陶瓷型面的数控展成蠕动进给超声磨削技术的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工程陶瓷由于其优良的物理力学性能在切削工具、汽车、航空航天及仪器仪表等诸多领域都有广泛的应用前景。但由于陶瓷材料同时具有高硬度、高脆性和低断裂韧性等特点,是典型的难加工材料。特别是陶瓷材料的成形加工是长期以来希望解决、而至今仍未解决好的难题。而使用陶瓷材料来制造发动机上某些关键零部件以提升发动机的性能,是当前发达国家的研究重点之一。本文为解决陶瓷整体叶轮的加工难题,研究探索一种类似于数控仿形侧铣加工的陶瓷叶片型面超声磨削加工技术,即陶瓷型面的数控展成蠕动进给超声磨削技术。主要研究内容包括:
     (1)对实验室原超声磨削型面加工机床进行改进以提升其性能,为后续试验提供可靠的试验平台。新增设了电机变频调速控制系统和磨轮驱动系统,并对超声振动系统进行了改进,以实现磨削过程平稳、磨轮定位准确且磨轮转速稳定可控。简要介绍了各单元的功能和设计过程。
     (2)对超声加工声学系统的关键部件——阶梯形变幅杆进行了仿真分析研究。考虑到一方面依理论设计的变幅杆其性能参数并不能完全满足试验要求,另一方面变幅杆在工程应用中存在的特殊结构(如过渡圆弧、匹配长度、法兰盘和螺纹孔等)会造成其性能参数的改变,而利用解析法难以对此求解。论文通过模态分析解决了这一难题,研究了过渡圆弧半径、匹配长度和连接部件等对阶梯形变幅杆谐振频率、位移节点和放大系数的影响规律,并根据模态分析结果设计了变幅杆。对实际变幅杆利用高频扫描激光测振系统进行了振动特性测试,实测结果与模态分析结果基本吻合,偏差在2.1%以内,表明模态分析结果可信。
     (3)对蠕动进给超声磨削加工技术基础理论进行了研究。首先分析了陶瓷材料延性域磨削加工的可行性,基于压痕断裂力学理论,探讨了陶瓷材料延性域超声磨削机理,并给出了延性域超声磨削的临界条件。然后从理论上分析了陶瓷材料蠕动进给超声磨削时去除材料所需的静载荷模型。该模型表明:当整个磨轮完全切入陶瓷材料后,在超声振动的作用下,将造成其磨削力降低,这将有利于陶瓷叶片型面数控展成蠕动进给超声磨削加工的顺利进行。通过分析单个磨粒的磨削参数,从理论上分析了利用小直径磨轮进行蠕动进给超声磨削的加工过程,给出了蠕动进给超声磨削加工过程中磨粒的最大磨削厚度、磨轮一转中磨粒的磨削弧长和扇形凹口高度的理论计算公式。
     (4)利用小直径磨轮进行了Al2O3陶瓷材料蠕动磨削试验,对比研究了超声和机械磨削中磨削参数对表面粗糙度和材料去除率的影响。采用小直径磨轮进行蠕动磨削时,超声磨削和机械磨削存在不同之处,从理论上给予了解释。深入研究表明,给工件施加一个附加的进给运动后,可以显著降低加工表面粗糙度值,而材料去除率都有所增大。当通过增大磨轮直径而提高磨削速度时,磨削结果更接近于通常磨削理论分析的情况。最后通过正交试验研究了磨削参数对加工表面粗糙度值和材料去除率的影响规律和显著程度。
     (5)基于平面超声磨削试验结果,进行了陶瓷叶片型面超声磨削基础工艺试验研究。构造了直纹面叶片型面数学模型,进行了加工误差分析,编制了数控加工程序并进行了基础工艺试验,首次在Al2O3陶瓷坯料上直接加工出完整的直纹面叶片型面。
Ceramics has been found extensive promising application in many fields, such as cutting tool, automotive, aerospace and apparatus because of its superior physical and mechanical properties. But ceramics is considered to be typical hard-to-machine material for its high hardness, high brittleness and low fracture toughness. Especially the contour machining of ceramics is a difficult problem which is hoped to be solved for a long time while unresolved yet. It’s one of the key research issues for advanced countries to promote the performance of engine made of ceramics at present. This dissertation explores an ultrasonic grinding (USG) technology named NC-Contour Evolution Creep Feed Ultrasonic Grinding (NC-ECCFUSG) ceramic blade surface that similar to NC profiling flank milling so as to resolve the problem of machining ceramic integral wheel. The major research work includes:
     (1)The primary USG profile machine tool in our library is retrofitted to promote its performance so as to provide a reliable test-bed for the following experiments. A frequency control system is implied to control an inverter-fed motor and a grinding wheel driving system is designed, so as to obtain steady grinding process, install the grinding wheel accurately and make the rotating speed of the grinding wheel steady and controllable. And the ultrasonic vibration system is improved. Function of each unit and design process is introduced in brief.
     (2)Modal simulation analysis of the stepped horn, the key component of the USM acoustic system, is carried out. On the one hand, the performance parameters of the stepped horn designed according to the theory are not satisfied with the experiment requirement entirely and on the other hand, special structures of the horn in practice including radius of transitional circular are, matching length, flange and screw hole, etc. may lead to the change of its performance parameters, and which is difficult to be solved with analytical method. This problem is resolved through model analysis for the stepped horn. The influences of the radius of transitional circular arc, matching length and connected parts on the resonant frequency, displacement node and transformation ratio of the horn are studied through modal analysis. The stepped horn is designed based on the modal analysis results. Vibration characteristic test of the horn is carried out using method of measuring vibration system with high frequency scanning laser. The actual measuring result matches the modal analysis result approximately, and the discrepancy is less than 2.1%, which indicates that the modal analysis result is reliable.
