稀土对α相镁锂合金组织、性能及织构的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为目前世界上最轻的金属结构材料,Mg-Li合金具有密度低、比强度高、比刚度高、冷热变形能力好,各向异性弱等特点,在航空航天、国防军事以及汽车电子等领域具有广阔的应用前景。然而,Mg-Li合金的强度较低一直是制约其大规模应用的主要原因。在提高合金强度的众多方法中,添加合金化元素以其简便有效的特点受到青睐。作为一种合金化元素,稀土元素常常被应用于镁合金中。
     本文在α相Mg-Li合金中添加适量的稀土元素Y和Nd,优化这两种稀土元素在Mg-5Li-3Al-2Zn合金中含量,探究稀土元素Y、Nd对Mg-5Li-3Al-2Zn合金显微组织、相组成、力学性能以及不同稀土元素对合金强韧化机理的差异,同时也证实了Y和Nd元素存在复合强韧化合金的作用,并通过对形变织构的分析认识了Mg-Li合金塑性变形的特点,清楚了稀土元素Y和Nd在改变Mg-Li合金变形机制方面的作用。
     铸态Mg-5Li-3Al-2Zn合金是由基体α-Mg和絮丝状的AlLi相组成。稀土Y的加入会使合金中生成Al2Y,而AlLi相会减少。当Y含量为0.8%时铸态合金的晶粒细化效果最佳,其抗拉强度也达到了最高值(202MPa)。挤压变形后,合金发生了动态再结晶,Y含量为1.2%时,合金的抗拉强度达到了最高值(325MPa),同时,延伸率也都达到了最高值(23.3%)。
     随着Nd含量的增加,铸态Mg-5Li-3Al-2Zn合金中除了有针状的Al11Nd3,还有块状的Al2Nd金属间化合物。当Nd含量为1.2%时,合金的抗拉强度达到了195.2MPa和延伸率达到17.2%的最佳力学性能。Nd含量为2.0%时,合金的平均晶粒尺寸减小到68μm,比未加稀土合金的平均晶粒尺寸减小了44%。而挤压态合金在Nd含量为0.8%时,抗拉强度达到了最高值(281.9MPa)。在Nd含量为1.6%时,挤压态合金的延伸率达到最高值(27.2%)。
     Y和Nd元素对铸态Mg-5Li-3Al-2Zn合金进行复合合金化后,合金中存在α-Mg、AlLi、Al11Nd3以及Al2Y。当Y和Nd添加量分别为1.2%和0.8%时,合金的平均晶粒尺寸达到了30μm,复合合金化后晶粒细化效果显著,而该合金的抗拉强度达到了最高值231MPa,而合金的延伸率也达到了最大的16%。
     Mg-5Li-3Al-2Zn-1.2Y-0.8Nd合金在热挤压过程中发生了完全动态再结晶现象,晶粒细小且呈等轴状,合金中的AlLi相呈条带状的分布。该合金在室温下的抗拉强度为224MPa,延伸率为24.6%,而在100℃下的抗拉强度为166MPa,延伸率为37.9%。当应变速率为10-3s-1时,压缩强度为397.7MPa,应变速率增加到10-2s-1时,压缩强度为406.7MPa。相应应变速率下的屈服强度也有类似的规律。室温下的准静态拉伸过程中,该合金出现了在镁合金中少见的塑性失稳现象。沿着ED(extrusion direction)方向的室温压缩测试表明,合金表现出了屈服强度和最大压缩强度都对应变速率不敏感的特点。
     对比Mg-5Li-3Al-2Zn合金中加入1.2%Y、0.8%Nd和共同加入1.2%Y+0.8%Nd的这三种合金抗拉强度和延伸率提高比例可知,Y和Nd元素以1.2:0.8的比例添加,其对合金强韧化效果远大于单独添加相应含量的Y和Nd的作用效果之和。证实了稀土Y、Nd间存在复合强韧化合金的效果。
     Mg-5Li-3Al-2Zn和Mg-5Li-3Al-2Zn-1.2Y-0.8Nd两种铸态合金都没有出现特定的织构类型,复合添加稀土元素的合金其织构表现的更加散漫。在压缩应变为0.17时,Mg-5Li-3Al-2Zn合金的大部分晶粒的C轴与样品法向Nd大致成75°,而Mg-5Li-3Al-2Zn-1.2Y-0.8Nd合金在应变为0.10时出现了较强的柱面织构,即大部分晶
     _粒<1010>//ND(normal direction)。
     对Mg-5Li-3Al-2Zn和Mg-5Li-3Al-2Zn-1.2Y-0.8Nd两种合金在不同压缩应变下的主要织构组分分析表明,两种合金在压缩应变小于0.10时,该合金中织构分布较为均匀,在0.17的应变下均出现了织构组分不均匀分布的现象。其中,只有
     _Mg-5Li-3Al-2Zn-1.2Y-0.8Nd合金的(1120)<0001>织构组分随着应变的增加而增强。两种成分的合金在室温下的压缩过程中都表现出了较好的塑性,其压缩应变均超过了20%。Mg-5Li-3Al-2Zn合金最高的压缩强度为311MPa,加入Y和Nd后合金的压缩强度最高可达到403MPa,强度提高了近30%。
     加入0.4%的稀土Nd后,热挤压态Mg-5Li-3Al-2Zn合金的(0002)极图中的织构表现出沿TD方向分布的特点,其织构组分出现在ND偏移TD(transverse)左侧大约5°的区域。而当Nd含量为2.0%时,Mg-5Li-3Al-2Zn合金的热挤压织构则是非基面织构类型(ND向TD右侧偏转约30°)。
     复合添加Y、Nd的Mg-5Li-3Al-2Zn合金,其热挤压织构出现了明显的非基面织构,即在(0002)极图中,极密度最大区域出现在晶粒的C轴偏转ED方向±60~70°。EBSD的取向成像分析数据表明,非基面织构的晶粒取向差为85°左右。晶界分析的结果表明,小角度晶界所占比例较小,大角度晶界的分布比较均匀。挤压变形后合金的晶粒比较细小,其中小于5μm晶粒所占比例为50.1%。在400℃下退火处理了30分钟、60分钟和90分钟后,该合金中的非基面织构发生弱化,与此同时,合金的平均晶粒尺寸也明显长大,合金的强度和塑性均下降。室温拉伸过程中,退火后的该合金仍然有塑性失稳现象出现。
     对铸态Mg-5Li-3Al-2Zn-1.2Y-0.8Nd合金进行温轧和热轧变形,在变形量超过50%后,两种轧制工艺下的合金均出现了显著的非基面织构类型。即在(0002)基面极图中,在RD两侧出现了对称的双峰。温轧过程中当变形量为28%时,大部分晶粒C轴与RD方向夹角集中在25°附近。当变形量为52%时,该织构得到加强。
     通过对Mg-5Li-3Al-2Zn-1.2Y-0.8Nd合金压缩、挤压以及不同温度下轧制的织构研究发现,该合金的柱面滑移系比基面滑移系容易启动,并且柱面滑移和锥面孪生机制是该合金主要的变形机制。
As the lightest metallic structural materials with low density, high specific stiffness andstrength, weaken anisotropy, Mg-Li alloy is very attractive in defense, aerospace, automotiveand electronics industry. However, the poor strength limits the application of Mg-Li alloy.Adding alloying elements is an effective and simple method to improve the strength of thealloy among the method of strength improving. Rare earth elements are the main elementsused in magnesium alloys as alloying elements.
