基于可预报分量的6-15天数值天气预报业务技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经过几十年的发展,数值天气预报取得了很大的进步,天气形势的可用预报目前为5-7天。在短期天气预报取得成功的基础上,世界上主要的数值预报中心均在努力研发各种技术来提高天气预报的准确率与时效。但目前对更长时效的6-15天中期延伸期尺度,预报技巧仍然很低,需要进一步提高预报能力。而恰恰是该时间尺度的预报,对开展防灾、救灾工作具有极其重要的意义,因此这方面的深入探索具有重要的科学价值和应用价值。
     本文以建立一个可以实时运行的中期延伸期预报系统为主要目标。针对目前中期延伸期预报的困难,提出了新的预报方法和策略。以国家气候中心业务月动力延伸预报系统为基础,开展了6-15天数值天气预报业务技术研究,最终建立了一个可以实时运行的中期延伸期预报系统。本文主要结论如下:
     (1)分析了可预报性与时空尺度的关系,为从时空尺度的角度分离可预报分量和混沌分量提供依据。利用方差分析的方法分别讨论了球谐函数谱分量和EOF分量的可预报性。对比球谐函数谱分量和EOF谱分量的可预报性,认为EOF谱分量更能反映出与低频流型的联系,与可预报性呈现出更好的关系。
     (2)从可预报性理论出发,提出了分离可预报分量和混沌分量的方法。将误差增长不超过某个阈值的分量定义为可预报分量,明确了它是确定性预报的预报对象。从可预报分量解释方差的角度给出了可预报度的定义。通过在支撑气候吸引子的基上压缩自由度,结合可预报性与时空尺度的联系,给出了实际应用中可预报分量的计算方法。
     (3)提出了确定性预报对象为动力学方程在预报时段内对初值不敏感的可预报分量,以避开预报中内部误差的快速增长。以业务模式为基础,建立了针对可预报分量的预报模式,该模式的建立过程与原始方程模式中处理高频重力波的思路类似,通过在预报过程中抑制混沌分量的发展,避免了重新建立可预报分量的方程组和数值模式,但能同样达到有针对性预报的目的。
     (4)基于分离出的可预报分量,提出了一种新的相似判别方法,该方法判别的相似更能代表整个初始场状态的相似。利用该相似判别方法分析了初值相似程度与其误差演变之间的关系,结果表明,误差的相似程度与初值的相似程度成正比,相似初值提供的预报误差信息很接近于实际的预报误差。初值越相似,其短期误差演变的相似性也越高,同时,在空间分布特征上,相似初值间的模式预报误差也有很好的一致性。
     (5)分析讨论了利用历史资料改进动力模式的相似-动力方法面临的两个困难,并提出了解决的途径,发展了相似-动力方法。相似选取和误差订正均只对可预报分量进行,避免了小尺度分量预报误差的快速增长对预报效果的影响,试验表明能有效改进大尺度的可预报分量的确定性预报。同时,相似选取和误差订正是针对模式的所有变量和层次进行的,因此预报结果的改善对各个变量的各个层次都存在,这为该方法的业务应用奠定了基础。
     (6)提出了可预报分量和混沌分量的集合预报方法。对具有不同特性的可预报分量和混沌分量,采用不同的集合方式。对可确定性预报的可预报分量,从考虑模式不确定性的角度来减小其预报误差;混沌分量预报的信息源并非来源于初值,由于模式误差的存在,由初值集合给出的混沌分量的集合预报值得商榷,进而从最有可能气候概率的角度来给出混沌分量的概率分布,避免了模式误差对混沌分量概率分布的影响。综合可预报分量和混沌分量的集合方式构成可预报分量和混沌分量集合预报方法,以此为基础,建立了6-15天中期延伸期预报系统。
     (7)理论讨论了整个中期延伸期预报系统中一些关键问题,包括可预报分量的确定和利用历史资料改进动力模式的方法等方面,并进行部分敏感性试验的分析。
     本文的研究致力于在我国现有条件下提高6-15天中期延伸期业务预报水平,一系列研究表明本文建立的中期延伸期预报系统对提高原业务模式预报水平是有效的,显示出潜在的业务应用前景,为进一步改进和发展该系统奠定了基础。
In the past few decades, the skill of numerical weather prediction has been improved significant. Useful skill in medium-range weather forecasts from present-day numerical weather prediction models typically extends to about 6 days. On the basis of the success of short-range weather forecast, the major numerical weather prediction centers around the world engage in technology development for improving the accuracy and timeliness of weather forecasts. However, for longer time scale, such as 6-15 days medium and extended range, the forecast quality is still poor. It is necessary to improve the quality of the forecast results. Medium and extended range forecast is very important for disaster prevention and mitigation. Therefore, further investigation on medium and extended range forecast has important for science and application issue.