     (3)Basic theoretical research on the creep feed USG technology is carried out. Firstly, feasibility of grinding ceramic in the ductile regime is analyzed, mechanism of USG ceramic in the ductile regime is discussed based on the theory of indentation fracture mechanics, and the critical condition of USG in the ductile regime is deduced. Secondly, the model of static load for the material removing in the process of creep feed USG ceramic is analyzed in theory. The model indicates that the grinding force will be reduced when the ultrasonic vibration is applied and the whole grinding wheel cuts into the ceramic, which is of advantage to NC-CECFUSG ceramic blade surface. The theoretic calculating expressions of the maximum grit depth of cut, the contact length in one rotation of the grinding wheel and the surface scallop height in the process of creep feed USG with small diameter grinding wheel are deduced through analyzing the grinding parameters of single grit in the grinding process.
     (4)Competitive experiments of creep feed ultrasonic face grinding ceramic using small diameter grinding wheel to study the influences of the grinding parameters on the surface roughness and material removal rate (MRR) in the grinding process with/without ultrasonic vibration are carried out to explore relative grinding parameters for the profile grinding. Difference exists in the process of creep feed grinding with/without ultrasonic vibration using small diameter grinding wheel, and which is explained in theory. Deeper research results indicate that the value of ground surface roughness will decrease obviously and MRR will increase a little when additional feed motion is applied to the workpiece. The grinding result is more close to the common theoretic result when increasing the grinding speed through increase the diameter of the grinding wheel. Finally, orthogonal experiments are carried out to study the influence law and prominence degree of the grinding parameters to the ground surface roughness and MRR.
     (5)Basic technological experimental research on the USG ceramic blade surface is carried out based on the experimental results of face grinding. The mathematical model of the blade with ruled surface is constructed, the machining error is analyzed, the NC machining program is written, the basic technological experiment is carried out and a set of Al2O3 ceramic integrated blades with ruled surface are machined for the first time.
引文
[1]张玉军, 张伟儒等编. 结构陶瓷材料及其应用. 北京:化学工业出版社出版, 2005,3
    [2]杜则裕等编著. 工程材料简明手册. 北京: 电子工业出版社, 1996,9: 412-427
    [3]贾志新, 艾冬梅等. 工程陶瓷材料加工技术现状. 机械工程材料,2000,24(1): 2-5
    [4]陈炳贻. 陶瓷燃气轮机的技术开发. 燃气涡轮试验与研究, 1998, 11(1): 48-53
    [5]D. G. LaChapelle, M. E. Noe, W. G. Edmondson, et al. CMC MATERIALS APPLICATIONS TO GAS TURBINE HOT SECTION COMPONENTS. AIAA-98-3266, Virginia: AIAA, 1998. 1-7
    [6]INDUSTRIAL POWER GENERATION PROGRAM Project Fact Sheet: Ceramic Stationary Gas Turbine (CSGT). http://www.p2pays.org/ref/08/07468.pdf
    [7]B. Schenk. Ceramic Turbine Engine Demonstration Project: A Summary Report. Journal of Engineering for Gas Turbines and Power, 2002, 124(3): 617-626
    [8]李玉平, 陈惠, 肖汉宁等. 从哥伦比亚号说开去. http://etsc.hnu.cn/jxzy/lxkj/2003/data/ wjclwlxn/project/anli/columbia.htm
    [9]Hiroshi Kaya. The application of ceramic-matrix composites to the automotive ceramic gas turbine. Composites Science and Technology, 1999, 59(6): 861-872
    [10]I. Takehara, T. Tatsumi, Y. Ichikawa, Summary of CGT302 Ceramic Gas Turbine Research and Development Program. Journal of Engineering for Gas Turbines and Power, 2002, 124(3) 627-635
    [11]于爱兵. 发动机部件用陶瓷材料加工技术. 汽车技术, 1998, (5): 26-28
    [12]邓朝晖, 张璧, 孙宗禹等. 陶瓷磨削材料去除机理的研究进展. 中国机械工程, 2002,13(18): 1608-1611
    [13]邓朝晖, 张璧, 孙宗禹等. 陶瓷磨削的材料去除机理. 金刚石与磨料磨具工程, 2000,2(128): 47-51