     Y and Nd were added into α phase Mg-Li alloy in the study to optimizing the content of thetwo rare earth elements, researching the effects of Y and Nd on the microstructure, phasescomposition, mechanical properties of the alloy and the differences of strengthening andtoughening mechanism of Nd and Y and confirming that Nd and Y have the compositestrengthening and toughening in Mg-5Li-3Al-2Zn alloy, studying the characteristics throughanalyze the deformation textures, realizing the effects of changing plastic deformationmechanism with Y and Nd’s addition in alloy.
     The as-cast Mg-5Li-3Al-2Zn alloy is composed of α-Mg substrate and filamentous AlLiphase. After adding Y, Al2Y generates in the alloy, and the amount of AlLi reduces. When thecontent of Y is0.8%, the grain refining effect of as-cast alloy reaches the best, and the tensilestrength reaches the highest level of202MPa. The dynamic recrystallization arising afterextrusion, as the content of Y is1.2%, the alloy has the highest tensile strength and elongation,325MPa and23.3%, respectively.
     With the increase of Nd content, needle-like Al11Nd3and massive Al2Nd intermetalliccompounds exist in the alloy. When the content of Nd is1.2%, the alloy achieves the bestmechanical properties,195.2MPa of tensile strength and17.2%of elongation. When the Ndcontent is2.0%, the average grain size of the alloy reduces to68μm, smaller than that of alloywithout Nd addition by44%. For the extruded alloys, the alloy with0.8%Nd possesses thehighest tensile strength of281.9MPa. When the Nd is1.6%, the elongation of the extrudedalloy reaches the maximum value of27.2%.
     The α-Mg, AlLi, Al11Nd3and Al2Y exist in Mg-5Li-3Al-2Zn alloy with the addition of Yand Nd. When the content of Y and Nd is1.2%and0.8%, respectively, the effect of grainrefining is the best, while the average grain size is of30μm, and the tensile strength achieves the highest value of231MPa and the elongation also reaches a maximum value of16%.
     The dynamic recrystallization arises in the Mg-5Li-3Al-2Zn-1.2Y-0.8Nd alloy during hotextrusion, resulting in the equiaxed fine grains. The tensile strength at room temperature is224MPa and the elongation is24.6%. At the temperature of100℃,the tensile strength andelongation are166MPa and37.9%, respectively. When the strain rate is10-3s-1, thecompressive strength is397.7MPa, and the compressive strength is406.7MPa when the strainrate is10-2s-1. The yield strength under the corresponding strain rates also has a similar law.The plastic instability phenomenon appears in the alloy during the quasi-static tensile processat room temperature. The compression test along ED at room temperature shows that the yieldstrength and the maximum compressive strength are both insensitive to the strain rate.
     Comparing the tensile strength and elongation of Mg-5Li-3Al-2Zn-1.2Y,Mg-5Li-3Al-2Zn-0.8Nd and Mg-5Li-3Al-2Zn-1.2Y-0.8Nd, it shows that the increasing ratiofor the1.2Y+0.8Nd is greater than that for the sum of adding of1.2Y and0.8Nd separately,confirming the effect of the composite strengthening of Y and Nd in Mg-5Li-3Al-2Zn.
     There is no specific type of texture arising in as-cast alloys, the texture of the alloy with Yand Nd shows more scatter. In the compressive strain of0.17, the C-axis of most of the grainsis toward ND about75°in Mg-5Li-3Al-2Zn. For Mg-5Li-3Al-2Zn-1.2Y-0.8Nd, a strongcylindrical texture appear when the compressive strain is0.10, most of the grains distributing
     _with the orientation of <1010>//ND.
     The texture components analysis between Mg-5Li-3Al-2Zn-1.2Y-0.8Nd andMg-5Li-3Al-2Zn under different compressive strain showed that when the strain is less than0.10, the texture components of the two alloys distribute both evenly. When the strain is0.17,
     _the texture components of the two alloys distribute both unevenly.(1120)<0001> texture ofMg-5Li-3Al-2Zn-1.2Y-0.8Nd increases with the strain increasing. The two alloys show goodplasticity under compression process at room temperature, exceeding20%. The highestcompressive strength of Mg-5Li-3Al-2Zn is311MPa, after adding Y and Nd, it can reach403MPa, about increasing by30%.
     In as-extruded Mg-5Li-3Al-2Zn-0.4Nd alloy, the (0002) pole figure exhibites the texturealong TD, appearing in ND deviating leftwards TD about5°. When the content of Nd is2.0%,the texture is non-basal texture (ND deviating rightwards TD about30°).
     Obvious non-basal texture appears in as-extruded Mg-5Li-3Al-2Zn-1.2Y-0.8Nd, the maximum density area appears from C-axis toward ED60~70°of the (0002) pole figure.EBSD shows that the grain orientation of the non-basal texture is about85°. The grainboundary analysis of the result show that the small-angle grain boundaries take a smallproportion, while the large-angle grain boundaries distribute more evenly. The grain of thealloy after deformation becomes small, the proportion of grains smaller than5μm is50.1%.After annealing treatment at400℃for30minutes,60minutes and90minutes, the non-basaltexture weakens, while the average grain size of the alloy also significantly increases, thestrength and ductility of the alloy decline. The plastic instability phenomenon appears in thetensile test at room temperature.
     The significant non-basal texture appears in Mg-5Li-3Al-2Zn-1.2Y-0.8Nd afterwarm-rolled and hot-rolled with a reduction percentage of larger than50%. Symmetricaldouble-peak on both sides of RD appears in (0002) pole figure. When the reductionpercentage reaches28%under warm rolling, the C-axis of most of grains is toward RD of25°.The texture is strengthened when the reduction percentage reaches52%.
     The studies of the textures of compressed, extruded, warm-rolled and hot-rolled ofMg-5Li-3Al-2Zn-1.2Y-0.8Nd alloy shows that the prismatic slip systems is easier to beactivated than the basal slip system, and the prismatic slip and pyramidal twinning are themain deformation mechanisms of this alloy.
