纳米结构陶瓷涂层精密磨削机理及仿真预报技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对近些年来新出现的纳米结构(nanostructured)和普通结构(conventional)陶瓷涂层(n/c-WC/Co和n/c-Al_2O_3/TriO_2)的精密磨削的磨削机理及磨削工艺仿真预报技术进行了研究。通过实验研究、理论建模和分析,揭示了纳米结构陶瓷涂层精密磨削机理,初步构建了纳米结构陶瓷涂层精密磨削的基础理论,结合磨削工艺仿真预报软件的开发应用,寻求以最优化的磨削工艺参数来实现纳米结构陶瓷涂层的高效经济、优质、低损伤精密加工。其研究成果对纳米结构陶瓷涂层工业化应用和陶瓷材料精密磨削理论的完善以及我国特种材料精密加工技术水平的提高具有重要的理论价值和实用价值。
     论文首先在文献综述的基础上对纳米结构陶瓷涂层精密磨削的基础理论进行了初步的分析,提出了构建纳米结构陶瓷涂层精密磨削基础理论的研究思路。论文对纳米结构陶瓷涂层精密磨削实验研究方案进行了详细的介绍。
     论文对磨削用量、砂轮特性、材料特性及涂层显微结构等磨削参数对磨削纳米结构陶瓷涂层时的磨削力、磨削力分力比、比磨削能、磨削表面粗糙度、磨削表面/亚表面损伤(裂纹)及材料去除机理等可磨削性指标的影响规律进行了实验研究。以砂轮单颗磨粒法向磨削力的实验结果及所建立的理论模型为重要依据和线索,进行相关磨削现象的分析;磨削力理论模型综合考虑了砂轮磨削深度、工件进给速度和砂轮速度等磨削用量参数,考虑了材料初始切入力和工件材料的特性。通过研究,基于磨削力随磨削用量参数变化的分阶段特征,分段建立了纳米结构陶瓷涂层精密磨削的单颗磨粒法向磨削力模型。研究表明:纳米结构陶瓷涂层精密磨削所产生的磨削力和比磨削能比普通结构陶瓷涂层的要大;砂轮磨粒尺寸参数、砂轮粘结剂/磨屑厂工件涂层表面间滑擦作用和热喷涂工艺固有缺陷等因素对陶瓷涂层精密磨削的可磨削性指标有较大影响;精密磨削工艺能大大提高陶瓷涂层的轮廓支承率(承载比);磨削纳米结构陶瓷涂层时,存在一个获得较小磨削表面粗糙度R_α值的砂轮磨削深度范围。
     论文分析总结了陶瓷磨削时材料去除机理的三种分类方式,基于纳米结构陶瓷涂层可磨削性规律的实验结果结合磨削后表面/亚表面的SEM等形貌观测,以非弹性变形去除方式和脆性去除方式充分揭示了纳米结构陶瓷涂层磨削时的材料去除机理。
     论文对纳米结构陶瓷涂层磨削过程的材料变形行为和裂纹系统进行了理论分析。在实验研究的基础上,建立了磨削纳米结构陶瓷涂层时产生横向裂纹和中位裂纹的临界磨削条件模型,以及反映磨削参数与纳米结构陶瓷涂层磨削后亚表面平均损伤(裂纹)深度之间定量关系的磨削模型。研究表明,产生中位裂纹所需
    
    纳米结构陶瓷涂层精密磨削机理及仿真预报技术的研究
    的临界载荷比产生横向裂纹所需的临界载荷要小得多。磨削时亚表面裂纹的形成
    及扩展与单颗磨粒法向磨削力有直接关系,还与磨削过程中所消耗能量及热喷涂
    工艺的固有缺陷有关。论文就材料晶粒尺寸对陶瓷涂层精密磨削可磨削性的影响
    规律进行了研究。
     最后,论文介绍了所研制的磨削工艺仿真预报软件的开发思路、关键技术和
    软件的体系结构,基于本文通过实验所建立的单颗磨粒磨削力模型和磨削裂纹预
    报模型,给出了该软件在纳米结构陶瓷涂层精密磨削工艺仿真预报中的应用实例。
This dissertation deals with the precision grinding mechanisms, grinding process simulation and prediction techniques for nanostructured and conventional ceramic coatings (n/c-WC/Co and n/c-Al2O3/TiO2) which have emerged in recent years. Through experimential investigation and theoretical modeling and analysis, precision grinding mechanisms for nanoatructured ceramic coatings are discussed, a guideline of grinding of nanoatructured ceramic coatings has been established preliminarily. Combined with the development of grinding process simulation and prediction software, the grinding processes are optiumed to realize low damage, high precision and cost-effective machinning of nanostructured ceramic coatings. The theoretical and experimental results add a great value to the nanoatructured ceramic coatings in terms of industrial application.