    [14]Li K, Liav T W Surface/subsurface damage and the fracture strength of ground ceramics. Journal of Materials Processing Technology, 1996, 57 (3-4): 207-220
    [15]Z. J. Pei, P. M. Ferreira, M. Haselkorn, Plastic flow in rotary ultrasonic machining of ceramics, Journal of Materials Processing Technology, 1995, 48 (1-4): 771-777
    [16]于思远, 赵艳红, 刘殿通. 超声磨削加工工程陶瓷小孔的实验研究. 电加工与模具, 2001,4:31-34
    [17]Z.J.Pei, P.M.Ferreira. An experimental investigation of ultrasonic face milling, International Journal of Machine Tools & Manufacture, 1999, 39(8): 1327-1344
    [18]G. Ya, H. W. Qin, S. C. Yang, et al. Analysis of the rotary ultrasonic machining mechanism . Journal of Materials Processing Technology, 2002, 129(1-3): 182-185
    [19]Y.Benkirane, D.Kremer, A.Moisan. Ultrasonic machining: an analytical and experimental study of contour machining based on neural network, CIRP Annals, 1999, 48 (1): 135-138
    [20]Z. J. Pei, P. M. Ferreira, S. G. Kapoor, et al. Rotary ultrasonic machining for face milling of ceramics. International Journal of Machine Tools and Manufacture, 1995, 35(7): 1033-1046
    [21]Z. J. Pei, P. M. Ferreira. Modeling of ductile-mode material removal in rotary ultrasonic machining. International Journal of Machine Tools and Manufacture, 1998, 38, (10-11): 1399-1418
    [22]Ming Zhou, X. J. Wang, B. K. A. Ngoi, et al. Brittle–ductile transition in the diamond cutting of glasses with the aid of ultrasonic vibration. Journal of Materials Processing Technology, 2002, 121(2-3): 243-251
    [23]J. Gan, X. Wang, M. Zhou, et al. Ultraprecision Diamond Turning of Glass with Ultrasonic Vibration. The International Journal of Advanced Manufacturing Technology, 2003, 21(12): 952 –955
    [24]K. Liu, X. P. Li, M. Rahman, et al. Study of ductile mode cutting in grooving of tungsten carbide with and without ultrasonic vibration assistance. The International Journal of Advanced Manufacturing Technology, 2004, 24(5-6): 389 – 394
    [25]刘晋春, 赵家齐, 赵万生主编. 特种加工(第3版). 北京: 机械工业出版社出版, 2000,7
    [26]http://www.dmgchina.com/cn,ultrasonic,ultrasonic
    [27]Hsueh-Ming S. Wang, Louis Plebani, and G. Sathyanaryanan. ULTRASONIC MACHINING: 1907 TO PRESENT. Manufacturing Science and Technology, ASME 1997,2 : 169-176
    [28]Hsueh-Ming Steve Wang. ANALYSIS OF THE EFFECT OF PROCESS PARAMETERS ON MATERIAL REMOVAL RATE IN ULTRASONIC MACHINING [D]. Lehigh University, 1998
    [29]T. B. THOE, D. K. ASPINWALL, M. L. H. WISE. REVIEW ON ULTRASONIC MACHINING. Int. J. Mach. Tools Manufact. 1998, 38(4): 239-255
    [30]http://www.51csb.com/news_detail.php?id=72&news_catpath =0004
    [31]http://cheetah.imse.ksu.edu/ %7Ezpei/ultrasonic_machining/html/index1.htm
    [32]Jeong-Du Kim, In-Hyu Choi. Micro surface phenomenon of ductile cutting in the ultrasonic vibration cutting of optical plastics. Journal of Materials Processing Technology, 1997, 68(1): 89-98
    [33]V. K. Astashev, V. I. Babitsky. Ultrasonic cutting as a nonlinear (vibro-impact) process. Ultrasonics, 1998, 36(1-5): 89-96
    [34]M. Xiao, S. Karube, T. Soutome, K. Sato. Analysis of chatter suppression in vibration cutting.International Journal of Machine Tools and Manufacture, 2002, 42(15): 1677-1685
    [35]Ming Zhou, X. J. Wang, B. K. A. Ngoi, et al. Brittle–ductile transition in the diamond cutting of glasses with the aid of ultrasonic vibration. Journal of Materials Processing Technology, 2002, 121(2-3): 243-251
    [36]Jun-Seok Lee, Deug-Woo Lee, Yoong-Ho Jung, et al. A study on micro-grooving characteristics of planar lightwave circuit and glass using ultrasonic vibration cutting. Journal of Materials Processing Technology, 2003, 130-131: 396-400