     In this work, we attempt to establish a real-time medium and extended range forecasting system. For the present difficulties on medium and extended range forecast, some innovative methods and strategies are proposed. Based on an operational dynamical extended range forecasts (DERF) model of NCC/CMA, the 6-15 days operational prediction technology are studied. A real-time medium and extended range forecasting system has been established. The major results and conclusions of this study are summarized as follows:
     (1) The relationship of predictability between spatial and temporal scales is analyzed, in order to provide the basis for separating the predictable components and chaotic components from the perspective of time and spatial scales. The predictability of the spectral coefficients of spherical harmonics and empirical orthogonal functions (EOF) are examined by employing variance analysis. Through the comparison of the predictability of the spectral coefficients of spherical harmonics and empirical orthogonal functions, it is clear that EOF spectral component showing a better relationship with predictability, because it better reflects the link with the low-frequency flow.
     (2) Based on predictability theory, a method for separating the predictable components and chaotic components has been proposed. The predictable components are defined as that components which the error growth will not exceed a certain threshold, and they are the predictant of deterministic forecast. The definition of predictability is provided by the explained variance of predictable components. By reducing degree of freedom low dimensional climate attractor and combining the relation of predictability and the spatial and temporal scales, the computing method of predictable components have been proposed for application.
     (3) Regard the predictable components, which defined as the dynamical equation is not sensitive to initial conditions in forecasts, as the predictant of deterministic forecast, it is helpful to avoid the rapid internal error growth. A targeted numerical model for predictable components has been established based on an operational dynamical extended range forecasts (DERF) model of NCC/CMA. The model building processes are similar to the processing procedure of high-frequency gravity waves in primitive equation model, and avoid the re-establishment of predictable components equations and numerical model with inhibiting the development of chaotic components.
     (4) An analogue selection method under small degree of freedom is proposed, which is achieved by reducing degree of freedom on low dimensional climate attractor and predictable components. The regularity of the analogy of error is investigated. Analyses about the relationship of analogue degree between initial and error are studied. The results show that when the forecast have similar initial conditions, the forecast error has analogical characteristics. Compared with the system error, the error under analogical initial condition is more close to actual forecast error that is based on current initial value. Meanwhile, in the spatial structure, forecast error between analogical initial conditions has good consistency.
     (5) In this study, we tried to find a solution to the problem for two difficulties in analogue-dynamical method, especially with the emphasis in precondition of analogue-dynamical method. Because the analogue selection and error correction are only for predictable components, forecasting experiments indicate that this method can effectively improve the deterministic forecast skill of large-scale predictable components, and avoid the adverse effect of rapid error growth in small-scale components. Meanwhile, the analogue selection and error correction are for all the variables and levels of model, so that the improvement of forecast are for all the variables and levels of model too, which lay a foundation for its operational application.
     (6) An ensemble prediction method is proposed for predictable components and chaotic components. The predictable components and chaotic components, with different characteristics, should be forecast in different ensemble ways. For the predictable components, the forecast error has been reduced by accounting for uncertainties of model error; meanwhile, the forecast information of chaotic components are not from initial conditions because the chaotic components are so sensitive to given initial conditions, and because of model error, the initial perturbation method, which aim to generate an ensemble model forecast; have a debatable premise in common. So the probability distribution of the chaotic components forecast, is not based on an ensemble of initial conditions, but from the perspective of most likely climate probability distribution. It is valid to avoid the effect of model error. Based on the ensemble prediction method for predictable components and chaotic components, a 6-15 days medium and extended range forecasting system is established.
     (7) Some key problems for medium and extended range forecast system are discussed. The determination of predictable components and some respects in analogue-dynamical method with historical data to improve the dynamical model are discussed, respectively. Meanwhile, some studies of sensitive experiments on medium and extended range forecast system are investigated.
     This study is committed to improve the operational 6-15 days dynamical medium and extended range forecast level. A series of studies show that, comparing to the original operational forecast system, the forecast skills of developed medium and extended range forecast system are significantly improved. The results indicate that the new forecast system has potential operational application prospects, and our results provide support for further improvement and development of the real-time medium and extended range forecasting system.
引文
Anderson, J. L., and H. M. Van Den Dool, Skill and return of skill in dynamic Extended-Range forecasts. Monthly Weather Review,1994,122:507-516.
    Baldwin, M. P., D. B. Stephenson, D. W. Thompson, T. J. Dunkerton, A. J. Charlton, and A. O'Neill, Stratospheric memory and skill of Extended-Range weather forecasts. Science,2003,301:636-640.
    Baldwin, M. P., and T. J. Dunkerton, Stratospheric harbingers of anomalous weather regimes. Science, 2001,294:581-584.