    Firstly, based on the literature reviews, the dissertation puts forward the preliminary analysis for the guideline of grinding of nanoatructured ceramic coatings, as well as the train of thought for studying it. The dissertation comprehensively introduces the scheme for the experimental study in grinding of nanoatructured ceramic coatings.
    The dissertation discusses the influences of the grinding process parameters, grinding wheel characteristics, material responses to grinding and coating mirostructure on grindablity, including grinding forces, grinding force ratio, specific grinding energy, surface roughness, surface integrity and materail removal mechanisms. Grindability is analyzed based on the experimental results and the theoretical modeling. The theoretical model of grinding force involves grinding depth of grinding wheel, feedrate of worktable, speed of grinding wheel, and the break-in force of material as well as material response to grinding. Different grinding force models have been established for single abrasive grits at different stages of the grinding process. It turns out that grinding forces and specific grinding energy for the nanostructured ceramic coatings are greater than that for conventional ceramic coatings. The abrasive grits of the grinding wheel, the tribological interactions of bond/chip/workpiece surface in the gri
    nding zone, and defects from the spraying process all have an effect on the grindability. The bearing ratio of ground surfaces can be improved by precision grinding. There is a proper grinding depth for getting lower ground surface roughness.
    The dissertation reviews material removal mechanisms in grinding of ceramic of
    
    
    
    three kinds. Material removal mechanism including inelastic deformation and brittle damage of nanostructured ceramic coatings are explored in the dissertation, based on the experimental result of grindability combined the SEM analysis of ground surface of nanostructured ceramic coatings.
    Theoretical analysis is conducted on material deformation and crack formation during grinding process of nanostructured ceramics coatings. The dissertation proposes critical grinding condition models for predicting grinding induced lateral crack and median carak in the nanostuctured ceramic coatings, and verifies the models with experiments. The models reflecting the quantitative relation between the grinding parameters and the average depth of grinding induced subsurface damage (cracks) in the nanostrucured ceramic coatings is also proposed in the paper. It turns out that the critical force for lateral crack is higher than that of median carak. The formation and propagation of grinding induced subsurface damage (cracks) depend directly on the normal grinding force of single abrasive grit. They are also related to the grinding energy consumed during the grinding process and the defects from the spraying process. The effect of material grain size on the grindability of grinding for the nanostructured ceramic
    coatings is also discussed in the dissertation.
