旋转超声波磨削制孔的切削力建模与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
旋转超声波加工是固结金刚石磨料工具的磨削加工与普通超声振动加工为一体的复合加工。此加工方法采用固结金刚石磨料工具,通过工具超声振动产生的冲击、工具旋转使磨料在工件上产生的耕犁和划擦、超声振动和工具旋转共同形成的磨蚀,以及高频超声振动下工件表面层产生的疲劳等作用,在较小的切削力下去除工件材料。因此,旋转超声波加工的材料去除率远远高于传统超声波加工,在难加工材料中具有很高的应用价值,广泛应用于难加工材料的制孔。但是,目前对恒速进给式旋转超声波在韧性和脆性材料制孔技术上缺乏系统研究。国内由于缺乏试验设备,试验研究相对较少,在理论研究方面也未见报道,影响了恒速进给式旋转超声波加工技术的应用。本文建立了恒速进给式旋转超声波加工韧性和脆性材料的切削力模型,研究了输入参数对切削力和孔出口崩边的影响,为恒速进给式旋转超声波加工参数的合理选择及工具和机床设计提供了理论依据。
     主要研究内容和结论如下:
     1.基于如下假设和简化建立了恒速进给式旋转超声波加工韧性材料的切削力模型:被加工工件为理想的刚塑性材料;参与磨削的金刚石磨粒是具有相同直径的刚体;工具端面的金刚石具有相同的切削高度,且每个振动周期内参与磨削的金刚石数量相同;每个振动周期内,单颗金刚石磨粒在工件上去除的材料体积等于每个金刚石压入工件材料的体积。基于此模型,研究了恒速进给式旋转超声波加工韧性材料时各输入参数对切削力的影响。结果表明:当金刚石磨粒数量和粒度以及主轴进给速度减小时,切削力减小;当超声波振幅和主轴转速增大时,切削力减小;振频对切削力没有显著影响,并对模型结果进行了试验验证。
     2.建立了恒速进给式旋转超声波加工脆性材料的切削力模型。该模型的假设和简化条件为:工件材料以脆性断裂方式被去除;参与磨削的金刚石磨粒是具有相同直径的刚体;工具端面的金刚石具有相同的切削高度,且每个振动周期内参与磨削的金刚石数量相同。建模中采用压痕断裂力学理论计算了金刚石磨粒压入工件的深度。研究表明:当金刚石磨粒数量和粒径,超声波振幅和主轴转速增大时,切削力减小;主轴进给速度减小时,切削力减小;超声波振频对切削力没有显著影响,并通过试验验证了模型。
     3.采用全因素试验设计方法,系统研究了金刚石磨粒数量和粒度、超声波振频和幅度、主轴转速和进给速度对切削力的影响。揭示了恒速进给式旋转超声波加工韧性材料时,不存在显著的交互作用,而在脆性材料加工中交互作用影响明显,因此在恒速进给式旋转超声波加工脆性材料时,首先需要确定有交互作用的参数。
     4.针对在脆性材料上进行恒速进给式旋转超声波磨削制孔时易产生出口崩边的问题,提出了三种改进的工具结构设计,并结合切削力计算、有限元仿真和工艺试验,研究了金刚石工具结构参数和工艺参数对工件孔出口边崩边的影响规律,提出了减小孔出口崩边的有效方法。结果表明:主轴进给速度增大,工件出口崩边厚度和宽度增大;主轴转速和超声波振幅增大,出口崩边厚度和宽度减小;当工具端面倒角增大时,崩边厚度增大;当工具壁厚增大时,崩边厚度也相应的发生变化。在三种工具结构中,外倒角工具获得最小的出口崩边厚度和宽度,而目前普遍使用的无倒角工具加工后孔出口崩边厚度和宽度最大。
Ultrasonic-vibration-assisted grinding (UVAG) is a hybrid machining process which combines diamond grinding and ultrasonic machining. With impact mode produced by ultrasonic vibration, grinding mode produced by tool rotation, erosion mode produced by both ultrasonic vibration and tool rotation, and the fatigue of workpiece surface layer produced by high-frequency ultrasonic vibration, the core drill with metal bonded diamond abrasives removes material from workpiece with lower cutting force. Therefore, UVAG gets much higher material removal rate than conventional ultrasonic machining, and attractive applications on hard-to-machining materials, especially the hole drilling on hard-to-machining materials. However, the hole drilling in UVAG of ductile and brittle materials under the condition of constant feed rate has not been systematically studied. In China, due to lack of equipment, not much experimental research has been done on hole drilling by constant-feedrate UVAG, especially no research on fundamental mechanisms under the drilling condition of constant feed rate has been reported in author's knowledge, hindering the application of constant-feedrate UVAG. In this dissertation, two predictive cutting force models have been developed for constant-feedrate UVAG of ductile materials and brittle materials, respectively. The effects of input variables on cutting force and exit edge-chipping have been studied. The results in this dissertation could provide theoretical guidance for choosing reasonable process variables and designing diamond drilling tool and UVAG equipment.