    Baldwin, M. P., and T. J. Dunkerton, Propagation of the Arctic Oscillation from the stratosphere to the troposphere. Journal of Geophysical Research,1999,104(D24):30937-30946.
    Barnett, T. P., Statistical prediction of North American air temperatures from pacific predictors. Monthly Weather Review,1981,109:1021-1041.
    Barnett, T. P., and R. W. Preisendorfer, Multifield analog prediction of short-term climate fluctuations using a climate state vector. Journal of the Atmospheric Sciences,1978,35(10):1771-1787.
    Barnston, A. G., and R. E. Livezey, An operational multifield Analog/Anti-Analog prediction system for United States seasonal temperatures, part Ⅱ_ spring, summer, fall and intermediate 3-month period experiments. Journal of Climate,1988,2:513-541.
    Barreiro, M., and P. Chang, A linear tendency correction technique for improving seasonal prediction of SST. Geophysical Research Letters,2004,31:L23209.
    Bengtsson, L., Numerical prediction of atmospheric blocking-A case study. Tellus,1981,33:19-42.
    Boer, G. J., Predictability as a function of scale. Atmosphere-Ocean,2003,41(3):203-215.
    Boer, G. J., Predictability regimes in atmospheric flow. Monthly Weather Review,1994, 122:2285-2295.
    Boer, G. J., A spectral analysis of predictability and error in an operational forecast system. Monthly Weather Review,1984,112:1183-1197.
    Brankovic, C., T. N. Palmer, F. Molteni, S. Tibaldi, and U. Cubasch, Extended-range predictions with ECMWF models:Time-lagged ensemble forecasting. Quarterly Journal of the Royal Meteorological Society,1990,116:867-912.
    Brooks, H. E., C. A. Doswell, and R. A. Maddox, On the use of mesoscale and Cloud-scale models in operational forecasting. Weather and Forecasting,1992,7:120-132.
    Buizza, R., M. Miller, and T. N. Palmer, Stochastic simulation of model uncertainties. Quarterly Journal of the Royal Meteorological Society,1999,125(2887-2908).
    Buizza, R., P. L. Houtekamer, Z. Toth, G. Pellerin, M. Wei, and Y. Zhu, A comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems. Monthly Weather Review,2005, 133:1076-1097.
    Chao, J. P., Y. F. Guo, and R. N. Xin, A theory and method of long-range numerical weather forecasts. Journal of the Meteorological Society of Japan,1982,60:282-291.
    Charlton, A. J., A. O'Neill, D. B. Stephenson, W. A. Lahoz, and M. P. Baldwin, Can knowledge of the state of the stratosphere be used to improve statistical forecasts of the troposphere. Quarterly Journal of the Royal Meteorological Society,2003,129:3205-3224.
    Charney, J. G., R. Fjortoft, and von Neumann, Numerical integration of the barotropic vorticity equation. Tellus,1950,2:237-254.
    Chen, B., J. Li, and R. Ding, Nonlinear local Lyapunov exponent and atmospheric predictability research. Science in China (D),2006,49(10):1111-1120.
    Chen, D., M. A. Cane, S. E. Zebiak, R. Canizares, and A. Kaplan, Bias correction of an ocean-atmosphere coupled model. Geophysical Research Letters,2000,27(16):2585-2588.
    Chen, H., and Z. Lin, A correction method suitable for dynamical seasonal prediction. Advances in Atmospheric Sciences,2006,23(3):425-430.
    Chen, W. Y., and H. M. Van Den Dool, Atmospheric predictability of seasonal, annual, and decadal climate means and the role of the ENSO cycle:a model study. Journal of Climate,1997, 10:1236-1254.
    Chou, J., Predictability of the atmosphere. Advances in Atmospheric Sciences,1989,6(335-346).
    Colle, B. A., and C. F. Mass, High-Resolution observations and numerical simulations of easterly gap flow through the strait of Juan de Fuca on 9-10 December 1995. Monthly Weather Review,2000, 128:2398-2422.
    Cubasch, U., and A. C. Wiin-Nielsen, Predictability studies with the ECMWF spectral model for the extended range:the impact of horizontal resolution and sea surface temperature. Tellus,1986, 38:25-41.
    Danforth, C. M., E. Kalnay, and T. Miyoshi, Estimating and correcting global weather model error. Monthly Weather Review,2007,135:281-299.
    Delsole, T., Predictability and Information Theory. Part Ⅰ-Measures of Predictability. Journal of the Atmospheric Sciences.2004,61:2425-2440.
    Delsole, T., and A. Y. Hou, Empirical correction of a dynamical model. Part Ⅰ:fundamental issues. Monthly Weather Review,1999,127:2533-2545.
    Dequa, M., and J. F. Royer, The skill of extended-range extratropical winter dynamical forecasts. Journal of Climate,1992,5:1346-1356.