    Finally, this dissertation describes the simulation and prediction software developed for grinding nanostructured ceramic coatings. Described are also the key techniques and system str
引文
[1] 徐滨士,李长久,刘世修等.表面工程与热喷涂技术及其进展.中国表面工程,1998,1(总38):3-9
    [2] 钱苗根,姚寿山,张少宗编著.现代表面技术.北京:机械工业出版社,1999
    [3] Kear B H, Strutt P R. Nanostructures: The next generation of high performance bulk materials and coatings. Powder Particle, 1995,13:45-55
    [4] Jia K, Fischer T E, Gallois B. Microstructure,hardness and toughness of nanostructured and conventional WC-Co composites. Nanostrucrured Materials, 1998,10(5): 875-891
    [5] 张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001
    [6] Perrott M C. On the indentation fracture of cemented carbide, Part Ⅱ,The nature of surface fracture toughness. Wear, 1978,47:81-91
    [7] Jia K, Fischer T E. Abrasion resistance of nanostructured and conventional cemented carbides. Wear, 1996,200:201-214
    [8] Jia K, Fischer T E. Sliding wear of conventional and nanostructured cemented carbides. Wear, 1997,203-204:310-318
    [9] 陈煌,林新华,曾毅等.热喷涂陶瓷涂层研究进展.硅酸盐学报,2002,30(2):235-239
    [10] 欧忠文,徐滨士,马士宁等.纳米表面工程中的纳米结构涂层组装.机械工程学报,2002,38(6):5-10
    [11] Wang Y, Jiang S, Wang M, et al. Abrasive wear characteristics of plasma sprayed nanostrucrured alumina/titania coatings. Wear, 2000,237:176-185
    [12] Jordan E H, Gell M, Sohn Y H, et al. Fabrication and evaluation of plasma sprayed nanostructured alumina-titania coatings with superior properties. Materials Science and Engineering A,2001,301:80-89
    [13] Liu X B, Zhang B, Deng Z H. Grinding of nanostructured ceramic coatings:surface observations and material removal mechanisms. International Journal of Machine Tools & Manufacture, 2002,42(15): 1665-1676
    [14] Liu X B, Zhang B. Effects of grinding process on residual stresses in nanostructured ceramic coatings. Journal of Materials Science, 2002,37:3229-3239
    [15] 邓朝晖,张壁,孙宗禹.纳米结构金属陶瓷(n-WC/Co)涂层材料精密磨削的试验研究.湖南大学学报,2003,30(2):12-17
    [16] Liu X B,Zhang B. Grinding of nanostructured ceramic coatings: damage evaluation.
    
    International Journal of Machine Tools & Manufacture,2003,43:161-167
    [17] 周曙光,关佳亮,徐中耀.陶瓷喷涂层精密镜面磨削技术的实验研究.金刚石与磨料磨具工程,2000,6(总120):23-27
    [18] Tan Y F, Martin P, Lcscalicr C, et al. Study on the ground surface quality of Cr_2O_3 coatings. Journal of Materials Processing technology, 2002,129:441-445
    [19] Mamalis A G., Vaxevanidis N M. On the grinding of ceramic layer plasma-sparyed metal plates. In: Ist International Machining and Grinding Conference. Dearborn:Michigan, 1995,SME,MR-95-204
    [20] 韩荣第,王扬,张文生.现代机械加工新技术.北京:电子工业出版社,2003
    [21] 金志浩,高积强,乔冠军.工程陶瓷材料.西安:西安交通大学出版社,2000
    [22] 韩忠,赵晖.热喷涂发展趋势—新型高能高速热喷涂方法.材料工程,1996(12):8-10
    [23] 王志平,霍树斌,刘瑾.超音速火焰喷涂(HVOF)技术的发展与工艺特点.焊接,2000(6):6-10
    [24] 高濂,李蔚著.纳米陶瓷.北京:化学工业出版社,2002
    [25] 田明原,施尔畏,仲维卓等.纳米陶瓷与纳米陶瓷粉末.无机材料学报,1998,13(2):129-137
    [26] Stewart D A, Shipway P H,McCartney D G.. Abrasive wear bchaviour of conventional and nanocomposite HVOF-sprayed WC-Co coatings. Wear, 1999,225-229:789-798
    [27] Zhang B. Surface integrity in machining hard-brittle materials. Journal of Japan Society for Abrasive Technology, 2003,470): 131 - 134
    [28] Zhang B, Zheng X L, Tokura H, et al. Grinding induced damage in ceramics. Journal of Material Processing Technology, 2002,132:353-364