引文
[1] Wu R Z, Qu Z K, Zhang M L. Reviews on the influences of alloying elements on themicrostructure and mechanical properties of Mg-Li base alloys[J]. Reviews on AdvancedMaterials Science,2010,24(1-2):35-43.
    [2] Al-Samman T. Comparative study of the deformation behavior of hexagonalmagnesium–lithium alloys and a conventional magnesium AZ31alloy[J]. Acta Materialia,2009,57(7):2229-2242.
    [3] Chang T C, Wang J Y, Chu C L, Lee S. Mechanical properties and microstructures ofvarious Mg-Li alloys[J]. Materials Letters,2006,60(27):3272-3276.
    [4] Kojima Y. Platform science and technology for advanced magnesium alloys[J]. MaterialsScience Forum,2000,350:3-18.
    [5]阿合买提·依明,黄晋. Mg-Li合金国内外研究进展[J].新疆有色金属,2008(S2):100-101.
    [6]仲志国,卢志文,赵亚忠.镁锂合金的研究进展[J].热加工工艺,2012(04):76-79.
    [7] Ma C J, Zhang D, Zhang G D. Superlight Mg-Li alloy[J]. Aerospace Science andTechnology,1998,2:27-32.
    [8] Masing G, Tammann G. über das verhalten von lithium zu natrium, kalium, zinn,cadmium und magnesium[J]. Zeitschrift für anorganische Chemie,1910,67(1):183-199.
    [9] Grube G, Zeppelin H, Bumm H. Elektrische leitf higkeit und zustandsdiagramm beibin ren legierungen.11. mitteilung. Das System Lithium‐Magnesium[J]. Zeitschrift fürElektrochemie und angewandte physikalische Chemie,1934,40(3):160-164.
    [10] Henry O H, Cordiano H V. The Lithium-magnesium equilibrium diagram[J].Transactions of American Institute of Minerals, Metals and Engineering,1934,101:319-332.
    [11] Saldau P, Schamray F. Gleichgewichtsdiagramm des Systems Magnesium–Lithium[J].Zeitschrift für anorganische und allgemeine Chemie,1935,224(4):388-398.
    [12] Jackson J H, Frost P D, Loonam A C, Eastwood L W, Lorig C H. Magnesium-lithiumbase alloys preparation, fabrication, and general characteristics[J]. Transactions ofAmerican Institute of Minerals, Metals and Engineering,1949,185:149-168.
    [13] Busk R S, Leman D L, Casey J J. The properties of some Mg-Li alloys containingaluminum and zinc[J]. Trans AIME,1950,188(7):945-951.
    [14] Rowland Jr J A, Armantrout C E, Walsh D F. Magnesium-Rich corner of themagnesium-lithium-aluminum system[J]. Journal of Metals,1955,7:355-359.
    [15] Levinson D W, McPherson D J. Phase relations in magnesium-lithium-aluminumalloys[J]. Transactions of American Institute of Minerals, Metals and Engineering,1956,48:689.
    [16] Jones W. The mechanical properties of binary and ternary magnesium alloys containinglithium[J]. Journal of Institute of Metals,1955,84:1955-1956.
    [17] Jones W, Hogg G. The stability of mechanical properties of beta-phasemagnesium-lithium alloys[J]. Journal of Institute of Metals,1956-1957,85:255-261.
    [18] Jackson R J, Frost P D. Properties and current applications of magnesium-lithiumalloys[J]. Washington, DC: NASA SP-5068,1967,5068:
    [19] Hauser F E, Landon P R, Dorn J E. Deformation and fracture mechanisms ofpolycrystalline magnesium at low temperatures[J]. Transactions of the ASM,1956,48:986-1002.
    [20] Mason J F, Warwick C M, Smith P J, Charles J A, Clyne T W. Magnesium-lithiumalloys in metal matrix composites-A preliminary report[J]. Journal of Materials Science,1989,24(11):3934-3946.
    [21] Gonzalez-Doncel G, Wolfenstine J, Metenier P, Ruano O, Sherby O. The use of foilmetallurgy processing to achieve ultrafine grained Mg-9Li laminates and Mg-9Li-5B4Cparticulate composites [M]. Journal of Materials Science.1990:4535-4540.
    [22] Metenier P, Gonzalez-Doncel G, Ruano O, Wolfenstine J, Sherby O. Superplasticbehavior of a fine-grained two-phase Mg-9Li alloy[J]. Materials Science andEngineering: A,1990,125(2):195-202.
    [23] Galanov A, Tatakin A N, Elkin F M. Russian magnesium alloys[J]. Light MetalAge(USA),2002,60(9):44-47.
    [24] Kalimullin R K, Valuev V, Berdnikov A. The effect of surface laser treatment on thecreep of the magnesium-lithium alloy MA21[J]. Metal Science and Heat Treatment,1986,28(9):668-670.
    [25]八太秀周, Ramesh C,鎌土重晴,小島陽.超軽量Mg-Li-Al合金の熱処理特性および機械的性質に及ぼす添加元素の影響[J].軽金属,1997,47(4):202-207.
    [26]山本厚之,芦田哲哉,古宇田由夫,金光培,福本信次,椿野晴繁.Mg-(4~13)Li-(4~5)Zn三元合金の時效析出[J].軽金属,2001,51(11):604-607.
    [27]大内清明,岩澤秀,鎌土重晴,小島陽,二宫隆二. Mg-8Li合金の組織および機械的性質に及ぼすNdならびにAg添加の影響[J].軽金属,1992,42(8):446-452.
    [28]丹野敦,大内清明,松澤和夫,鎌土重晴,小島陽. Mg-8Li合金の組織および機械的特性に及ぼす希土類元素の影響[J].軽金属,1992,42(1):3-9.
    [29]松澤和夫,越原俊夫,落合鍾一,小島陽. Mg-Li系合金の時效硬化挙動および諸性質に及ぼす添加元素の影響[J].軽金属,1900,40(9):659-665.
    [30]小島陽,井上誠,丹野敦. Mg-Li系合金の超塑性[J].日本金属学会誌,1900,54(3):354-355.
    [31]二宫隆二,三宅行一.超軽量超塑性Mg-Li合金の研究[J].軽金属,2001,51(10):509-513.
    [32] Sahoo M, Atkinson J. Magnesium-lithium-alloys—constitution and fabrication for use inbatteries[J]. Journal of Materials Science,1982,17(12):3564-3574.
    [33] Shi Z, Liu M, Naik D, Gole J L. Electrochemical properties of Li–Mg alloy electrodesfor lithium batteries[J]. Journal of power sources,2001,92(1):70-80.