    Ding, R., and J. Li, Nonlinear finite-time Lyapunov exponent and predictability. Physics Letters A, 2007,364:396-400.
    Druyan, L. M., R. C. J. Somerville, and W. J. Qutrk, Extended-Range forecasts with the GISS model of the global atmosphere. Monthly Weather Review,1975,103:779-795.
    Ebisuzaki, W., and E. Kalnay, Ensemble experiments with a new lagged average forecasting scheme. WMO Report,1991.
    Epstein, E. S., Long-range weather prediction:limits of predictability and beyond. Weather and Forecasting,1988,3:69-75.
    Epstein, E. S., Stochastic dynamic prediction. Tellus,1969,21:739-759.
    Feng, G. L., H. X. Cao, W. J. Dong, and J. F. Chou, A new difference scheme with multi-time levels. Chinese Physics,2001,10(11):1004-1010.
    Ferranti, L., E. Klinker, A. Hollingsworth, and B. J. Hoskins, Diagnosis of systematic forecast errors dependent on flow pattern. Quarterly Journal of the Royal Meteorological Society,2002, 128:1623-1640.
    Ferranti, L., T. N. Palmer, F. Molteni, and E. Klinker, Tropical-extratropical interaction associated with the 30-60 day oscillation and its impact on medium and extended range prediction. Journal of the Atmospheric Sciences,1990,47(18):2177-2199.
    Gao, L., H. L. Ren, J. P. Li, and J. F. Chou, Analogue correction method of errors and its application to numerical weather prediction. Chinese Physics,2006,15(4):882-889.
    Gilchrist, A., An experiment in extended range prediction using a general circulation model and including the influence of sea-surface temperature anomalies. Beitraege zur Physik der Atmosphaere, 1977,50:25-40.
    Glahn, H. R., and D. A. Lowry, The Use of model output statistics (MOS) in objective weather forecasting. Journal of Applied Meteorology,1972,11:1203-1211.
    Gray, W. M., Climate prediction methodology., Proceedings of the Twenty-fourth Annual Climate Diagnostics and prediction Workshop, Tucson, Arizona,1999.
    Gutzler, D. S., and J. Shukla, Analogs in the wintertime 500 mb height field. Journal of the Atmospheric Sciences,1984,41(2):177-189.
    Hamill, T. M., J. S. Whitaker, and X. Wei, Ensemble reforecasting:improving medium-range forecast skill using retrospective forecasts. Monthly Weather Review,2004,132:1434-1447.
    Hamill, T. M., J. S. Whitaker, Probabilistic Quantitative Precipitation Forecasts Based on Reforecast Analogs:Theory and Application. Monthly Weather Review,2006,134:3209-3229.
    Heckley, W. A., Systematic errors of the ECMWF operation forecast model in tropical regions. Quarterly Journal of the Royal Meteorological Society,1985,111:709-738.
    Hoffman, R. N., and E. Kalnay, Lagged average forecasting, an alternative to Monte Carlo forecasting. Tellus,1983,35:100-118.
    Houtekamer, P. L., L. Lefaivre, J. Derome, H. Ritchie, and M. H. L, A system simulation approach to ensemble prediction. Monthly Weather Review,1996,124:1225-1242.
    Huang, J. P., Y. H. Yi, S. W. Wang, and J. F. Chou, An analogue-dynamical long-range numerical weather prediction system incorporating historical evolution. Quarterly Journal of the Royal Meteorological Society,1993,119:547-565.
    Kaas, E., A. Guldberg, W. May, and M. Deque, Using tendency errors to tune the parameterisation of unresolved dynamical scale interactions in atmospheric general circulation models. Tellus,1999, 51A:612-629.
    Kalnay, E., S. J. Lord, and R. D. Mcpherson, Maturity of operational numerical weather prediction: Medium range. Bulletin of the American Meteorological Society,1998,79(12):2753-2769.
    Kalnay, E.,大气模式、资料同化和可预报性,蒲朝霞,杨福全,邓北胜,徐怀刚,周小刚译,北京:气象出版社,2005.
    Kang, I. S., and J. H. Yoo, Examination of multi-model ensemble seasonal prediction methods using a simple climate system. Climate Dynamics,2006,26:285-294.
    Klinker, E., and P. D. Sardeshmukh, The diagnosis of mechanical dissipation in the atmosphere from large-scale balance requirements. Journal of the Atmospheric Sciences,1992,49:608-627.
    Krishnamurti, T. N., C. M. Kishtawal, T. E. LaRow, D. R. Bachiochi, Z. Zhang, C. Eric Williford, S. Gadgil, and S. Surendran, Improved weather and seasonal climate forecasts from multimodel superensemble. Science,1999,49:608-627.