    [37]A. V. Mitrofanov, V. I. Babitsky, V. V. Silberschmidt. Finite element simulations of ultrasonically assisted turning. Computational Materials Science, 2003, 28(3-4): 645-653
    [38]Feliciano H. JAPITANA, Koichi MORISHIGE, Yoshimi TAKEUCHI. Six-Axis Controlled Ultrasonic Vibration Cutting in Fabrication of a Sharp Corner. International Journal of Advance Manufacturing and Technology, 2003, 21(8):564-570
    [39]M. Xiao, K. Sato, S. Karube, et al. The effect of tool nose radius in ultrasonic vibration cutting of hard metal. International Journal of Machine Tools and Manufacture, 2003, 43(13): 1375-1382
    [40]V. I. Babitsky, A. N. Kalashnikov, A. Meadows, et al. Ultrasonically assisted turning of aviation materials. Journal of Materials Processing Technology, 2003, 132(1-3): 157-167
    [41]Feliciano H. Japitana, Koichi Morishige, Yoshimi Takeuchi. 6-Axis control cutting of overhanging curved grooves by means of non-rotational tool with application of ultrasonic vibrations. International Journal of Machine Tools and Manufacture, 2004, 44(5): 479-486
    [42]V. I. Babitsky, V. K. Astashev, A. N. Kalashnikov. Autoresonant control of nonlinear mode in ultrasonic transducer for machining applications. Ultrasonics, 2004, 42(1-9): 29-35
    [43]V. I. Babitsky, A. N. Kalashnikov, F. V. Molodtsov. Autoresonant control of ultrasonically assisted cutting. Mechatronics, 2004, 14(1): 91-114
    [44]A. V. Mitrofanov, V. I. Babitsky, V. V. Silberschmidt. Finite element analysis of ultrasonically assisted turning of Inconel 718. Journal of Materials Processing Technology, 2004, 153-154: 233-239
    [45]K. Liu, X. P. Li, M. Rahman, et al. Study of ductile mode cutting in grooving of tungsten carbide with and without ultrasonic vibration assistance. The International Journal of Advanced Manufacturing Technology, 2004, 24(5-6): 389 – 394
    [46]Chunxiang Ma, E. Shamoto, T. Moriwaki, et al. Study of machining accuracy in ultrasonic elliptical vibration cutting. International Journal of Machine Tools and Manufacture, 2004, 44(12-13): 1305-1310
    [47]V. I. Babitsky, A. V. Mitrofanov, V. V. Silberschmidt. Ultrasonically assisted turning ofaviation materials: simulations and experimental study. Ultrasonics, 2004, 42(1-9): 81-86
    [48]Ken-ichi Ishikawa, Hitoshi Suwabe, Tetsuhiro Nishide, et al. A study on combined vibration drilling by ultrasonic and low-frequency vibrations for hard and brittle materials. Precision Engineering, 1998, 22(4): 196-205
    [49]M. Wiercigroch, R. D. Neilson, M. A. Player. Material removal rate prediction for ultrasonic drilling of hard materials using an impact oscillator approach. Physics Letters A, 1999, 259(2): 91-96
    [50]Reimund Neugebauer, Andrea Stoll. Ultrasonic application in drilling. Journal of Materials Processing Technology, 2004, 149(1-3): 633-639
    [51]Simon S.F. Chang, Gary M. Bone. Burr size reduction in drilling by ultrasonic assistance. Robotics and Computer-Integrated Manufacturing, 2005, 21(4-5): 442-450
    [52]G. Spur, S. -E. Holl. Ultrasonic assisted grinding of ceramics. Journal of Materials Processing Technology, 1996, 62(4): 287-293
    [53]P. L. Guzzo, A. A. Raslan, J. D. B. De Mello. Ultrasonic abrasion of quartz crystals. Wear, 2003, 255(1-6): 67-77
    [54]W.M. Zeng, Z.C. Li, Z.J. Pei, C. Treadwell. Experimental observation of tool wear in rotary ultrasonic machining of advanced ceramics. International Journal of Machine Tools and Manufacture, 2005, 45(12-13):1468-1473
    [55]Y. Ichida, R. Sato, Y. Morimoto. Material removal mechanisms in non-contact ultrasonic abrasive machining. Wear, 2005, 258(1-4):107-114
    [56]E. Uhimann. Surface Formation in Creep Feed Grinding of Advanced Ceramics with and without Ultrasonic Assistance. Annals of the CIRP, 1998, 47(1): 249-252