    [34] Haferkamp H, Niemeyer M, Boehm R, Holzkamp U, Jaschik C, Kaese V. Development,processing and applications range of magnesium lithium alloys; proceedings of theMaterials Science Forum, F,2000[C]. Trans Tech Publ.
    [35] Wu R Z, Deng Y S, Zhang M L. Microstructure and mechanical properties ofMg-5Li-3Al-2Zn-xRE alloys[J]. Journal of Materials Science,2009,44(15):4132-4139.
    [36] Qu Z K, Wu R Z, Zhang M L. Microstructure and mechanical properties ofMg-8Li-(1,3)Al-(0,1)Y alloys[J]. International Journal of Cast Metals Research,2010,23(6):364-367.
    [37] Zhang M L, Meng X R, Wu R Z, Cui C L, Wu L B. Effect of Ce on microstructures andmechanical properties of as-cast Mg-8Li-1A1alloys[J]. Kovove Materialy-MetallicMaterials,2010,48(3):211-216.
    [38] Wu R Z, Qu Z K, Zhang M L. Effects of the addition of Y in Mg-8Li-(1,3)Al alloy[J].Materials Science and Engineering: A,2009,516(1-2):96-99.
    [39] Tao W, Milin Z, Zhongyi N, Bin L. Influence of rare earth elements on microstructureand mechanical properties of Mg-Li alloys[J]. Journal of Rare Earths,2006,24(6):797-800.
    [40] Li H B, Yao G C, Guo Z Q, Liu Y H, Yu H J, Ji H B. Microstructure and mechanicalproperties of Mg-Li alloy with Ca addition[J]. Acta Metallurgica Sinica,2006,19(5):355-361.
    [41] Dong H W, Wang L D, Wu Y M, Wang L M. Effect of Y on microstructure andmechanical properties of duplex Mg-7Li alloys[J]. Journal of Alloys and Compounds,2010,506(1):468-474.
    [42] Cui C L, Wu L B, Wu R Z, Zhang J H, Zhang M L. Influence of yttrium onmicrostructure and mechanical properties of as-cast Mg-5Li-3Al-2Zn alloy[J]. Journal ofAlloys and Compounds,2011,509(37):9045-9049.
    [43] Li J Q, Qu Z K, Wu R Z, Zhang M L, Zhang J H. Microstructure, mechanical propertiesand aging behaviors of as-extruded Mg-5Li-3Al-2Zn-1.5Cu alloy[J]. Materials Scienceand Engineering: A,2011,528(10-11):3915-3920.
    [44] Ji H B, Yao G C, Li H B. Microstructure, cold rolling, heat treatment, and mechanicalproperties of Mg-Li alloys[J]. Journal of University of Science and Technology Beijing:Mineral Metallurgy Materials,2008,15(4):440-443.
    [45] Kamodo S, Ashie T, Ohshima Y, Kojima Y. Tensile properties and formability of Mg-Lialloys grain-refined by ECAE process[J]. Magnesium Alloys,2000,350:55-62.
    [46] Liu T, Zhang W, Wu S D, Jiang C B, Li S X, Xu Y B. Mechanical properties of atwo-phase alloy Mg-8Li-1Al processed by equal channel angular pressing[J]. MaterialsScience and Engineering: A,2003,360(1-2):345-349.
    [47] Chen Z Y, Li Z Q, Yu C. Hot deformation behavior of an extruded Mg-Li-Zn-REalloy[J]. Materials Science and Engineering: A,2011,528(3):961-966.
    [48] Liu T, Wang Y D, Wu S D, Peng R L, Huang C X, Jiang C B, Li S X. Textures andmechanical behavior of Mg-3.3Li alloy after ECAP[J]. Scripta Materialia,2004,51(11):1057-1061.
    [49] Drozd Z, Trojanova Z, Kudela S. Deformation behaviour of Mg-Li-Al alloys[J]. Journalof Alloys and Compounds,2004,378(1-2):192-195.
    [50] Liu T, Sha G Y, Wang H N, Wang X L, Yu T, Zhu Y H. The effects of rolling andannealing on the high speed impact deformation behavior of Mg-3Li-1Nd alloy[J].International Conference on Advanced Engineering Materials and Technology,2011,295-297(2011):2261-2266.
    [51] Yan H, Chen R S, Han E H. Microstructures and mechanical properties of cold rolledMg-8Li and Mg-8Li-2Al-2RE alloys[J]. Transactions of Nonferrous Metals Society ofChina,2010,20:550-554.
    [52] Meng X R, Wu R Z, Zhang M L, Wu L B, Cui C L. Microstructures and properties ofsuperlight Mg-Li-Al-Zn wrought alloys[J]. Journal of Alloys and Compounds,2009,486(1-2):722-725.
    [53] Ramesh C,板井徹也,鎌土重晴,小島陽,松澤和夫. Mg-Li-Al-Ca系合金の半溶融成形加工[J].軽金属,1998,48(1):13-18.
    [54] Lin M, Tsai C, Uan J. Converting hcp Mg–Al–Zn alloy into bcc Mg-Li-Al-Zn alloy byelectrolytic deposition and diffusion of reduced lithium atoms in a molten salt electrolyteLiCl-KCl[J]. Scripta Materialia,2007,56(7):597-600.
    [55] Lin M C, Uan J Y. Preparation of Mg-Li-Al-Zn master alloy in air by electrolyticdiffusing method[J]. Materials Transactions,2005,46(6):1354-1359.
    [56] Zhang M L, Yan Y D, Hou Z Y, Fan L A, Chen Z, Tang D X. An electrochemicalmethod for the preparation of Mg-Li alloys at low temperature molten salt system[J].Journal of Alloys and Compounds,2007,440(1-2):362-366.
    [57] Zhang M L, Yan Y D, Hou Z Y, Fan L A, Chen Z, Tang D X. Preparation of Mg–Lialloys by electrolysis in molten salt at low temperature[J]. Chinese Chemical Letters,2007,18(3):329-332.
    [58] Zhang M L, Chen Z, Han W, Lv Y Z, Wang J. Electrochemical formation and phasecontrol of Mg-Li alloys[J]. Chinese Chemical Letters,2007,18(9):1124-1128.
    [59] Yan Y D, Zhang M L, Han W, Cao D X, Yuan Y, Xue Y, Chen Z. Electrochemicalformation of Mg-Li alloys at solid magnesium electrode from LiCl-KCl melts[J].Electrochimica Acta,2008,53(8):3323-3328.
    [60] Chen Z, Zhang M L, Han W, Hou Z Y, Yan Y D. Electrodeposition of Li andelectrochemical formation of Mg-Li alloys from the eutectic LiCl-KCl[J]. Journal ofAlloys and Compounds,2008,464(1-2):174-178.