     The main research contents and conclusions are as follows:
     1. A physics-based predictive cutting force model is developed for ductile materials with these assumptions and simplifications:workpiece material is rigid-plastic; diamond grains are rigid spheres of the same size; diamond grains located on the tool end surface have the same extrusion, and all of them take part in cutting during each ultrasonic vibration cycle; the volume of material removed by a diamond grain in one vibration cycle is approximately equal to the intersection volume between the diamond grain and the workpiece. With this developed model, the effect trends of input variables on cutting force are studied. It shows that in constant-feedrate UVAG, as diamond grain number, diamond grain size and feedrate decrease, cutting force decreases; as ultrasonic vibration amplitude and spindle speed increase, cutting force decreases; ultrasonic vibration frequency has no significant effects on cutting force. The model results are verified through experiments.
     2. A mechanistic predictive cutting force model is developed for brittle materials under these assumptions and simplifications:the workpiece material is an ideally brittle material; diamond grains were rigid spheres of same size; diamond grains located on the tool end surface had the same height of extrusion, and all of them took part in cutting during each ultrasonic vibration cycle. The maximum indentation depth is calculated with theory of fracture mechanics. It shows that as diamond grain number, diamond grain size, ultrasonic vibration amplitude, and spindle speed increase, cutting force decreases; as feedrate decreases, cutting force decreases; ultrasonic vibration frequency has no significant effects on cutting force. The model results are also verified through experiments.
     3. Based on these models, a full-factorial design of experiments is utilized to study the main effects and interaction effects of input variables on cutting force systematically. There are no significant interaction effects among these input variables in constant-feedrate UVAG of ductile materials. However, there are significant interaction effects among input variables in constant-feedrate UVAG of brittle materials. Therefore, in constant-feedrate UVAG of brittle materials, it is important to determine the input variables which have interaction effects.
     4. Three cutting tool designs are proposed to improve the exit edge-chipping since it is common in UVAG of brittle materials. Finite element analysis is utilized to study the effects of tool design and process variables on exit edge-chipping for brittle materials in constant-feedrate UVAG and the simulation results are verified by experiments. It shows that, with increase of feedrate, the edge-chipping thickness and size increase; with increase of spindle speed and ultrasonic vibration amplitude, edge-chipping thickness and size decrease; with increase of tool angle, the edge-chipping thickness increases; with increases of wall thickness of tool, the edge-chipping thickness varies. Among the three cutting tools, the outer tool gets the lowest exit edge-chipping thickness, followed by inner tool and normal tool.
引文
[1]张江华,谭乃银,何焰蓝.基于超声波的次声波产生方法[J].四川兵工学报,2008,29(6):136-138.
    [2]TSUJINO J. A review of new industrial applications of high power ultrasonics in Japan[C]. Ultrasonics International 89 Conference Proceedings, Butterworths, Guildford, UK 1989.
    [3]Schwartz M. Handbook of Structural Ceramics[M]. New York:McGraw-Hill, Inc.,1992.
    [4]程学艳,郭文娟,林彬等.超声波加工机床及其发展[J].机械加工与自动化,2004,(10):40-42.