    Krishnamurti, T. N., C. M. Kishtawal, Z. Zhang, T. LaRow, D. Bachiochi, and E. WilliFord, Multimodel ensemble forecasts for weather and seasonal climate. Journal of Climate,2000, 13:4196-4216.
    Kumar, A., and M. P. Hoerling, Prospects and limitations of seasonal atmospheric GCM predictions. Bulletin of the American Meteorological Society,1995,76:335-345.
    Leith, C. E., Atmospheric predictability and Two-dimension turbulence. Journal of the Atmospheric Sciences,1971,28(2):145-161.
    Leith, C. E., Theoretical skill of monte carlo forecasts. Monthly Weather Review,1974,102:409-418.
    Leith, C. E., Objective methods for weather prediction. Annual Review of Fluid Mechanics,1978, 10:107-128.
    Leith, C. E., and R. H. Kraichnan, Predictability of turbulent flows. Journal of the Atmospheric Sciences,1972,29:1041-1058.
    Lorenz, E. N., Deterministic nonperiodic flow. Journal of the Atmospheric Sciences,1963,20:130-141.
    Lorenz, E. N., Atmospheric predictability as revealed by naturally occurring analogues. Journal of the Atmospheric Sciences,1969,26:636-646.
    Lorenz, E. N., A study of the predictability of a 28-variable atmospheric model. Tellus,1965, 3:321-333.
    Lorenz, E. N., Atmospheric predictability experiments with a large numerical model. Tellus,1982, 34:505-513.
    Lorenz, E. N.,混沌的本质,刘式达,刘式适,严中伟译,北京:气象出版社,1997.
    Madden, R. A., Estimates of the Natural Variability of Time-Averaged Sea-Level Pressure. Monthly Weather Review,1976,104:942-952.
    Mansfield, D. A., The skill of dynamical long-range forecasts, including the effect of sea surface temperature anomalies. Quarterly Journal of the Royal Meteorological Society,1986, 112:1145-1176.
    Mass, C. F., D. Ovens, K. Westrick, and B. A. Colle, Does increasing horizontal resolution produce more skillful forecasts?. Bulletin of the American Meteorological Society,2002,83:407-430.
    Miyakoda, K., G. D. Hembree, R. F. Strickler, and I. Shulman, Cumulative results of extended forecast experiments I. model performance for winter cases. Monthly Weather Review,1972,100:836-855.
    Miyakoda, K., J. Sirutis, and J. Ploshay, One-month forecast experiments-without anomaly boundary forcings. Monthly Weather Review,1986,114:846-869.
    Miyakoda, K., J. Smagorinsky, R. F. Strickler, and G. D. Hembree, Experimental extended predictions with a nine-level hemispheric model. Monthly Weather Review,1969,97:1-76.
    Miyakoda, K., T. Gordon, R. Caverly, W. Stern, and J. Sirutis, Simulation of a blocking event in January 1977. Monthly Weather Review,1983,111:846-869.
    Mu, M., Nonlinear singular vectors and nonlinear singular values. Science in China (D),2000, 43(4):375-385.
    Mu, M., W. S. Duan, H. Xu, and B. Wang, Applications of conditional nonlinear optimal perturbation in predictability study and sensitivity analysis of weather and climate. Advances in Atmospheric Sciences,2006,23(6):992-1002.
    Mu, M., W. S. Duan, and B. Wang, Conditional nonlinear optimal perturbation and its applications. Nonlinear Processes in Geophysics,2003,10:493-501.
    Mu, M., W. S. Duan, and J. C. Wang, The predictability problems in numerical weather and climate prediction. Advances in Atmospheric Sciences,2002,19(2):191-204.
    Mu, M., and J. C. Wang, Nonlinear fastest growing perturbation and the first kind of predictability. Science in China (D),2001,44(12):1128-1139.
    Mu, M., and W. S. Duan, A new approach to studying ENSO predictability:conditional nonlinear optimal perturbation. Chinese Science Bulletin,2003,48(10):1045-1047.
    Mu, M., and Z. Y. Zhang, Conditional nonlinear optimal perturbations of a two-dimensional quasigeostrophic model. Journal of the Atmospheric Sciences,2006,63:1587-1604.
    Namias, J., Thirty-day forecasting:a review of a ten-year experiment. Meteorological Monographs, 1953,2(6):1-83.
    Owen, J. A., and T. N. Palmer, The Impact of El Nino on an Ensemble of Extended-Range Forecasts. Monthly Weather Review,1987,115:2103-2117.
    Palmer, T. N., Predictability of atmosphere and oceans:from days to decades. Proceeding of a Semiar Held at ECMWF on Predictability,1995, (Ⅰ):83-141.
    Palmer, T. N., A. Alessandri, and U. Andersen, Development of a European Multimodel Ensenble System for Seasonal-to-interannual Prediction. Bulletin of the American Meteorological Society, 2004,85:853-872.