    [61] Dong H W, Wu Y M, Wang L D. Electrolytic deposition and diffusion of lithium ontomagnesium-9yttrium bulk alloy in low-temperature molten salt of lithium chloride andpotassium chloride[J]. Metallurgical and Materials Transactions B,2009,40(5):779-784.
    [62] Han W, Tian Y, Zhang M, Yan Y, Jing X. Preparation of Mg-Li-Sm alloys byelectrocodeposition in molten salt[J]. Journal of Rare Earths,2009,27(6):1046-1050.
    [63] Yan Y D, Zhang M L, Xue Y, Han W, Cao D X, Wei S Q. Study on the preparation ofMg-Li-Zn alloys by electrochemical codeposition from LiCl-KCl-MgCl2-ZnCl2melts[J].Electrochimica Acta,2009,54(12):3387-3393.
    [64] Han W, Tian Y, Zhang M, Ye K, Zhao Q, Wei S. Preparing different phases ofMg-Li-Sm alloys by molten salt electrolysis in LiCl-KCl-MgCl2-SmCl3melts[J]. Journalof Rare Earths,2010,28(2):227-231.
    [65] González S, Louzguine-Luzgin D, Perepezko J, Inoue A. Mechanical properties ofMg-Li-Cu-Y metallic glass composites[J]. Journal of Alloys and Compounds,2010,504:S114-S116.
    [66] Counts W, Friák M, Raabe D, Neugebauer J. Using ab initio calculations in designingbcc Mg-Li alloys for ultra-lightweight applications[J]. Acta Materialia,2009,57(1):69-76.
    [67] Ganeshan S, Shang S, Wang Y, Liu Z K. Effect of alloying elements on the elasticproperties of Mg from first-principles calculations[J]. Acta Materialia,2009,57(13):3876-3884.
    [68] Counts W A, Friak M, Raabe D, Neugebauer J. Ab initio auided design of bcc ternaryMg-Li-X (X=Ca, Al, Si, Zn, Cu) alloys for ultra-lightweight applications[J]. AdvancedEngineering Materials,2010,12(7):572-576.
    [69] Jiang B, Qiu D, Zhang M X, Ding P, Gao L. A new approach to grain refinement of anMg-Li-Al cast alloy[J]. Journal of Alloys and Compounds,2010,492(1-2):95-98.
    [70] Li T, Liu Y, Cao Z, Jiang D, Cheng L. The tensile properties and high cyclic fatiguecharacteristics of Mg-5Li-3Al-1.5Zn-2RE alloy[J]. Materials Science and Engineering:A,2010,527(29-30):7808-7811.
    [71] Liu T, Wu S D, Li S X, Li P J. Microstructure evolution of Mg-14Li-Al alloy during theprocess of equal channel angular pressing[J]. Materials Science and Engineering: A,2007,460-461:499-503.
    [72] Liu X H, Gu S H, Wu R Z, Leng X S, Yan J C, Zhang M L. Microstructure andmechanical properties of Mg-Li alloy after TIG welding[J]. Transactions of NonferrousMetals Society of China,2011,21(3):477-481.
    [73] Higashi K, Wolfenstine J. Microstructural evolution during superplastic flow of a binaryMg-8.5Li alloy[J]. Materials Letters,1991,10(7-8):329-332.
    [74] Taleff E M, Ruano O, Wolfenstine J, Sherby O. Superplastic Behavior of a Fine-GrainedMg-9Li Material at Low Homologous Temperature[J]. Journal of Materials Research,1992,7(8):2131-2135.
    [75] Liu X H, Zhan H B, Gu S H, Qu Z K, Wu R Z, Zhang M L. Superplasticity in atwo-phase Mg–8Li–2Zn alloy processed by two-pass extrusion[J]. Materials Science andEngineering: A,2011,528(19–20):6157-6162.
    [76] Kazakov A K, Timonava M A, Borisova L G. Mechanical properties and workability ofMg-Li-Al β-based alloys[J]. Metal Science and Heat Treatment,1983,25(9):9-10.
    [77] Crawford P, Barrosa R, Mendez J. On the travformation charactenis of LA141alloy[J].Journal of Materials Processing Technology,1996,56:108-114.
    [78] Ninomiya R, Miyake K. A study on superlight and superplastic Mg-Li based alloys[J].Journal of Japan Institute of Light Metals,2001,51(10):509-513.
    [79]于殿华,刘玉乐.钕—氧化钕—钕铁硼市场浅析[J].稀土信息,2001(009):16-17.
    [80]张沛臣.我国金属钕生产及市场状况分析[J].稀土,2005,26(005):29-32.
    [81] Ohuchi K, Iwasawa S, Kamado S, Kojima Y, Ninomiya R. Effects of Nd and Agadditions on the microstructures and mechanical properties of Mg-8Li alloys[J]. Journalof Japanese Institue of Light Metals,1992,42:446-446.
    [82]冀国栋,巫瑞智,牛中毅,景晓燕,安江敏. Nd含量对Mg-11Li-1Al合金组织的影响[J].特种铸造及有色合金,2009(005):462-464.
    [83]鲁思军,杜文博,吴玉锋,李淑波,左铁镛. Nd对Mg-4Al-1Sr合金显微组织及力学性能的影响[J].特种铸造及有色合金,2008,28(3):224-226.
    [84] Liu B, Zhang M L, Wu R Z. Effects of Nd on microstructure and mechanical propertiesof as-cast LA141alloys[J]. Materials Science and Engineering: A,2008,487(1-2):347-351.
    [85]陈维平,詹美燕,陈宛德,张大童,李元元.变形镁合金的塑性加工技术研究及展望[J].特种铸造及有色合金,2007,27(1):40-43.
    [86] Xu D K, Liu L, Xu Y B, Han E H. Effect of microstructure and texture on themechanical properties of the as-extruded Mg-Zn-Y-Zr alloys[J]. Materials Science andEngineering: A,2007,443(1-2):248-256.
    [87] Suhuddin U, Mironov S, Takahashi H, Sato Y, Kokawa H, Lee C W. Grain structureformation ahead of tool during friction stir welding of AZ31magnesium Alloy[J].Texture and Anisotropy of Polycrystals Iii,2010,160:313-318.
    [88] Watanabe H, Fukusumi M, Somekawa H, Mukai T. Texture and mechanical propertiesof a superplastically deformed Mg-Al-Zn alloy sheet[J]. Scripta Materialia,2009,61(9):883-886.
    [89] Mishra R K, Gupta A K, Rao P R, Sachdev A K, Kumar A M, Luo A A. Influence ofcerium on the texture and ductility of magnesium extrusions[J]. Scripta Materialia,2008,59(5):562-565.