    [57]H.K. T?nshoff, B. Karpuschewski, T. Mandrysch. Grinding Process Achievements and their Consequences on Machine Tools-challenges and opportunities. Annals of the CIRP, 1998, 47(2): 651-668
    [58]H. Onikura, O. Ohnishi, Y. Take. Fabrication of micro carbide tools by ultrasonic vibration grinding. Annals of the CIRP, 2000, 50 (1): 257-260
    [59]A. R. Jones, J. B. Hull. Ultrasonic flow polishing. Ultrasonics, 1998, 36(1-5): 97-101
    [60]Ji Zhao, Jianming Zhan, Rencheng Jin, et al. An oblique ultrasonic polishing method by robot for free-form surfaces. International Journal of Machine Tools and Manufacture, 2000, 40(6): 795-808
    [61]Shaohui Yin, Takeo Shinmura. A comparative study: polishing characteristics and its mechanisms of three vibration modes in vibration-assisted magnetic abrasive polishing. International Journal of Machine Tools and Manufacture, 2004, 44(4): 383-390
    [62]F. Hashimoto, D.B. DeBra. Modeling and optimization of vibratory finishing process. Annals of the CIRP, 1996, 45(1): 303-306
    [63]Xi-Qing Sun, T. Masuzawa, M. Fujino. Micro ultrasonic machining and its applications in MEMS. Sensors and Actuators A: Physical, 1996, 57(2): 159-164
    [64]Z. N. Guo, T. C. Lee, T. M. Yue, et al. A study of ultrasonic-aided wire electrical discharge machining. Journal of Materials Processing Technology, 1997, 63(1-3): 823-828 ;N. Guo , T. C. Lee , T. M. Yue, et al. Study on the machining mechanism of WEDM with ultrasonic vibration of the wire. Journal of Materials Processing Technology, 1997, 69(1-3): 212-221
    [65]T. B. Thoe, D. K. Aspinwall, N. Killey. Combined ultrasonic and electrical discharge machining of ceramic coated nickel alloy. Journal of Materials Processing Technology, 1999, 92-93: 323-328
    [66]M. Ghoreishi, J. Atkinson. A comparative experimental study of machining characteristics in vibratory, rotary and vibro-rotary electro-discharge machining. Journal of Materials Processing Technology, 2002, 120, (1-3): 374-384
    [67]Zhao Wansheng, Wang Zhenlong, Di Shichun, et al. Ultrasonic and electric discharge machining to deep and small hole on titanium alloy. Journal of Materials Processing Technology, 2002, 120(1-3): 101-106
    [68]Q. H. Zhang, J. H. Zhang, J. X. Deng, et al. Ultrasonic vibration electrical discharge machining in gas. Journal of Materials Processing Technology, 2002, 129(1-3): 135-138
    [69]A Cheng Wang, Biing Hwa Yan, Xiang Tai Li, et al. Use of micro ultrasonic vibration lapping to enhance the precision of microholes drilled by micro electro-discharge machining. International Journal of Machine Tools and Manufacture, 2002, 4(8): 915-923
    [70]王阿成. 高精度微細孔槽的微放電複合技術研發機器加工特性研究(博士學位論文). 國立中央大學, 2002, 9(中華民國92年9月)
    [71]Changshui Gao, Zhengxun Liu. A study of ultrasonically aided micro-electrical-discharge machining by the application of workpiece vibration. Journal of Materials Processing Technology, 2003, 139(1-3): 226-228
    [72]F.-T.Weng. A study of cathode agitation in ultrasonic-aided microelectroforming. The International Journal of Advanced Manufacturing Technology, 2005, 25(9-10): 909 – 912
    [73]包胜华, 吴蒙华, 刘正宁. 超声波作用下医用钛合金(Ti-6Al-4V)植入物的电解抛光. 表面技术, 2005, 34(6): 25-27
    [74]赵雪松, 高洪. 精密模具超声电解复合抛光试验研究. 农业机械学报, 2004, 35(3): 188-190
    [75]王雅琼, 傅相林, 李敏等. 超声对电解水阳极放氢过程的影响. 扬州大学学报: 自然科学版, 2003, 6(1):29-32
    [76]陈长琦, 朱武, 方应翠等. 超声微电解生物氧化污水处理过程控制系统设计. 合肥工业大学学报:自然科学版, 2003, 26(6): 1188-1191
    [77]杨大春, 云乃彰等. 硬脆金属的超声电解复合加工研究. 电加工与模具. 2002, (2): 31-33
    [78]王菊香, 赵恂. 超声电解法制备超细金属粉的研究. 材料科学与工程, 2000, 18(4): 70-74
    [79]金菁, 刘友和. 合金钢电解超声复合抛光工艺的试验研究. 表面工程, 1995, (1): 29-33
    [80]B. Varghess and S.Malkin, Experimental Investigation of Methods to Enhance Stock Removal for Super finishing, Annals of the CIRP 1998,.47 (1):.231-234