    [5]MORELAND M A. Ultrasonic advantages revealed in hole story [J]. Ceramics Application Manufacture,1988,187:156-162.
    [6]SOUNDARAREJAN V, RADHAKRISHNAN V. An experimental investigation on the basic mechanisms involved in ultrasonic machining[J]. International Journal of Machine Tool Design and Research,1986,26(3):307-321.
    [7]岳军,刘混举.工程陶瓷的旋转超声加工方法[J].电子工艺技术,1995,29(1).
    [8]ANONYMOUS. Ultrasonic drilling with a diamond impregnated probe[J]. Ultrasonics,1964, 2:1-4.
    [9]ANONYMOUS. An improved ultrasonic machine tool for glass and ceramics[J]. Industrial Diamond Review,1966,26:274-278.
    [10]HARDS K W. Ultrasonic speed diamond machining[J]. Ceramics Age,1966,82(12):34-36.
    [11]LEGGE P. Ultrasonic Drilling of Ceramics[J]. Industrial Diamond Review,1964,24(278): 20-24.
    [12]LEGGE P. Machining without abrasive slurry[J]. Ultrasonics,1966:157-162.
    [13]MARKOV A I et al. Ultrasonic drilling of deep holes in quartz, with a bonded abrasive-diamond tool[J]. Electrophysical and Electrochemical Methods of Machining, NIIMASh,1969, (5-6 (Quoted in Petrukha et al.1970)).
    [14]RAMULU M, BRANSON T, KIM D. A study on the drilling of composite and titanium stacks[J]. Composite Structures,2001,54(1):67-77.
    [15]MCGROUGH J A. Advanced methods of machining[M]. London:Chapman and Hall Ltd., 1988.
    [16]UZUKI K, VEMATSU T, ASANO S, et al. Recent advances in the grinding of ceramics and hard metals[M]. London:Hard Material Production 88,1988.
    [17]赵福令,冯冬菊,史俊才等.陶瓷材料超声旋转加工技术[J].电加工与模具,2001,(1):1-5.
    [18]PEI Z J. Rotary ultrasonic machining of ceramics:characterization and extensions[D]. Urbana, Illinois:University of Illinois at Urbana-Champaign,1995.
    [19]PEI Z J, KHANN N, FERRIRA P M. Rotary ultrasonic machining of structure ceramics-a review.[J]. Ceramic Engineering and Science Proceedings,1995,16(259):259-278.
    [20]PEI Z J, PRABHAKAR D, FERREIRA P M, et al. A mechanistic approach to the prediction of material removal rates in rotary ultrasonic machining[J]. J. Eng. for Industry,1995,117(2): 142-151.
    [21]SINGH R, KHAMBA J S. Ultrasonic machining of titanium and its alloys:a review[J]. J. of Materials Processing Technology,2006,173(2):125-135.
    [22]CLEAVE D V. Ultrasonic gets bigger jobs in mach ining and welding[J]. Iron Age,1976,13: 69-72.
    [23]PRABHAKAR D. Machining advanced ceramic materials using rotary ultrasonic machining process[D]. Illinois:University of Illinois at Urbana-Champaign,1992.
    [24]GRAFF K F. Ultrasonic machining [J]. Ultrasonics,1975,13(3):103-109.
    [25]Assessment of the state of the art in machining and surface preparation of ceramics, ORNL/ TM-10791 [R]. Oak Ridge:Oak Ridge National Laboratory,1988.
    [26]艾冬梅,贾志新.小孔加工技术发展现状[J].机械工程师,2001,1:1-8.
    [27]轧钢,秦华伟,许永等.旋转超声波加工的试验研究[J].新工艺新技术新设备,2000,6:56-59.
    [28]郑书友,冯平法,徐西鹏.旋转超声加工技术研究进展[J].清华大学学报(自然科学版),2009,49(11):1799-1804.
    [29]CHURI N J, Li Z C, PEI Z J, et al. Rotary ultrasonic machining of titanium alloy:a feasibility study[C]. Proc.2005 ASME International Mechanical Engineering Congress and Exposition (IMECE), Orlando, FL,2005.