    [29] Inasaki I. Grinding of hard brittle materials. Annals of the CIRP, 1987,36(2):463-471
    [30] 邓朝晖,张璧,周志雄等.陶瓷磨削的表面/亚表面损伤.湖南大学学报,29(5):61-71
    [31] 王西彬,任敬心.结构陶瓷磨削表面微裂纹的研究.无机材料学报,1996,11(4):658-664
    [32] 任敬心,康仁科,史兴宽著.难加工材料的磨削.北京:国防工业出版社,1999
    [33] Malkin S, Hwang T W. Grinding mechanisms for ceramics. Annals of the CIRP, 1996,45(2): 569-580
    [34] Lawn B R. Fracture of brittle solids, 2nd Editions. Cambridge University Press,1993, 249-306
    
    
    [35] 龚江宏著.陶瓷材料断裂力学.北京:清华大学出版社,2001
    [36] Li K, Liao T W. Surface/subsulface damage and the fracture strength of ground ceramics. J. Mater. Proc. Technol.,1996,57:207-220
    [37] 王西彬,任敬心.结构陶瓷磨削表面损伤的研究.硅酸盐学报,1997,25(1):101-105
    [38] 邓朝晖,张壁,孙宗禹等.陶瓷磨削材料去除机理的研究进展.中国机械工程,2002,13(18):1608-1611
    [39] Kirchner H P. Damage penetration at elongated machining grooves in hot-pressed Si_3N_4. J.Amer. Ceram.Soc., 1984,67:127-132
    [40] Bifano T G., Dow T A, Scattergood R O. Ductile-regime grinding: A new technology for machining brittle materials. ASME., J. of Eng. for Ind.,1991,113:184.189
    [41] Zhang B, Howes T D. Material-removal mechanisms in grinding ceramics. Annals of the CIRP, 1994,43(1):305-308
    [42] Xu H H K, Jahanmir S, Ives L K. Material removal and damage formation mechanisms in grinding silicon nitride. J. Mater. Res., 1996,11:1717-1724
    [43] 田欣利,徐燕申,林彬等.陶瓷精密加工表面完整性的研究进展.中国机械工程,1998,9(6):63-66
    [44] 田欣利,徐燕申,彭泽民等.陶瓷磨削表面变质层的产生机理.机械工程学报,2000,36(11):30-32
    [45] 于思远,林彬,林滨等.工程陶瓷超精密磨削表面质量的研究.金刚石与磨料磨具工程,2002,5(总131):12-16
    [46] 王西彬,李相真.结构陶瓷磨削表面的残余应力.金刚石与磨料磨具工程,1997,6(102):18-22
    [47] Malkin S, Ritter J E. Grinding mechanism and strength degradation for ceramics. ASME.J. of Eng. for Ind.,1989,111:167-173
    [48] Regiani I, Fortulan C A, Purquerio B M. Abrasive machining of advance ceramics. Industrial Diamond geview,2000(1):37-42
    [49] Subramanian K, Ramanath S, Matsuda Y O. Precision produotion ginding of fine ceramics. Industrial Diamond Review, 1990,50(540):254-162
    [50] Submmanian K, Ramanath S, Tricard M. Mechanisms of material removal in the precision production grinding of ceramics. Journal of Manufacturing Science and Engineering, Transaction of ASME, 1997,119(11):509-519
    [51] Conway J C, Kirchner H P. Crack branching as a mechanism of crushing during grinding. J.Amer, Ceram. Soc.,1986,69:603-607
    
    
    [52] Kovch J A, Blau P J, Malkin S, et al. A feasibility investigation of high speed, low damage grinding process for advanced ceramics. In: 5th International Gfinding Conference, SME, 1993,1
    [53] 任敬心,康仁科,黄奇等.工程陶瓷磨削的微观研究.磨料磨具与磨削,1993,6(总78):12-16
    [54] 王长琼,刘忠.工程陶瓷磨削表面质量试验研究.磨料磨具与磨削,1995,1(85):24-27
    [55] 郭建强,张景仕,傅佑同.电镀金刚石砂轮端磨氧化铝陶瓷的机理研究.金刚石与磨料磨具工程,1999,2(总110):27-31
    [56] Kitajima K, Cai G Q, Kumagai N, et al. Study on the ceramics grinding. Annals of the CIRP,1992,41 (1):367-371
    [57] 纳米尔,林彬,关强等.几种工程陶瓷的延性域磨削.天津大学学报,1999,32(4):486-491
    [58] 陈明君,董申,李旦等.脆性材料超精密磨削时脆转变临界条件的研究.高技术通讯,2000,2:64~67
    [59] Mayer J E, Fang G P. Effect of grit depth of cut on strength of ground ceramics. Annals of the CIRP, 1994,44(1):309-312
    [60] Mayer J E, Fang G E Effect of grinding parameters on surface finish of ground ceramics. Annals of the CIRP,1994,44(1):279-282
    [61] Zhang B, Yang F L, Wang J X, et al. Stock removal rate and workpiece strength in multi-pass grinding of ceramics. Journal of Materials Processing Technology,2000,104:178-184.