    [90] Tang W Q, Huang S Y, Zhang S R, Li D Y, Peng Y H. Influence of extrusion parameterson grain size and texture distributions of AZ31alloy[J]. Journal of Materials ProcessingTechnology,2011,211(7):1203-1209.
    [91] Wang M Y, Xin R L, Wang B S, Liu Q. Effect of initial texture on dynamicrecrystallization of AZ31Mg alloy during hot rolling[J]. Materials Science andEngineering: A,2011,528(6):2941-2951.
    [92] Wang T, Zhang M L, Wu R Z, Zhao S J. Microstructure and Mechanical Properties ofMg-5.5Li-3.0Al-1.2Zn-1.0Ce Alloy[J]. Rare Metal Materials and Engineering,2011,40:155-159.
    [93] Janecek M, Yi S, Kral R, Vratna J, Kainer K U. Texture and microstructure evolution inultrafine-grained AZ31processed by EX-ECAP[J]. Journal of Materials Science,2010,45(17):4665-4671.
    [94]杨续跃,孙争艳,张雷.室温多向多道次压缩变形制备亚微米和纳米级镁合金[J].金属学报,2010,46(5):607-612.
    [95] Farzadfar S A, Sanjari M, Jung I H, Essadiqi E, Yue S. Role of yttrium in themicrostructure and texture evolution of Mg[J]. Materials Science and Engineering: A,2011,528(22–23):6742-6753.
    [96]刘庆.镁合金塑性变形机理研究进展[J].金属学报,2010,46(11):1458-1472.
    [97]陈振华,夏伟军,程永奇,傅定发.镁合金织构与各向异性[J].中国有色金属学报,2005,15(001):1-11.
    [98] Jiang L, Jonas John J, Luo Alan A, Sachdev A K, Godet S. Influence of {1012}extension twinning on the flow behavior of AZ31Mg alloy[J]. Materials Science andEngineering A,2007,445-446:302-309.
    [99]陈振华,杨春花,黄长清,夏伟军,严红革.镁合金塑性变形中孪生的研究[J].材料导报,2006,20(008):107-113.
    [100] Mackenzie L W F, Pekguleryuz M. The influences of alloying additions and processingparameters on the rolling microstructures and textures of magnesium alloys[J].Materials Science and Engineering: A,2008,480(1-2):189-197.
    [101] Stanford N, Barnett M R. The origin of "rare earth" texture development in extrudedMg-based alloys and its effect on tensile ductility[J]. Materials Science and Engineering:A,2008,496(1-2):399-408.
    [102] Al-Samman T, Li X. Sheet texture modification in magnesium-based alloys by selectiverare earth alloying[J]. Materials Science and Engineering: A,2011,528(10-11):3809-3822.
    [103] Betsofen S Y, Volkova E F, Shaforostov A A. Effect of alloying elements on theformation of rolling texture in Mg-Nd-Zr and Mg-Li alloys[J]. Russian Metallurgy(Metally),2011,2011(1):66-71.
    [104] Li X, Al-Samman T, Mu S, Gottstein G. Texture and microstructure developmentduring hot deformation of ME20magnesium alloy: Experiments and simulations[J].Materials Science and Engineering: A,2011,528(27):7915-7925.
    [105] Stanford N, Atwell D, Barnett M R. The effect of Gd on the recrystallisation, textureand deformation behaviour of magnesium-based alloys[J]. Acta Materialia,2010,58(20):6773-6783.
    [106] Bohlen J, Nürnberg M R, Senn J W, Letzig D, Agnew S R. The texture and anisotropyof magnesium–zinc–rare earth alloy sheets[J]. Acta Materialia,2007,55(6):2101-2112.
    [107] Agnew S R, Yoo M H, Tome C N. Application of texture simulation to understandingmechanical behavior of Mg and solid solution alloys containing Li or Y[J]. ActaMaterialia,2001,49(20):4277-4289.
    [108] Chino Y, Kado M, Mabuchi M. Compressive deformation behavior at roomtemperature-773K14in Mg-0.20%-(0.035at.%)Ce alloy[J]. Acta Materialia,2008,56(3):387-394.
    [109]李再久,金青林,蒋业华,周荣. Ce对热轧AZ31镁合金动态再结晶及织构的影响[J].金属学报,2009(08):924-929.
    [110]康志新,孔晶,侯文婷,李永新.不同路径等通道转角挤压双相Mg-10.73Li-4.49Al-0.52Y合金的组织与力学性能[J].材料研究学报,2011(05):500-508.
    [111] Yan H, Chen R S, Han E H. Microstructures and mechanical properties of cold rolledMg-8Li and Mg-8Li-2Al-2RE alloys[J]. Transactions of Nonferrous Metals Society ofChina (English Edition),2010,20(SUPPL.2): s550-s554.
    [112]王涛.镁锂稀土合金的制备及性能研究[D];哈尔滨工程大学,2008.
    [113] Kelley E W, Hosford W. Plane-strain compression of magnesium and magnesium alloycrystals[J]. Transactions of American Institute of Minerals, Metals and Engineering,1968,242(1):5-13.
    [114]路君,靳丽,董杰,曾小勤,丁文江,姚真裔.等通道角挤压变形AZ31镁合金的变形行为[J].中国有色金属学报,2009,19(3):424-432.
    [115]夏伟军,蔡建国,陈振华,陈刚,蒋俊峰.异步轧制AZ31镁合金的微观组织与室温成形性能[J].中国有色金属学报,2010,20(7):1247-1253.
    [116] Hou X L, Cao Z Y, Zhao L, Wang L D, Wu Y M, Wang L M. Microstructure, textureand mechanical properties of a hot rolled Mg-6.5Gd-1.3Nd-0.7Y-0.3Zn alloy[J].Materials&Design,2012,34:776-781.
    [117] Lee B H, Park S H, Hong S G, Park K T, Lee C S. Role of initial texture on the plasticanisotropy of Mg-3Al-1Zn alloy at various temperatures[J]. Materials Science andEngineering: A,2011,528(3):1162-1172.
    [118] Foley D C, Al-Maharbi M, Hartwig K T, Karaman I, Kecskes L J, Mathaudhu S N.Grain refinement vs. crystallographic texture: Mechanical anisotropy in a magnesiumalloy[J]. Scripta Materialia,2011,64(2):193-196.
    [119]肖林.密排六方金属的塑性变形[J]. Rare Metal Materials and Engineering,1995,24:22-28.
    [120] Robson J D, Twier A M, Lorimer G W, Rogers P. Effect of extrusion conditions onmicrostructure, texture, and yield asymmetry in Mg-6Y-7Gd-0.5Zr alloy[J]. MaterialsScience and Engineering: A,2011,528(24):7247-7256.