    [30]LI Z C, PEI Z J, KWON P, et al. Experimental study on cutting force in rotary ultrasonic machining of zicronia/alumina composites[J]. Transactions of the North American Manufacturing Research Institute of SME,2005,33:89-96.
    [31]张其馨,冯友彬,张广玉等.碳纤维复合材料超声钻孔的研究[J].机械工程学报,1994,32(1):97-101.
    [32]UHLMANN E. Surface formation in creep feed grinding of advanced ceramics with and without ultraosonic assistance[J]. Annals of the CIRR,1998,47(1):249-252.
    [33]XU J W. Experimental research on the ground surface quality of creep feed ultrasonic grinding cermics [J]. Chinese J Aeronautisc,2006,19(4):359-395.
    [34]Li C S, ZHANG D G, JIAO F, et al. Study on ultrasonic grinding temperature field characteristics of structure ceramics[C]. Proc 8th Int Conf on Progress of Machining Technology,2006.
    [35]PEI Z J, FERREIRA P M, HASEIKORN M. Plastic flow in rotary ultrasonic machining of ceramics[J]. Journal of Material Processing Technology,1995,48:771-777.
    [36]冯冬菊.超声波铣削加工原理及相关技术研究[D].大连:大连理工大学,2005.
    [37]郑书友.旋转超声加工机床的研制及实验研究[D].泉州:华侨大学,2008.
    [38]陈雄兵.碳纤维复合材料旋转超声铣磨加工技术研究[D].大连:大连理工大学,2009.
    [39]尹韶辉,张辉润.振动攻丝的实验研究[J].新技术新工艺,1996,(2):20.
    [40]BIFANO T G, DOW T A, SCATTEGROOD R O. Ductile-regime grinding:a new technology for machining brittle materials[J]. Transactions of the ASME, Journal of Engineering for Industy,1991,113:184-189.
    [41]DAWE INSTRUMENTS Ltd. Dawe Type 1138A Ultrasonic Machine Tool[J]. Metalworking Production,1967,111(77).
    [42]CHECHINS L G, TIKONOV G N. Ultrasonic machining with a tool charged with diamond power[J]. Electrophysical and Electrochemical Methods of Machining, NIIMASh, MDNTP, 1968.
    [43]Rotary ultrasonic machining[R]. SME Technical Paper MR.70-516,1970.
    [44]ANONYMOUS. Drilling deep holes in glass[J]. Ultasronics,1973,103.
    [45]MARKOV A I, USTINOV I D. A study of the ultrasonic diamond drilling of nonmetallic materials.[J]. Industrial Diamond Review,1972:97-99.
    [46]MARKOV A I et al. Ultrasonic drilling and milling of hard non-metallic materials with diamond tools[J]. Machine & Tooling,1977,48(9):45-47.
    [47]DAM H, JENSEN J, QUIST P. Surface characterization of ultrasonic machined ceramics with diamond impregnated sonotrode[J]. Machining of Advanced Materials,1993, NIST Special Publication 847:125-133.
    [48]PEI Z J, FERREIRA P M. Modeling of ductile-mode material removal in rotary ultrasonic machining[J]. Int. J. Mach. Tool. Manufact.,1998,38(10-11):1399-1418.
    [49]PRABHAKAR D, PEI Z J, FERREIRA P M, et al. A theoretical model for predicting material removal rates in rotary ultrasonic machining of ceramics[J]. Transactions of the North American Manufacturing Research Institution of SME,1993,21:167-172.
    [50]曾伟民.旋转超声钻削先进陶瓷的基础研究[D].泉州:华侨大学,2006.
    [51]张云电.超声加工及其应用[M].北京:国防工业出版社,1995.
    [52]陈传梁.我国激光加工及超声加工的发展状况及其对策[C].第六届全国电加工学术年会,上海,1989.
    [53]张其馨,罗建伟,冯友彬等.碳纤维复合材料旋转超声控力钻孔的研究[J].电加工,1994,(3):25-27.