    [62] Zhang B, Wang J X, Yang F L, et al. The Effect of machine stiffness on grinding of silicon nitride. International Journal of Machine Tool and Manufacture, 1999,39(8): 1263-1283
    [63] Zhang B. An investigation of the effect of machine stiffness on grinding of ceramics. Annals of the CIRP,2001,50(1):209-212
    [64] Zheng Y S, Vieira J M, Oliveira F J, et al. Relationship between flexural strength and surface roughness for hot-pressed Si_3N_4 self-reinforced ceramics. Journal of the European Ceramic Society,2000,20:1345-1353
    [65] Tonshoff H K, Friemuth T, Hessel D, et al. Mechanical and thermal effects in grinding of advanced ceramics. Int.J.Japan Soc.Prec.Eng.,1999,33(1):32-36
    [66] Warnecke G, Rosenberger U, Milberg J. Basic of process parameters selection in grinding of advanced ceramics. Annals of the CIRP, 1995,44(1):283-286
    
    
    [67] Liao T W, Li K, McSpaddenJr S B. Wear mechanisms of diamond abrasives during transition and steady stages creep feed grinding of structured ceramics. Wear,2000,242:28-37
    [68] Li K, Liao T W, O'Rourke L J, et al. Wear of wheels in creep-feed grinding of ceramic materials, Ⅱ, effects on process respone and strength. Wear,1997,211 :104-112
    [69] Warnecke G, Barth C. Optimization of the dynamic behavior of grinding wheel for grinding of hard and brittle materials using the finite element method. Annals of the CIRP,1995,44(1):283-286
    [70] Zhang C H, Ohmori H, Kato T, et al. Evaluation of surface characteristics of ground CVD-SiC using cast iron bond diamond wheels. Precision Engineering,2001,25:56-62
    [71] 张一飞,于怡青,徐西鹏.仿真技术及其在磨削加工中的应用.金刚石与磨料磨具工程,2002,4(总132):40-44
    [72] 李伯民,赵波等.现代磨削技术.北京:机械工业出版社,2003
    [73] Tonshoff H K, Peters J, Inasaki I, et al. Modelling and simulation of grinding processes. Annals of the CIRP, 1992,4 1(2):677-688
    [74] Malkin S, Guo C.张一飞翻译.外圆磨削加工的仿真、优化及控制.金刚石与磨料磨具工程,2001,5(125):11-18
    [75] 于思远,林滨,韩雪松,林彬.分子动力学仿真技术在超精密加工领域中的应用.中国机械工程,2002,Vol.13(1):22-25
    [76] Inasaki I. Grinding process simulation based on the wheel topography measurement. Annals of the CIRP, 1996,45(1):347-350
    [77] Koshy P, Lewis I K, Jahanmir S. Simulation of diamond-ground surfaces. International Journal of Machine Tools & Manufacture, 1999,39:1451-1470
    [78] Warnecke G, Zitt U. Kinematic Simulation for analyzing and predicting high-performance grinding processes. Annals of the CIRP, 1998,47(1):265-270
    [79] 樊瑜谨,余贵华,纳铿.磨削过程模拟及磨削机理研究(上).制造技术与机床,1993.No.3:21-22
    [80] 樊瑜谨,余贵华,纳铿.磨削过程模拟及磨削机理研究(下).制造技术与机床,1993.No.4:33-34
    [81] 王志平,董祖钰,温瑾林.高速火焰与等离子喷涂WC/Co涂层的性能比较.中国表面工程,1999.2(总43):18-21
    [82] Yang Q Q, Senda T, Ohmori A. Effect of carbide grain size on microstructure and sliding wear behavior of HVOF-sprayed WC- 12%Co coatings.