    Palmer, T. N., C. Brankovic, F. Molteni, S. Tibaldi, L. Ferranti, A. Hollingsworth, U. Cubasch, and E. Klinker, The european centre for medium-range weather forecasts (ECMWF) program on extended-range prediction. Bulletin of the American Meteorological Society,1990,71(9):1317-1390.
    Palmer, T. N., C. Brankovic, F. Molteni, and S. Tibaldi, Extended-range predictions with ecmwf models:Interannual variability in operational model integrations. Quarterly Journal of the Royal Meteorological Society,1990,116:799-834.
    Radinovic, J., An analogue method for weather forecasting using the 500/1000 mb relative topography. Monthly Weather Review,1975,103:639-649.
    Ruosteenoja, K., Factors affecting the occurrence and lifetime of 500 mb height analogues:a study based on a large amount of data. Monthly Weather Review,1988,116:368-376.
    Saha, S., Response of the NMC MRF model to systematic-error correction within integration. Monthly Weather Review,1992,120:345-360.
    Saha, S., and H. M. Van Den Dool, A measure of the practical limit of predictability. Monthly Weather Review,1988,116:2522-2526.
    Shukla, J., Dynamical predictability of monthly means. Journal of the Atmospheric Sciences,1981, 38(12):2547-2572.
    Shukla, J., and D. S. Gutzler, Interannual variability and predictability of 500 mb geopotential heights over the northern hemisphere. Monthly Weather Review,1983,111:1273-1279.
    Simmons, A. J., R. Mureau, and T. Petroliagis, Error growth and estimates of predictability form the ECMWF forecasting system. Quarterly Journal of the Royal Meteorological Society,1995, 121:1739-1771.
    Simmons, A. J., and A. Hollingsworth, Some aspects of the improvement in skill of numerical weather prediction. Quarterly Journal of the Royal Meteorological Society,2002,128:647-677.
    Smagorinsky, J., Problems and promises of deterministic extended range forecasting. Bulletin of the American Meteorological Society,1969,50:286-312.
    Spar, J., R. Atlas, and E. Kuo, Monthly mean forecast experiments with the GISS model. Monthly Weather Review,1976,104(1215-1241).
    Spar, J., and R. Lutz, Simulations of the monthly mean atmosphere for February 1976 with the GISS model. Monthly Weather Review,1979,107:181-192.
    Stensrud, D. J., J. W. Bao, and T. T. Warner, Using initial condition and model physics perturbations in short-range ensemble simulations of mesoscale convective systems. Monthly Weather Review,2000, 128:2077-2107.
    Thompson, P. D., Uncertainty of initial state as a factor in the predictability of large scale atmospheric flow patterns. Tellus,1957,9:275-295.
    Tibaldi, S., T. N. Palmer, C. Brankovic, and U. Cubasch, Extended-range predictions with ECMWF models:Influence of horizontal resolution on systematic error and forecast skill. Quarterly Journal of the Royal Meteorological Society,1990,116:835-866.
    Toth, Z., Estimation of atmospheric predictability by circulation analogs. Monthly Weather Review, 1991,119:65-72.
    Tracton, M. S., K. Mo, W. Chen, E. Kalnay, R. Kistler, and G. White, Dynamical extended range forecasting (DERF) at the National Meteorological Center. Monthly Weather Review,1989, 117:1604-1635.
    Tracton, M. S., and E. Kalnay, Operational ensemble prediction at the National Meteorological Center: practical aspects. Weather and Forecasting,1993,8:379-398.
    Trenberth, K. E., Potential predictability of geopotential heights over the southern hemisphere. Monthly Weather Review,1985,113:54-64.
    Van Den Dool, H. M., A new look at weather forecasting through analogues. Monthly Weather Review, 1989,117:2230-2247.
    Van Den Dool, H. M., Searching for analogues.how long must we wait?. Tellus,1994,46:314-324.
    Vitart, F., Monthly forecasting at ECMWF. Monthly Weather Review,2004,132:2761-2779.
    Waliser, D. E., K. M. Lau, W. Stern, and C. Jones, Poential predictability of the Madden-Julian Oscillation. Bulletin of the American Meteorological Society,2003,84:33-50.
    Wallace, J. M., X. Cheng, and D. Sun, Does low-frequency atmospheric variability exhibit regime-like behavior?. Tellus,1991,43:16-26.
    Yang, H., D. M. Zhang, and L. R. Ji, An approach to extract effective information of monthly dynamical prediction-the use of ensemble method. Advances in Atmospheric Sciences,2001, 18(2):283-293.
    Zhu, Y., Ensemble forecast:A new approach to uncertainty and predictability. Advances in Atmospheric Sciences,2005,22(6):781-788.