    [54]张其馨,冯友彬,张广玉等.碳纤维复合材料旋转超声钻孔装置研究[J].材料科学与工艺,1994,2(2):103-106.
    [55]孙瑾.数控旋转超声波加工技术的基础研究[D].南京:南京农业大学,007.
    [56]戴向国,傅水根,王先逵等.旋转超声加工智能超声波发生器的研究[J].清华大学学报(自然科学版),2002,42(2):182-184.
    [57]戴向国,傅水根,王先逵.旋转超声加工机床的研究[J].中国机械工程,2003,4:289-292.
    [58]戴向国,傅水根,全永义.两面定位变幅杆的制造工艺与性能试验[J].新技术新工艺,2004,6:24-25.
    [59]戴向国,傅水根,王先逵.新型超声变幅杆结构设计[J].现代制造工程,2002,4:42-43.
    [60]KOMARAIAH M, MANAN M A, NARASIMBAM P, et al. Investigation of surface roughness and accuracy in ultrasonic machining[J]. Precision Engineering,1988,10(2):59-65.
    [61]KOMARAIAH M, NARASIMHA R P. A study on the influence of workpiece properties in ultrasonic machinng[J]. Intelnational Journal Of Machine Tools&Manufactures,1993,33(3): 495-505.
    [62]KUBOTA M, TAMURA Y, SHIMAMURA N. Ultrasonic machining with a diamond impregnated tool[J]. Bulletin of Japanese Society of Precess Engine,1977,11(3):127-132.
    [63]MARKOV A I. Ultrasonic machining of intractable materials (translated from Russian)[M]. London:Illife Books,1966.
    [64]PRTRUKHA P G et al. Ultrasonic diamond drilling of deep holes in brittle materials[J]. Russian Engineering Journal,1970,50(10):70-74.
    [65]SHELDON G L, FINNIE I. The mechanism of material removal in the erosive cutting of brittle materials[J]. Journal of Engineering for Industry,1966:393-399.
    [66]CHURI N J, PEI Z J, TREADWELL C. Rotary ultrasonic machining of titanium alloy:
    [67]CHURI N J, PEI Z J, TREADWELL C. Rotary ultrasonic machining of titanium alloy (ti-6al-4v):effects of tool variables[J]. Int. J. of Precision Technology,2007,1(1):85-96.
    [68]CONG W L, PEI Z J, CHURI N J, et al. Rotary ultrasonic machining of stainless steel:design of experiments[A]. MR5A[C].
    [69]CONG W L, PEI Z J, WANG Q G. Surface roughness in rotary ultrasonic machining of stainless steels[C]. Proceedings of the 2009 Industrial Engineering Research Conference,2009.
    [70]ZENG W M, Li Z C, CHURI N J, et al. Experimental investigation into rotary ultrasonic machining of alumina[C].2004 ASME International Mechanical Engineering Congress and Exposition, Anaheim. California,2004.
    [71]张其馨,罗建伟,张广玉等.便携式旋转超声振动钻研究[J].制造技术与机床,1994,(8):8-11.
    [72]张勤河,张建华,贾志新等.超声振动钻削加工陶瓷的研究[J].新技术新工艺,1997,(2):17-18.
    [73]倪浩,宫虎,房丰州.旋转超声加工硬脆性材料中边缘破损的研究[J].航空精密制造技术,2009,45(5):8-17.
    [74]CHURI N J, PEI Z J, SHORTER D C, et al. Rotary ultrasonic machining of silicon carbide: designed experiments[J]. International Journal of Manufacturing Technology and Management, 2007,12(1-3):284-298.
    [75]CHURI N J, PEI Z J, TREADWELL C. Wheel wear mechanisms in rotary ultrasonic machining of titanium[C]. Proceedings of IMECE, Seattle, WA,2007.
    [76]CHURI N J, PEI Z J, TREADWELL C. Experimental investigations on rotary ultrasonic machining of hard-to-machine materials[A]. Materials Processing under the Influence of External Fields[C],2007:139-144.