    [121]毛卫民,杨平,陈冷.材料织构分析原理与检测技术[M].冶金工业出版社,2008.
    [122]杨平.电子背散射衍射技术及其应用[M].冶金工业出版社,2007.
    [123] Li Q, Wang Q D, Wang Y X, Zeng X Q, Ding W J. Effect of Nd and Y addition onmicrostructure and mechanical properties of as-cast Mg–Zn–Zr alloy[J]. Journal ofAlloys and Compounds,2007,427(1–2):115-123.
    [124]詹美燕,李春明,张卫文.累积叠轧焊AZ31镁合金微观组织和织构演变的EBSD研究[J].金属学报,2012(06):709-716.
    [125]吴立鸿,王铁豹,王盼,王利国,关绍康. Mg-7.0Al-0.4Zn镁合金超塑性变形中的EBSD研究[J].稀有金属材料与工程,2011(11):1887-1890.
    [126] Li M, Hao H, Zhang A m, Song Y D, Zhang X G. Effects of Nd on microstructure andmechanical properties of as-cast Mg-8Li-3Al alloy[J]. Journal of Rare Earths,2012,30(5):492-496.
    [127]孟利,杨平,崔凤娥,赵祖德.镁合金AZ31动态再结晶行为的取向成像分析[J].北京科技大学学报,2005,27(2):187-192.
    [128]庞年斌,韩明,于忠辉,尹文红,秦聪祥. EBSD解析六方晶体的Bravais点阵[J].电子显微学报,2010,29(004):333-337.
    [129]杨平,孙祖庆,毛卫民.取向成像:一种有效研究晶体材料组织,结构及取向的技术[J].中国体视学与图像分析,2001,6(1):50-54.
    [130]张素银,杜凯,谌加军,詹勇军,曾体贤.电解抛光技术研究进展[J].电镀与涂饰,2007,26(2):48-50.
    [131]尚红霞,胡社军,吴起白,黄拿灿.新型无铬酐电解抛光的研究[J].材料保护,2000,33(9):14-16.
    [132]陈振华.耐热镁合金[M].化学工业出版社,2007.
    [133]张密林.镁锂超轻合金[M].科学出版社,2009.
    [134] Ma C J, Liu M P, Wu G H, Ding W J, Zhu Y P. Tensile properties of extrudedZK60–RE alloys[J]. Materials Science and Engineering: A,2003,349(1):207-212.
    [135] Yang J, Wang J, Wang L, Wu Y, Wang L, Zhang H. Refinement of edge-to-edgematching model and its application in the Mg17Al12/α-Mg and α-Y/α-Mg systems[J].Intermetallics,2009,17(3):104-108.
    [136] Wang T, Zhang M L, Wu R Z. Microstructure and properties of Mg-8Li-1Al-1Cealloy[J]. Materials Letters,2008,62(12–13):1846-1848.
    [137]胡赓祥,材料,蔡珣,戎咏华,上海市,教育委员会.材料科学基础[M].上海交通大学出版社,2006.
    [138]赵品,谢辅洲,孙振国.材料科学基础教程[M].哈尔滨工业大学出版社,2002.
    [139]牛高,赵源华,陈云贵,唐永柏,肖素芬,章晓萍,魏尚海. Nd改性AZ91合金的显微组织和力学性能[J].特种铸造及有色合金,2008,28(9):716-718.
    [140] Peng Q M, Wang J L, Wu Y M, Wang L M. Microstructures and tensile properties ofMg–8Gd–0.6Zr–xNd–yY (x+y=3, mass%) alloys[J]. Materials Science and Engineering:A,2006,433(1–2):133-138.
    [141]吴玉蓉,胡望宇,邓磊. RE-Mg系金属间化合物的热力学性质研究[J].北京科技大学学报,2006,28:502-507.
    [142]吴玉锋,杜文博,聂祚仁,苏学宽,左铁镛. Mg-Al-M合金中Al-M相(M=Sr,Nd)析出行为的热力学分析[J].金属学报,2006,05:487-491
    [143] Moreno I P, Nandy T K, Jones J W, Allison J E, Pollock T M. Microstructural stabilityand creep of rare-earth containing magnesium alloys[J]. Scripta Materialia,2003,48(8):1029-1034.
    [144]董含武,吴耀明,王立民. Mg-Li-RE系合金研究进展[J].兵器材料科学与工程,2009(01):88-93.
    [145]李建宏,李全安,谢建昌,张兴渊,李克杰.钇钕复合合金化对Mg-6Al合金力学性能的影响[J].材料热处理学报,2008,29(4):79-82.
    [146]王小强,李全安,张兴渊. Y, Nd复合稀土对AZ81镁合金组织和力学性能的影响[J].稀有金属材料与工程,2008,37(1):62-65.
    [147]王建利. Mg-Al-Mn-RE系合金组织与性能研究[D];中国科学院长春应用化学研究所,2009.
    [148]胡汉起.金属凝固原理[M].机械工业出版社,2000.
    [149] Segal V M. Materials processing by simple shear[J]. Materials Science and EngineeringA,1995,197(2):157-164.
    [150] Yoshida Y, Yamada H, Kamado S, Kojima Y. Tensile properties and occurrence of lowtemperature superplasticity of ECAE processed Mg-Li-Zn alloys[J].Keikinzoku/Journal of Japan Institute of Light Metals,2001,51(10):551-555.
    [151] Dong S, Imai T, Lim S W, Kanetake N, Saito N, Shigematsu I. Superplasticity inMg-Li-Zn alloys processed by high ratio extrusion[J]. Materials and ManufacturingProcesses,2008,23(4):336-341.
    [152] Liu X H, Zhan H B, Gu S H, Qu Z K, Wu R Z, Zhang M L. Superplasticity in atwo-phase Mg-8Li-2Zn alloy processed by two-pass extrusion[J]. Materials Science andEngineering: A,2011,528(19-20):6157-6162.
    [153] Liu X H, Wu R Z, Niu Z Y, Zhang J H, Zhang M L. Superplasticity at elevatedtemperature of an Mg–8Li–2Zn alloy[J]. Journal of Alloys and Compounds,2012,541(0):372-375.
    [154] Takuda H, Kikuchi S, Tsukada T, Kubota K, Hatta N. Effect of strain rate ondeformation behaviour of a Mg-8.5Li-1Zn alloy sheet at room temperature[J]. MaterialsScience and Engineering: A,1999,271(1-2):251-256.
    [155] Segal V M. Equal channel angular extrusion: From macromechanics to structureformation[J]. Materials Science and Engineering: A,1999,271(1-2):322-333.