    Ziehmann, C., L. A. Smith, and J. Kurths, Localized Lyapunov exponents and the prediction of predictability. Physics letters A,2000,271(4):237-251.
    鲍名,倪允琪,丑纪范,相似-动力模式的月平均环流预报试验.群学通报,2004,49(11):1112-1115.
    曹鸿兴,大气运动的自忆性方程.中国科学(B辑),1993,23(1):104-112.
    曹鸿兴,谷湘潜,自忆谱模式对中期环流预报的改进.自然科学进展,2001,11(3):309-313.
    长期数值天气预报研究小组,一种长期数值天气预报方法的物理基础.中国科学,1977(2):162-172.
    长期数值天气预报研究小组,长期数值天气预报的滤波方法.中国科学,1979(1):75-84.
    陈伯民,纪立人,杨培才,张道民,王革丽,改善月动力延伸预报水平的一种新途径.科学通报,2003,48(5):513-520.
    陈伯民,纪立人,杨培才,张道民,与非线性区域预测方法结合的月延伸预报试验Ⅰ_纬向平均环流的预报.气象学报,2004,62(1):1-10.
    陈德辉,薛纪善,数值天气预报业务模式现状与展望.气象学报,2004,62(5):623-633.
    陈丽娟,李维京,月动力延伸预报产品的评估和解释应用.应用气象学报,1999,10(4):486-490.
    丑纪范,大气科学中的非线性与复杂性,北京:气象出版社,2002.
    丑纪范,为什么要动力-统计相结合——兼论如何结合.高原气象,1986,5(4):367-372.
    丑纪范,天气数值预报中使用过去资料的问题.中国科学,1974(6):635-644.
    丑纪范,长期数值天气预报的若干问题,中长期水文气象预报文集,北京:水利电力出版社,1979,216-221.
    丑纪范,谢志辉,王式功,建立6-15天数值天气预报业务系统的另类途径.军事气象水文,2006(3):4-9.
    丑纪范,任宏利,数值天气预报—另类途径的必要性和可行性.应用气象学报,2006,17(240-244).
    丑纪范,郑志海,孙树鹏,10-30天延伸期数值天气预报的策略思考—直面混沌.气象科学,2010,出版中.
    丁瑞强,非线性误差增长理论与可预报性研究.中科院大气物理研究所博士论文,2007.
    丁瑞强,李建平,非线性误差增长理论及可预报性研究.天气科学,2007,31(4):571-576.
    董敏主编,国家气候中心大气环流模式-基本原理和使用说明,北京:气象出版社,2001.
    范晓青,李维京,张培群,目前短期气候预测可预报性的研究概况.气象,2003a,29(2):3-6.
    范晓青,李维京,张培群,模式大气月尺度可预报性的对比研究.应用气象学报,2003b,14(1):49-60.
    范新岗,丑纪范,提为反问题的数值预报方法与试验.大气科学,1999,23(5):543-550.
    龚建东,李维京,丑纪范,集合预报最优初值形成的四维变分同化方法.群学通报,1999,44(10):1113-1116.
    谷湘潜,一个基于大气自忆原理的谱模式.科学通报,1998,43(9):1-9.
    顾震潮,天气数值预报中过去资料的使用问题.气象学报,1958a,29(3):176-184.
    顾震潮,作为初值问题的天气形势数值预报与由地面天气历史演变作预报的等值性.气象学报,1958b,29(2):93-98.
    郭秉荣,史久恩,丑纪范,以大气温压场连续演变表征下垫面热状况的长期天气数值预报方法.兰州大学学报,1977,(4):73-90.
    郝柏林,分叉、混沌、奇怪吸引子、湍流及其它-关于确定论系统中的内在随机性.物理学进展,1983,3(3):329-415.
    皇甫雪官,国家气象中心集合数值预报检验评价.应用气象学报,2002,13(1):29-36.
    黄嘉佑,长期天气过程的可预报性研究的进展.气象科技,1992,3:30-37.
    黄建平,丑纪范,海气耦合系统相似韵律现象的研究.中国科学(B)辑,1989,(9):1001-1008.
    黄建平,王绍武,相似-动力模式的季节预报试验.中国科学(B)辑,1991,(2):216-224.
    李建平,丁瑞强,陈宝花,大气可预报性研究的回顾与展望,21世纪初大气科学前沿与展望,北京:气象出版社,2006,96-103.
    李维京,张培群,李清泉,王兰宁,刘益民,史学丽,张祖强,刘一鸣,胡国权,党鸿雁,张芳,陈丽娟,孙除荣,赵其庚,董敏,动力气候模式预测系统业务化及其应用.应用气象学报,2005,16(增刊):1-11.
    李维京,张小礼,李小泉,章基嘉,海温对月平均环流影响的数值试验.应用气象学报,1993,4(增刊):45-49.