    [77]CHURI N J, PEI Z J, TREADWELL C, et al. Rotary ultrasonic machining of dental ceramics[J]. Int. J. Machining and Machinability of Materials 2009,6(3-4):270-284.
    [78]LI Z C, CAI L W, J P Z, et al. Edge-chipping reduction in rotary ultrasonic machining of ceramics:Finite element analysis and experimental verification[J]. International Journal of Maehine Tools & Manufacture,2006.
    [79]LI Z C, CAI L W, PEI Z J, et al. Finite element simulation of rotary ultrasonic machining of advanced ceramics[C]. Proceeding of ASME International Mechanical Engineering Congress and Exposition, Anaheim, CA, USA,2004.
    [80]ZENG W M, Li Z C, PEI Z J, et al. Tool wear in rotary ultrasonic machining of Advanced ceramics[A].7th International Conference on Progress of Machining Technology[C],2004: 392-394.
    [81]ZENG W M, Li Z C, PEI Z J, et al. Experimental observation of tool wear in rotary ultrasonic machining of advanced ceramics[J]. International Journal of Machine Tools & Manufacture,2005,45:1468-1473.
    [82]ZENG W M, Xu X P, PEI Z J. Rotary ultrasonic machining of advanced ceramics[J]. Materials Science Forum,2006,532-533:361-364.
    [83]ZENG W M, Xu X P, PEI Z J. Experimental investigation of tool wear in rotary ultrasonic machining of alumina[J]. Key Engineering Materials,2009,416:182-186.
    [84]JIAO Y, L IU J D, PEI Z J, et al. Study on edge chipping in Rotary ultrasonic machining of ceramics An integration of designed experiments and finite element method analysis[J]. Journal of Manufacturing Science and Engineering,2005,127(4):752-758.
    [85]JIAO Y, HU P, PEI Z J, et al. Rotary Ultrasonic Machining of Ceramics:Design of Experiments[J]. International Journal of Manufacturing Technology and Management,2005,7(2-4):192-206.
    [86]Petrukha P G et al. Ultrasonic Diamond Drilling of Deep Holes in Brittle Materials[J]. Russian Engineering Journal,1970,50(10):70-74.
    [87]HOCHENG H, TAI N H, LIIU C S. Assessment of ultasronic drilling of C/SiC composite material[J]. Composites:Part A,2000,31:132-142.
    [88]ISHIKAWA K, SUWABE H, NISHIDE T, et al. A study on combined vibration drilling by ultrasonic and low-frequency vibrations for hard and brittle materials[J]. Precision Engineering,1998,22(4):196-205.
    [89]HU P, ZHANG J M, PEI Z J, et al. Modeling of material removal rate in rotary ultrasonic machining:designed experiments[J]. Journal of Materials Processing Technology,2002,129:339-344.
    [90]纳米尔,林滨,关强.几种工程陶瓷的延性域磨削[J].天津大学学报,1999,32(4):486-491.
    [91]朱文博.工程陶瓷旋转超声钻削效率的有限元分析[D].哈尔滨:哈尔滨工业大学,2007.
    [92]佟富强,张勇,张飞虎等.振动切削中应力波对裂纹及成屑机理影响研究[J].振动与冲击,2008,27(6):136-139.
    [93]王宇,尹韶辉,进村武男等.振动研磨材料去除机理研究[J].中国机械工程,20(5):533-537.
    [94]COLLINS J A. Filure of materials in mechnical design[M]. New York:Wiley,1981.
    [95]RAHMAN M, WANG Z, WONG Y. A review on high-speed machining of titanium alloys[J]. SME Int. J. Series C (Mechanical Systems, Machine Elements and Manufacturing) 2006,49(1): 11-20.
    [96]YANG X, LIU C R. Machining titanium and its alloys[J]. Machining Science and Technology,1999,3(1):107-139.
    [97]YEO C Y, TAM S C, MICHAEL S J, et al. A technical review of laser drilling of aerospace materials[J]. J. of Materials Processing Technology,1994,42(1):15-49.
    [98]AUST E, NIEMANN. Machining of γ-TiAl[J]. Advanced Engineering Materials,1999,1(1): 53-57.