    [156]沙桂英,朱宇宏,刘腾,孙晓光,于涛.热轧及退火处理对Mg-3Li-1Sc合金冲击变形行为的影响[J].金属热处理,2010,11:006.
    [157]江海涛,陆春洁,段晓鸽,唐荻,李志超. AZ31镁合金的热变形加工图及其应用[J].北京科技大学学报,2012,34(007):808-812.
    [158]郭永恒,姚素娟. Mg-9Gd-3Y-0.3Zr合金高温塑性变形行为研究[J].材料导报:纳米与新材料专辑,2012,25(2):492-496.
    [159]李峰,桑玉博,赵立伟.热变形对AZ31镁合金显微组织的影响[J].热加工工艺,2006,35(6):8-9.
    [160]丁文江,靳丽,吴文祥,董杰.变形镁合金中的织构及其优化设计[J].中国有色金属学报,2011,21(10):2371-2381.
    [161]郭旭涛,李培杰,曾大本. Mg-Y合金的电子理论研究[J].中国稀土学报,2003,21(006):672-676.
    [162] Chino Y, Huang X S, Suzuki K, Sassa K, Mabuchi M. Microstructure, texture andmechanical properties of Mg-Zn-Ce alloy extruded at different temperatures[J].Materials Transactions,2011,52(6):1104-1107.
    [163] Chino Y, Sassa K, Mabuchi M. Texture and stretch formability of a rolled Mg-Zn alloycontaining dilute content of Y[J]. Materials Science and Engineering: A,2009,513-14:394-400.
    [164] Wu L B, Cui C L, Wu R Z, Li J Q, Zhan H B, Zhang M L. Effects of Ce-rich REadditions and heat treatment on the microstructure and tensile properties ofMg-Li-Al-Zn-based alloy[J]. Materials Science and Engineering: A,2011,528(4–5):2174-2179.
    [165] Stanford N, Atwell D, Beer A, Davies C, Barnett M R. Effect of microalloying withrare-earth elements on the texture of extruded magnesium-based alloys[J]. ScriptaMaterialia,2008,59(7):772-775.
    [166] Stanford N. Micro-alloying Mg with Y, Ce, Gd and La for texture modification-acomparative study[J]. Materials Science and Engineering: A,2010,527(10-11):2669-2677.
    [167] Stanford N, Barnett M. Effect of composition on the texture and deformation behaviourof wrought Mg alloys[J]. Scripta Materialia,2008,58(3):179-182.
    [168]陈振华.变形镁合金[M].化学工业出版社,2005.
    [169] Bohlen J, Nuernberg M R, Senn J W, Letzig D, Agnew S R. The texture and anisotropyof magnesium-zinc-rare earth alloy sheets[J]. Acta Materialia,2007,55(6):2101-2112.
    [170] Chang L L, Wang Y N, Zhao X, Huang J C. Microstructure and mechanical propertiesin an AZ31magnesium alloy sheet fabricated by asymmetric hot extrusion[J]. MaterialsScience and Engineering: A,2008,496(1–2):512-516.
    [171] Shahzad M, Wagner L. Influence of extrusion parameters on microstructure and texturedevelopments, and their effects on mechanical properties of the magnesium alloyAZ80[J]. Materials Science and Engineering: A,2009,506(1–2):141-147._
    [172]王长义,刘正,毛萍莉.{1012}拉伸孪晶对AZ31B镁合金动态力学行为及应变速率敏感性的影响[J].热加工工艺,2011,40(12):19-21.
    [173]毛萍莉,刘正,王长义,金鑫,王峰,郭全英,孙晶.高应变速率下AZ31B镁合金的压缩变形组织[J].中国有色金属学报,2009,19(5):816-820.
    [174]毛萍莉,刘正,王长义,王峰.高应变速率下AZ31镁合金的各向异性及拉压不对称性[J].中国有色金属学报,2012,22(5):1262-1269.
    [175]王长义,刘正,毛萍莉.挤压态AM30镁合金的动态力学行为及变形机制[J].中国有色金属学报,2011,11:002.
    [176] Barnett M R. Twinning and the ductility of magnesium alloys. Part I:"Tension"twins[J]. Materials Science and Engineering:A,2007,464(1-2):1-7.
    [177] Barnett M R. Twinning and the ductility of magnesium alloys. Part II."Contraction"twins[J]. Materials Science and Engineering: A,2007,464(1-2):8-16.
    [178]万玉刚,吕保义,康永林,王朝辉,蔡庆伍,张济山.退火工艺对温轧AZ31板组织,织构及性能的影响[J].稀有金属,2007,31(4):412-415.
    [179] Pérez-Prado M T, Ruano O A. Texture evolution during grain growth in annealed AZ61alloy[J]. Scripta Materialia,2003,48(1):59-64.
    [180]杨平,任学平,赵祖德. AZ31镁合金热成形及退火过程的组织与织构[J].材料热处理学报,2004(4):12-16.
    [181]赵旭峰,马春江,邹明.挤压和轧制对两相共存镁锂合金组织与性能的影响[J].机械工程材料,2008(06):44-49.
    [182]陈斌,冯林平,钟皓,周铁涛,刘培英.变形Mg-Li-Al-Zn合金的组织与性能[J].北京航空航天大学学报,2004(10):976-979.
    [183] Chang L L, Shang E F, Wang Y N, Zhao X, Qi M. Texture and microstructureevolution in cold rolled AZ31magnesium alloy[J]. Materials Characterization,2009,60(6):487-491.
    [184] Al-Samman T, Gottstein G. Room temperature formability of a magnesium AZ31alloy:Examining the role of texture on the deformation mechanisms[J]. Materials Science andEngineering: A,2008,488(1-2):406-414.
    [185] Iwanaga K, Tashiro H, Okamoto H, Shimizu K. Improvement of formability from roomtemperature to warm temperature in AZ31magnesium alloy[J]. Journal of MaterialsProcessing Technology,2004,155:1313-1316.
    [186] Barnett M R, Nave M D, Bettles C J. Deformation microstructures and textures of somecold rolled Mg alloys[J]. Materials Science and Engineering: A,2004,386(1):205-211.
    [187] Sitdikov O, Kaibyshev R, Sakai T. Dynamic recrystallization based on twinning incoarse-grained Mg; proceedings of the Materials Science Forum, F,2003[C]. TransTech Publ.__
    [188]罗晋如,刘庆,刘伟, Andrew G. AZ31镁合金板轧制过程中的{1011}-{1012}双孪生对板材显微组织、织构、力学性能的影响[J].金属学报,2011(12):1567-1574.
    [189]罗晋如,刘庆,刘伟, Andrew G.轧制温度对AZ31镁合金轧制板材中的__{1011}-{1012}双孪生行为的影响[J].金属学报,2012,48(6):717-724.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700