    [81]Qu, Weimin. The effects of high-frequency vibration on the grinding process (Ph.D.). Michigan Technological University, 1999
    [82]W. Qu, K. Wang, M.H. Miller, et al. Using vibration-assisted grinding to reduce subsurface damage. Journal of the International Societies for Precision Engineering and Nanotechnology, 2000, 24(4): 329–337
    [83]P. Hu, J. M. Zhang, Z. J. Pei, et al. Modeling of material removal rate in rotary ultrasonic machining: designed experiments. Journal of Materials Processing Technology, 2002, 129(1-3): 339-344
    [84] L. Gaete-Garretón, Y. Vargas-Hernandez, A. Chamayou, et al. Development of an ultrasonic high-pressure roller press. Chemical Engineering Science, 2003, 58(19): 4317-4322
    [85]Y. Wu, Y. Fan, M. Kato, et al. Development of an ultrasonic elliptic-vibration shoe centerless grinding technique. Journal of Materials Processing Technology, 2004, 155-156: 1780-1787
    [86]Y. Wu, T. Kondo, M. Kato. A new centerless grinding technique using a surface grinder. Journal of Materials Processing Technology, 2005, 162-163: 709-717
    [87]陈传梁. 用加工中心机床(MC)对陶瓷材料进行超声复合磨削. 电加工, 1992, (4): 31-34
    [88]王先逵, 邹保昌. 超声砂带研抛的实验研究. 光学精密工程, 1993, 1(1): 72-81
    [89]张云电, 王纯, 喻家英. 立式超声珩磨设备的研制. 应用声学, 1994, 13(5): 18-22
    [90]李宗智. 超声振动研磨的研究. 金刚石与磨料磨具工程, 1995, (5): 42-43
    [91]赵波. 工程陶瓷内燃机缸套超声振动珩磨研究. 金刚石与磨料磨具工程,1997.6:26-31
    [92]Bo Zhao, Weng ShiXiu, Zhu XunSheng. Ductile Mode Honing in ultrasonic machining of ceramics with Coarse Grains Diamond Oil-Stone. International Journal of Machine Tools & Manufacture,1999.3:19-23
    [93]Zhao Bo, Weng ShiXiu, Zhu XunSheng. Ductile Mode Honing in ultrasonic machining of ceramics with fine grains Diamond oil-stone..International Journal of Machine Tools & Manufacture,1999.9:8-12
    [94]赵波, 翁世修. 发动机缸套高效超声珩磨的材料去除机理研究. 兵工学报, 1999, 20(4):342-346
    [95]张云电, 喻家英. 钢质薄壁气缸套超声珩磨的研究. 应用声学, 1996, 15(1): 26-29
    [96]张云电, 喻家英. 强力超声珩磨在高强度钢深孔加工中的应用. 应用声学, 1996, 15(3): 32-36
    [97]辛志杰, 刘钢. 超声波振动内圆磨削——M114W磨床实现超声磨削的探讨. 华北工学院学报, 1996, 17(2): 185-188
    [98]王纯, 杨建明. 柔性磨体振动研磨的原理与应用. 新技术新工艺, 1996, (6): 17-21
    [99]曲云霞, 关颉文. 超声振动磨削对工件表面粗糙度的影响. 河北工业大学学报, 1997, 26(3): 99-104
    [100]庞楠. 新陶瓷材料的超声波磨削复合加工[博士学位论文]. 沈阳: 东北大学机械系,1997
    [101]史兴宽, 康仁科, 卢海鹏. 内圆超声振动磨削装置的设计.磨床与磨削, 1997, (1): 52-54
    [102]董世玮. 人工牙功率超声抛光仪的研制. 声学技术, 1998, 17(4): 176-180
    [103]杨继先, 张永宏, 杨素梅等. 超声振动磨削陶瓷深孔试验研究. 兵器材料科学与工程,1998, 21(3): 41-43
    [104]杨继先, 张永宏. 陶瓷深孔精度高效加工的新方法:超声振动磨削. 兵工学报, 1998, 19(3): 287-288
    [105]潘洪平, 梁迎春, 董申. 陶瓷球的超声振动研磨. 哈尔滨理工大学学报, 1999, 4(3): 29-33
    [106]潘洪平, 梁迎春. 陶瓷球超声振动研磨装置的研究. 机械工程师, 1999, (5): 5-6
    [107]詹建明, 赵继. 机器人超声研抛自由曲面的精加工系统. 中国机械工程, 2000, 11(8): 40-43
    [108]赵继, 詹建明. 机器人超声弹性研磨自由曲面的过程识别与优化. 机械工程学报, 2000, 36(1): 71-74, 82
    [109]金仁成, 周云飞, 李水进等. 基于力反馈的机器人超声振动弹性研磨的研究. 中国机械工程, 2000, 11(11): 1277-1279
    [110]张云电. 超声微研磨装置的研制. 应用声学, 2002, 21(6): 40-42, 11
    [111]肖德贤, 赵福令, 冯冬菊等. 旋转超声波加工中延性去除模式的实验研究. 电加工与模具. 2004, (4): 27-30
    [112]李新和, 唐永正, 张祁莉. 光纤连接器插针体端面的超声波研磨. 光通信技术, 2004, 8(12): 10-12
    [113]李新和, 唐永正, 张祁莉. 光纤连接器端面的超声/机械复合研磨. 光通信研究, 2005, (4): 36-38, 60
    [114]周忆, 梁德沛. 超声研磨硬脆材料的去除模型研究. 中国机械工程, 2005, 16(8): 664-666
    [115]W.M. Zeng, Z.C. Li, Z.J. Pei, C. Treadwell. Experimental observation of tool wear in rotaryultrasonic machining of advanced ceramics. International Journal of Machine Tools and Manufacture, 2005, 45(12-13):1468-1473
    [116]张建刚, 林彬, 于思远等. 磨削技术发展现状与趋势. 机械工人(冷加工), 2002, (11): 25-27
    [117]曲贵龙. 磨削加工技术的发展趋势. 磨床与磨削, 2000, (4): 24-27, 43
    [118]L. C. Zhang, T. Suto, H. Noguchi, et al. A study of creep-feed grinding of metallic and ceramic materials. Journal of Materials Processing Technology, 1995, 48(1-4): 267-274
    [119]T. W. Liao, G. SATHYANARAYANAN, L. J. PLEBANI, et al. CHARACTERIZATION OF GRINDING-INDUCED CRACKS IN CERAMICS. Int. J. Mech. Sci., 1995, 37(9): 1035-1050