    [99]COLLIGAN K. New tool drills both titanium and carbon composites[J]. AmericanMachinist1994,138(10):56-58.
    [100]DORNFELD D A, KIM J S, DECHOW H, et al. Drilling burr formation in titanium alloy Ti-6AI-4V[J]. Annals of CIRP,1999,48(1):73-76.
    [101]KIM D, RAMULU M. Drilling process optimization for graphite/bismaleimide-titanium alloys stacks[J]. Composite Structures 2004,63(1):101-114.
    [102]KIM D, RAMULU M. Study on the drilling of titanium/graphite hybrid composites,[C]. Proceedings of IMECE, Orlando, FL,2005.
    [103]KIM D, RAMULU M. Cutting and drilling characteristics of hybrid titanium composite laminate (HTCL)[C]. Proceedings of Materials and Processing Technologies for Revolutionary Applications Fall Technical Conference, Seattle, WA,2005.
    [104]KIM D, RAMULU M, GARBINI J. Hole quality in drilling of graphite/bismalemide-titanium stacks [J]. Advancing Affordable Materials Technology,2001,5(8):315-326.
    [105]KIM D, RAMULU M, Pedersen W. Machinability of titanium/graphite hybrid composites in drilling[J]. Transactions of NAMRI/SME,2005,33(445-452).
    [106]Prediction of force, torque and burr length in drilling titanium-composite materials[R]. SME Technical Paper MR79-363,1979.
    [107]LAMBERT B K. Cost optimization of drilling titanium composite hybrids[J]. Manufacturing Engineering Transactions,1979:21-23.
    [108]LI R. Experimental and numerical analysis of high-throughput drilling of titanium alloys,[D]. University of Michigan,2007.
    [109]LI R, HEDGE P, SHIH A J. High-throughput drilling of titanium alloys[J]. Int. J. of Machine Tools and Manufacture,2007,47(1):63-74.
    [110]RAHIM E A, SHARIF S. Investigation on tool life and surface integrity when drilling Ti-6A1-4V and Ti-5Al-4V-Mo/Fe[J]. JSME Int. J., Series C (Mechanical Systems, Machine Elements and Manufacturing) 2006,49(2):340-345.
    [111]SHARIF S, RAHIM E A. Performance of coated-and uncoated-carbide tools when drilling titanium alloy-Ti-6Al4V[J]. J. of Materials Processing Technology 2007,185(1-3):72-76.
    [112]ZHU L, WANG J. A study on titanium alloys deep-hole drilling technique[J]. Materials Science Forum,2006,532:945-948.
    [113]BANDOPADHYAY S, GOKHALE H, SUNDAR J, et al. A statistical approach to determine process impact in Nd:YAG laser drilling of IN718 and Ti-6Al-4V sheets[J]. Optics and Lasers in Engineering,2005,43(2):163-182.
    [114]BECK T, BOSTANJOGLO G, KUGLER N, et al. Laser beam drilling applications in novel materials for the aircraft industry,[C]. Proceedings of Laser Materials Processing Conference, Orlando, FL,1997.
    [115]GIERING A, BECK M, BAHNMULLER J. Laser drilling of aerospace and automotive components[A]. Proceedings of the Laser Materials Processing Conference (ICALEO'99) LIA[C],2000,87 C80-87.
    [116]LASH J, GILGENBACH R. Copper vapor laser drilling of copper, iron, and titanium in atmospheric pressure air and argon[J]. Review of Scientific Instruments,1993,64(11): 3308-3313.
    [117]RODDEN W, KUDESIA S, HAND D, et al. Use of "assist" gas in the laser drilling of titanium[J]. J. of Laser Applications,2001,13(5):204-208.
    [118]TAM S, WILLIAM R, YANG L, et al. A review of the laser processing of aircraft components [J]. J. of Material Process and Technology,1990,23(1):177-194.
    [119]YILBAS B. Parametric study to improve laser hole drilling process[J]. J. of Materials Processing Technology,1997,70(1-3):264-273.
