焊接头组织和性能的影响:[硕士学位论文].北京:北京交通大学,2008.
    [198]龚晶晶.Cr-Zr-Cu铜合金的TIG焊及焊后热处理对接头组织与性能的影响:[硕士学位论文].镇江:江苏科技大学,2009.
    [199]彭勇宜.Al-Mg-Mn和Al-Mg-Mn-Sc-Zr合金板材应用性能及相关基础研究:[博士学位论文].长沙:中南大学,2008
    [200]肖静.微量钪和锆对Al-Zn-Mg合金组织与性能的影响:[博士学位论文].长沙:中南大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700