    李维京,纪立人主编,月动力延伸预报研究进展,北京:气象出版社,2000.
    李泽椿,陈德辉,国家气象中心集合数值预报业务系统的发展及应用.应用气象学报,2002,13(1):1-15.
    李志锦,纪立人,实际预报可预报性的时空依赖性分析.大气科学,1996,20(3):290-297.
    骆美霞,纪立人,张道民,李金龙,游荣高,A. Longhetto,全球海温距平对月预报影响的数值试验.大气科学,1997,21(5):552-555.
    骆美霞,张道民,实时海温对动力延伸(月)预报影响的数值试验研究.应用气象学报,2002,13(6):727-733.
    莫宁著,天气预报-一个物理的课题,林本达,王绍武译,北京:气象出版社,1981.
    穆穆,李建平,丑纪范,段晚锁,王家城,气候系统可预报性理论研究.气候与环境研究,2002,7(2):227-235.
    穆穆,段晚锁,条件非线性最优扰动及其在天气和气候可预报性研究中的应用.科学通报,2005,50(24):2695-2701.
    穆穆,段晚锁,ENSO可预报性研究的一个新方法:条件非线性最优扰动.科学通报,2003,48(7):747-749.
    钱永甫,郑琼,P-σ全球模式的月尺度动力延伸预报试验.大气科学,2001,25(5):641-649.
    邱崇践,丑纪范,改进数值天气预报的一个新途径.中国科学(B)辑,1987(8):903-910.
    邱崇践,丑纪范,预报模式识别的扰动方法.大气科学,1988,12(3):225-232.
    邱崇践,丑纪范,预报模式的参数优化方法.中国科学(B)辑,1990(2):218-224.
    任宏利,动力相似预报的策略和方法.兰州大学博士论文,2006.
    任宏利,张培群,李维京,丑纪范,基于多个参考态更新的动力相似预报方法及应用.物理学报,2006,55(8):4388-4396.
    任宏利,丑纪范,统计-动力相结合的相似误差订正法.气象学报,2005,63(6):988-993.
    任宏利,丑纪范,在动力相似预报中引入多个参考态的更新.气象学报,2006,64(3):315-324.
    任宏利,丑纪范,动力相似预报的策略和方法研究.中国科学,2007,37(8):1101-1109.
    孙丞虎,李维京,任宏利,张培群,王冬艳,一个ENSO动力-相似误差订正模式极其后报初检验.大气科学,2006,30(5):965-976.
    王斌,谭晓伟,一种求解条件非线性最优扰动的快速算法及其在台风目标观测中的初步检验.气象学报,2009,67(2):175-188.
    王绍武,现代气候学研究进展,北京:气象出版社,2001.
    王绍武,月平均环流的长期数值预报.大气科学,1990,14(2):243-248.
    王绍武,林本达,气候预测与模拟研究,北京:气象出版社,1993.
    王绍武主编,气候预测研究,北京:气象出版社,1996.
    许晓光,李维京,任宏利,张培群,T63L16气候模式预报能力的空间尺度分布研究.气象学报,2009,67(6):992-1001.
    杨燕,纪立人,数字滤波方法在月尺度数值预报中的应用Ⅰ.初始场滤波的作用.大气科学,1997a,21(4):437-448.
    杨燕,纪立人,数字滤波方法在月尺度数值预报中的应用Ⅱ.保留不同低频过程的效果比较.大气科学,1997b,21(5):533-544.
    张邦林,丑纪范,经验正交函数在气候数值模拟中的应用.中国科学(B辑),1991(4):442-448.
    张邦林,丑纪范,经验正交函数展开精度的稳定性研究.气象学报,1992,50(3):342-345.
    张道民,纪立人,李金龙,月数值天气预报的试验研究.大气科学,1996,20(4):429-438.
    张道民,纪立人,李金龙,动力延伸(月)预报的季节变化和误差分析.大气科学,1997,21(2):141-150.
    张培群,丑纪范,改进月延伸预报的一种方法.高原气象,1997,16(4):376-388.
    赵彦,短期气候数值预测可预报性问题.应用气象学报,2000,11(增刊):64-71.
    郑庆林,宋青丽,蒋平,一个改进的T42L10谱模式及其在月预报中的应用.应用气象学报,1993,4(增刊):50-56.
    郑庆林,杜行远,使用多时刻观测资料的数值天气预报新模式.中国科学,1973,16(2):289-297.
    郑志海,任宏利,黄建平,基于季节气候可预报分量的相似误差订正方法和数值实验.物理学报,2009,58(10):7359-7367.
    郑志海,封国林,丑纪范,任宏利,数值预报中自由度的压缩及误差相似性规律.应用气象学报,2010,21(2):139-148.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700