    
    Wear,2003,254:23-34
    [83] 王志平,董祖钰,霍树斌.超音速火焰喷涂涂层特性研究.机械工程学报,Vol.37(11):96-98
    [84] 陈华辉.等离子喷涂WC-Co涂层的磨料磨损.金属热处理,1997(11):5-8,13
    [85] 姚安佑,曹献坤,廖平方.金属表面等离子喷涂陶瓷材料提高耐磨性的研究.武汉工业大学学报,1995,17(2):67-70
    [86] 杨元政,刘正义,庄育智.等离子喷涂Al_2O_3陶瓷涂层的结构与组织特征.兵器材料科学与工程,2000,23(3):7-11
    [87] 杨元政,刘正义,庄育智.等离子喷涂Al_2O_3+13%TiO_2陶瓷涂层的组织结构及其耐磨性.功能材料,2000,31(4):390-392
    [88] 马章林,刘泽昊.TiO_2含量对Al_2O_3陶瓷涂层性能的影响.材料开发与应用,1997,12(6):43-45
    [89] Xie Y, Hawthorne H.M. The damage mechanisms of several plasma-sprayed ceramic coatings in controlled scratching. Wear, 1999,233-235:293-305
    [90] Engqvist H, Axen N, Hogmark S. Resistance of a binderless cemented carbide to abrasion and particle erosion. Tribology Letters,1998,4:251-258
    [91] Exner H E. Physical and chemical nature of cemented carbides. International Metals Reviews, 1979,4:149-173
    [92] Engqvist H, Ederyd S, Axen N, et al. Grooving wear of single-crystal tungsten carbide. Wear,1999,230:165-174
    [93] French D N. The microstrueture and mieroproperties of WC-Co alloys. Int.Jour.of Powder Metallury,1969,5(3):47-60
    [94] 周泽华主编著.金属切削理论.北京:机械工业出版社,1992:153-157
    [95] Hegeman J B J W, De Hossen J T M, With G. Grinding of WC-Co hardmetals. Wear,2001,248:187-196
    [96] Lee M. High temperature hardness of tungsten carbide, Metallurgical Transactions A, 1983,14A: 1625-1629
    [97] Roweliffe D J, Jayaram V, Hibbs M K, et al. Compressive deformation and fracture in WC materials. Materials Science and Engineering A, 1998,105-106:299-303
    [98] Greenwood R M, Loretto M H, Smallman R E. The defect structure of tungsten carbide in deformed tungsten carbide-cobalt composites. Acta Metall,1982,30:1193-1196
    [99] Jayaram V, Sinclair R, Roweliffe D J. Inergranular cracking in WC-6% Co: an application of the von Mises criterion. Aeta Metall, 1983,31 (3):373-378
    [100] 谭永生,蔡和平,马宝铀等.采煤机截齿用WC-Co合金的磨损、强度与断裂.稀
    
    有金属材料与工程,1996,25(6):7-13
    [101] Larsen B J, Koyanagi E T. Abrasion of WC-Co alloys by quartz. Trans. ASME, 1979,101:208-211
    [102] Larsen B J. Some mechanisms of abrasive wear of cemented carbide composite. Met. :Corros.Ind, 1980,653:1-8
    [103] Larsen B J. Effect of composition, microstructure and service conditions on the wear of cemented carbides. Journal of Metals,1983(11):35-42
    [104] Larsen B J. Binder extrusion in sliding wear of WC-Co alloys. Wear 1985,105:247-256
    [105] Anand K, Conrad H. Microstructure and scaling effects in the damage of WC-Co alloys by single impacts of Hard particals. J.mater.Sci., 1998,23:2931-2942
    [106] 李晨辉,余立新,熊惟皓.WC的粒度对WC-Co硬质合金断裂韧性的影响.硬质合金,2001,18(3):138-141