    [120]HUBER J. Ultrasonic drilling[J]. Int. J. for Numerical Methods in Engineering,1973,5:28-42.
    [121]CAYDAS U, HASCALIK A. A comparative study of surface integrity of Ti-6A1-4V alloy machined by EDM and AECG[J]. J. of Materials Processing Technology,2007,190(1-3): 173-180.
    [122]QIN G, OIKAWA K, SMITH G, et al. Wire electric discharge machining induced titanium hydride in Ti-46Al-2Cr alloy[J]. Intermetallics,2003,11(9):907-910.
    [123]YAN B, SHIEH F. Electrical discharge machining characteristics of Ti-6Al-4V alloY[J]. J. of Japan Institute of Light Metals,1992,42(11):644-649.
    [124]SINGH R, KHAMBA J S. Taguchi technique for modeling material removal rate in ultrasonic machining of titanium[J]. Materials Science and Engineering A,2007,460-461:365-369.
    [125]SINGH R, KHAMBA J S. Investigation for ultrasonic machining of titanium and its alloys[J]. J. of Materials Proceeding Technology,2007,183 (2-3):363-367.
    [126]LIN Y C, YAN B H, CHANG Y S. Machining characteristics of titanium alloy (Ti-6A1-4V) using a combination process of EDM with US[J]. J. of Materials Processing Technology,2000, 104(3):171-17.
    [127]WANG A C, YAN B, LI X. Use of micro ultrasonic vibration lapping to enhance the precision of microholes drilled by micro electro-discharge machininG[J]. Int. J. of Machine Tools and Manufacture,2002,42(8):915-923.
    [128]KREMER D, LHIAUBET C, MOISAN A. A study of the effect of synchronizing ultrasonic vibrations with pulse in EDM[J]. Annals of CIRP,1991,40 (1):211-214.
    [129]YISHUANG H. The effect of ultrasonic vibration to EDM[J]. Metals and Machines Overseas 1990,4:1-5.
    [130]ZHAO W S, WANG Z L, DI S C, et al. Ultrasonic and electric discharge machining to deep and small hole on titanium alloy[J]. J. of Materials Processing Technology,2002,120(1-3): 101-106.
    [131]CONG W L, PEI Z J, VLEET E V, et al. Vibration amplitude in rotary ultrasonic machining:a novel measurement method and effects of process variables[J].
    [132]TIMOSHENKO S, GOODIER J N. Theory of elasticity [M]. New York:McGraw-Hill,1970.
    [133]ENOMOTO Y. Sliding fracture of soda-lime glass in liquid environmentals[J]. J. Mater. Sci., 1981,16:3365-3370.
    [134]EVANS A G, WILSHAW S. Quasi static particle damage in brittle solids[J]. Acta Metall., 1976,24:939-956.
    [135]HEY J L, PHARR G M. Instrumented indentation testing[M]. Ohio:International Material Park,2000:232-243
    [136]龚江宏.陶瓷材料断裂力学[M].北京:清华大学出版社,2001.
    [137]MORELAND M A. Versatile performance of ultrasonic machining[J].1988,67(6): 1045-1047.
    [138]许琰,王贵成.工程陶瓷磨削加工的研究及其发展[J].工具技术,2004,38(9):53-55.
    [139]PUR G, HOLL S E. Material removal mechanisms during ultrasonic assisted grinding[J]. Production Engineering,1997,4(2):9-14.
    [140]唐修检,田欣利,吴志远等.工程陶瓷边缘碎裂行为与机理研究进展[J].中国机械工程,2010,21(1):114-119.
    [141]SCIESZKA S F. Edge failure as a means of concurrently estimating the abrasion and edge fracture resistance of hard-metals[J]. Tribology International,2005,38(9):834-842.
    [142]MCCORMICK N J, ALMOND E A. Edge flaking of brittle materials [J]. Hard Mater.,1990, 1(1):25-51.
    [143]MORREL R, GANT A J. Edge chipping of hard materials[J]. International Journal of Refractory Metals & Hard Materials,2001,19(4/6):293-301.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700