    [120]T. W. Liao, K. Li, S.B. McSpadden, et al. Wear of diamond wheels in creep-feed grinding of ceramic materials I. Mechanisms. Wear, 1997, 211(1): 94-103
    [121]T. W. Liao, K. Li, S.B. McSpadden, et al. Wear of diamond wheels in creep-feed grinding of ceramic materials II. Effects on process responses and strength. Wear, 1997, 211(1): 104-112
    [122]T. W. LIAO. FLEXURAL STRENGTH OF CREEP FEED GROUND CERAMICS: GENERAL PATTERN, DUCTILE-BRITTLE TRANSITION AND MLP MODELING. Int. J Mach.Tool Manufact., 1998, 38(4): 251-275
    [123]Sunarto, Yoshio Ichida. Creep feed profile grinding of Ni-based superalloys with ultrafine polycrystalline CBN abrasive grits. Precision Engineering: Journal of the International Societies for Precision Engineering and Nanotechnology, 2001, 25(4): 274–283
    [124]T. M. A. Maksoud. Heat transfer model for creep-feed grinding. Journal of Materials Processing Technology, 2005, 168 (3): 448–463
    [125]王威廉, 荆长生. 难加工材料缓进给磨削加工表面完整性的试验研究. 航空学报, 1988, 10(6): 315-323
    [126]曹福泉. 叶片榫齿的蠕动磨削. 机械设计与制造, 1990, (5): 18-20
    [127]王伟, 曹颖志. 涡轮叶片锯齿冠蠕动磨削加工. 航空制造工程, 1998, (4):16-17
    [128]岳崇杰, 高富有. 缓进给磨削中磨削功率的估算. 磨料磨具与磨削. 1991, 1(61): 13-15
    [129]徐西鹏, 徐鸿钧. CBN砂轮缓进给磨削钛合金的试验研究. 磨床与磨削, 1992, (3): 31-33,77
    [130]徐西鹏, 陈先, 徐鸿钧. 镶块式CBN砂轮缓进给磨削钛合金. 磨料磨具与磨削, 1993, 4(76): 12-15
    [131]徐西鹏, 黄辉, 徐鸿钧. 断续CBN砂轮缓进给磨削K417航空叶片材料的研究. 航空学报, 1997, 18(3): 316-323
    [132]周烈摘译. 振动性缓进给磨削. 磨床与磨削, 1996, (1): 30-33
    [133]Shuh-Bin Wang, Hong-Sen Kou. COOLING EFFECTIVENESS OF CUTTING FLUID INCREEP FEED GRINDING. Int. Comm. Heat Mass Transfer, 1997, 24(6): 771-783
    [134]KUANG-HUA FUH, SHUH-BIN WANG. FORCE MODELING AND FORECASTING IN CREEP FEED GRINDING USING IMPROVED BP NEURAL NETWORK. Int. J. Mach. Tools Manufact. 1997, 37(8): 1167-1178
    [135]方筱萍, 方震. 改善缓进给磨削中磨削液的供给方法. 农业机械学报, 1998, 29(3): 155-158
    [136]孙方宏, 傅玉灿, 徐鸿钧. 缓进给磨削磨削液的加注方式. 机械制造, 1999, (11): 23-24
    [137]孙方宏, 陈明, 徐鸿钧等. 磨削弧区采用径向射流冲击强化换热的试验研究. 工具技术, 1999, 33(10): 3-6
    [138]康任科, 史兴宽, 吴小玲等. 缓进给磨削发动机涡轮叶片窄深槽时电镀CBN砂轮的修整. 金刚石磨料磨具工程, 1999, (3): 24-28
    [139]康任科, 杨巧凤, 齐威等. 电镀CBN砂轮缓进给磨削高温合金叶片窄深槽的试验研究. 航空制造技术, 1999, (6): 16-20
    [140]周灿丰, 薛龙, 张宝生. 工件材料特征对蠕动磨削力的影响和磨削参数选择. 机械, 2000, 27(3) : 16-18
    [141]周灿丰, 薛龙, 张宝生等. 蠕动磨削力随机性和非线性的研究. 制造技术与机床, 2000, (7): 21-23
    [142]牛文铁, 徐燕申. 工程陶瓷缓进给磨削磨削力的实验研究. 金刚石与磨料磨具工程, 2003, (2): 24-27
    [143]王德和, 牛文铁. 氧化铝陶瓷缓进给磨削机理的研究. 精密制造与自动化, 2002, (4): 22-24
    [144]毛仲德, 陈云. 改善缓进给磨削中供液效果得措施. 工具技术, 2005, 39(11): 82-83
    [145]刘菊东, 王贵成, 陈康敏等. 基于缓进给湿磨的表面硬化研究. 兵工学报, 2006, 27(3): 506-509
    [146]冯冬菊. 超声波铣削加工原理及相关技术研究[博士学位论文]. 大连理工大学, 2005,6
    [147]张云电著. 超声加工及其应用. 北京: 国防工业出版社, 1995, 9: 9-10
    [148]http://www.ikepu.com/machinery/machinery_history/machinery_topic.htm
    [149]www.thomasnet.com/products/ultrasonic-machining-services-89741607-1.html
    [150]http://www.sonicmill.com
    [151]http://www.ndk-kk.co.jp
    [152]http://www.cho-onpa.co.jp
    [153]史兴宽,康仁科,卢海鹏. 内圆超声振动磨削装置的设计. 磨床与磨削,1997,(1): 52-54
    [154]袁易全主编. 近代超声原理与应用. 南京大学出版社, 1996,4 : 3
    [155]赵福令, 史俊才, 冯冬菊. 超声铣削机床数控系统研究. 电加工与模具, 2001, (3): 36-38
    [156]戴向国, 傅水根, 王先逵. 旋转超声加工机床的研究. 中国机械工程. 2003, 14(4): 289-292
    [157]http://www.wxcsdz.com
    [158]http://www.ultrasonic-drill.com.tw
    [159]http://maxwide.com.tw
    [160]李华. 超声波纵向振动内圆磨削系统的振子设计研究. 金刚石与磨料磨具工程, 1998, 5(107): 23-25
    [161]康敏,徐家文. 精密展成电解加工整体叶轮的数控编程. 机械科学与技术, 2002, 21(5): 748-750
    [162]干为民,徐家文,刘延禄. 数控展成电解磨削整体叶轮叶片型面的研究.中国机械工程, 2003, 14(1): 24-27
    [163]周希章, 周全等编著. 电动机的起动·制动和调速(第2版). 机械工业出版社出版, 2001,7
    [164]黄立培, 张学编著. 变频器应用技术及电动机调速. 北京:人民邮电出版社出版, 1998, 7
    [165]丁仕燕. 数控展成超声磨削陶瓷型面的基础研究[博士学位论文]. 南京: 南京航空航天大学, 2006, 5: 56-62
    [166]袁易全著.超声换能器.南京: 南京大学出版社, 1992, 9
    [167]林仲茂著.超声变幅杆的原理和设计.北京: 科学出版社出版, 1987, 10
    [168]赵福令, 冯冬菊, 郭东明等. 超声变幅杆的四端网络法设计. 声学学报, 2002, 27(6): 554-558
    [169]贺西平, 程存弟. 纵振型超声变幅杆的等效四端网络. 陕西师范大学学报(自然科学版), 1994, 22(1): 87-88
    [170]贺西平. 一端带有圆柱形的复合纵振超声变幅杆的简明设计理论. 声学技术, 1994, 13(2):85-88
    [171]贺西平, 胡时岳. 复合超声纵振型变幅杆的简化设计. 兰州大学学报(自然科学版), 2002, 38(5): 24-26
    [172]顾煜炯, 杨昆, 严宗迅. 超声变幅器的机械阻抗分析. 现代电力. 1999, 16(1): 24-28
    [173]孙鲁涌, 周异, 张云电. 超声变幅杆参数计算软件的开发. 杭州电子工业学院学报, 2004, 24(3): 88-91
    [174]万德安, 刘春节. 超声变幅杆的模态分析. 机械与电子,2004 (4):10-12
    [175]赵莉,王时英,轧刚. 超声加工中变幅杆的动力学分析. 电加工与模具, 2005 (2): 35-38
    [176]张波, 赵波, 李济顺, 等. 功率超声变幅杆固有频率的模态分析. 机械制造, 2005, 43(489): 25-27
    [177]原丰霞, 张慧君, 朱国良. 基于Ansys 的超声变幅杆的优化设计. 机械工程师, 2004, (11): 24-26
    [178]杨小勇, 刘德忠, 费仁元, 等.微超声振动细胞切割系统中变幅杆的分析与设计. 声学技术,2005,24(4): 272-276
    [179]胡小平,黄仕彪,张云电. 圆锥形变幅杆的设计及有限元分析. 机电工程,2005,22(2):32-36
    [180]Y. S. Wong, W. K. H. Seah, H. T. Loh, et al. Approximation of exponential curves for CNC machining of toolholders used in ultrasonic machining. Journal of Materials Processing Technology, 1995, 48(1-4): 713-719
    [181]S. G. Amin, M. H. M. Ahmed, H. A. Youssef. Computer-aided design of acoustic horns for ultrasonic machining using finite-element analysis. Journal of Materials Processing Technology, 1995, 55(3-4): 254-260
    [182]招展, 朱树新. 顾及横向振动的阶梯型变幅杆设计. 广西工学院学报, 1995, 6(2): 42-45
    [183]ZVEI. Ultrasonic assembly of thermoplastic moldings and semi-finished products - Recommendations on methods, construction and applications, German: 33-38
    [184]方建军, 刘仕良. 机械动态仿真与工程分析—Pro/ENGINEER Wildfire 工程应用. 化学工业出版社出版, 2004, 9: 194-197
    [185]孙江宏, 黄小龙, 高宏编著. Pro/ENGINEER Wildfire/2001结构分析与运动仿真. 中国铁道出版社, 2004,6
    [186]张继春, 徐斌, 林波编著.Pro/ENGINEER Wildfire 结构分析. 机械工业出版社, 2004,4
    [187]纳米尔, 林滨, 关强等.几种工程陶瓷的延性域磨削.天津大学学报, 1999, 32(4): 486-491
    [188][0]Bifano T G,Dow T A,Scattergood R O. Ductile-regime grinding: a new technology for machining brittle materials. ASME Journal of Engineering for Industry, 1991, 113(5): 184-489
    [189]M. Komaraiah, P. Narasimra Reddy. A STURY ON THE INFLUENCE OF WORKPIECE PROPERTIES IN ULTRASONIC MACHINING. Int. J. Mach. Manufact., 1993, 33(3): 495-505
    [190]史兴宽, 滕霖, 李雅卿等. 硬脆材料延性磨削的临界条件. 航空精密制造技术, 1996.32(4): 10-13
    [191]王西彬, 任敬心. 结构陶瓷磨削表面微裂纹的研究. 无机材料学报, 1996, 11(4): 648-663
    [192]T.C. Lee, C.W. Chan, Mechanism of the ultrasonic machining of ceramic composites, Journal of Materials Processing Technology, 1997, 71 (2): 195-201
    [193]Q.H. Zhang, J.H. Zhang, Z.X. Jia, J.L. Sun, Material-removal-rate analysis in the ultrasonic machining of engineering ceramics, Journal of Materials Processing Technology, 1999, 88 (1-3): 180–184
    [194]于爱兵,田欣利,韩建华等. 应用压痕断裂力学分析陶瓷材料的磨削加工. 硅酸盐通报,2002,1: 58-61
    [195]P.S. Sreejith, B.K.A. Ngoi, Material removal mechanisms in precision machining of new materials, International Journal of Machine Tools & Manufacture, 2001, 41 (12): 1831–1843
    [196]陈明君, 董申, 李旦等. 脆性材料超精密磨削时影响表面质量因素的研究. 机械工程学报,2001, 37(3): 1-4
    [197]陈明君, 董申, 李旦等. 脆性材料超精密磨削时转变临界条件的研究. 高技术通讯, 2002, 2: 64-67
    [198]郝建华. 实现塑性状态下切削非金属硬脆材料的思考. 新技术新工艺, 2000, 6: 14-16
    [199]林滨, 林彬, 于思远. 陶瓷材料延性域去除临界条件新研究. 金刚石与磨料磨具工程, 2002, (1): 44-45
    [200]Bi Zhang, Trevor D. Howes. Subsurface Evaluation of Ground Ceramics. Annals of the CIRP, 1995, 44(1): 263-266
    [201]J. E. Mayer Jr. G. –P. Fang. Effect of Grinding Parameters on Surface Finish of Ground Ceramics. Annals of the CIRP, 1995, 44(1): 279-282
    [202]阎秋生, 田中宪司, 庄司克雄. [0]小直径CBN砂轮的磨削特性分析. 机械工程学报, 2000, 36(5): 103-106
    [203]任敬心, 康仁科, 史兴宽编著. 难加工材料的磨削. 北京: 国防工业出版社, 1999, 2: 15
    [204]冯冬菊, 赵福令, 徐占国等. 超声波数控加工中工具振幅的简易测量. 电加工与模具, 2004, (5): 32-35
    [205]巩秀长. 超声振动切削加工中测量振幅的简便方法及其理论分析. 山东工业大学学报, 1993, 23(1): 69-71
    [206]李云雁, 胡传荣编著. 试验设计与数据处理. 北京: 化学工业出版社, 2005, 3
    [207]干为民. 数控展成电解磨削整体叶轮的基础研究[博士学位论文]. 南京: 南京航空航天大学, 2003, 5:31-32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700