    [107] Faulring G, Ramalingam S. Oxide inclusions and tool wear in machining. Metall., Trans., A, 1979,10:1781-1792
    [108] Masuda M, Kuroshima Y, Chujo Y. Failure of tungsten carbide-cobalt alloy tools in machining of carbon materials. Wear,1993,169:135-140
    [109] Naerheim Y, Trent E M. Diffusion wear of cemented carbide tools when cutting steel at high speeds.Metal Technol.,1977,4:548
    [110] Blomberry R I, Perrott C M, Robinson P M. Abrasive wear of tungsten carbide-cobalt composites, I ,Wear mechanisms. Materials Science and engineering, 1974,13:93
    [111] L J, Perrott C M, Robinson P M. Abrasive wear of tungsten carbide-cobalt composites, Ⅱ ,rotary Drilling tests. Materials Science and engineering, 1974,13:83-92
    [112] Prins J F, Harding D R, Jams G S. An apparatus for testing single diamond particales under simulated working conditions. Diamond Research, supplement to Industrial diamond Review, 1970,39:11
    [113] 于怡青,徐西鹏,沈剑云等.陶瓷磨削机理及磨削加工技术研究进展.湖南大学学报,1999,Vol.26(2,增刊):48-56
    [114] 任敬心,史兴宽.磨削技术的新发展—硬脆材料光滑表面的超精密磨削.中国机械工程,1997,Vol.8(4):106-110
    [115] 徐燕申,田欣利,于爱兵等.工程陶瓷材料加工技术的研究进展.中国机械工程,1996,7(6):59-62
    [116] Law B R, Swain M V. Microfracture beneath point indentation in brittle solids.
    
    J.Mater.Sci., 1975,10:113-122
    [117] Marshall D B, Lawn B.R, Evans A G.. Elastic/plastic indentation damage in ceramics: The Latered Crack System. J.Amer. Ceram. Soc.,1982,65:561-566
    [118] Lawn B R, Evans A G.. A model for crack initiation in elastic/plastic: indentation fields. J.Mater. Sci.,1977,12:2195-2199
    [119] Chiang S S, Marshall D B, Evans A G, The response of solids to elastic/plastic Indentation. Ⅱ. Fracture Indentation. J. Appl. Phys., 1982,153:312-317
    [120] Evans A G, Marshall D B. Wear mechanism in ceramics, fundamentals of friction and wear of materials, Ed. by Rigney D A, ASME,1981,439
    [121] Conway J J C, Kirchner H P. The mechanics of crack inititation and propagation beneath a moving sharp indentor. J.Mater. Sci., 1980,15:2879-2883
    [122] Zhang B, Tokura H, Yoshikawa M. Study on surface cracking of alumia scratched by single-point diamond. J. Mater.Sci.,1988,23:3214-3224
    [123] Xu H H K, Wei L H, Jahamir S. Grinding force and microcrack density in abrasive machining of silicon nitride. Journal of Material Research, 1995,10(12):3204-3208
    [124] Mayer J E, Fang G P.Diamond grinding of silicon nitride ceramic. In: Maching of Advanced Materials,NIST Special Publication 847,1993,205-222
    [125] Lawn B R, Marshall D B. Hardness, toughness, and brittleness: an indentation analysis. J.Amer.Ceram.Soc.,1979,62:347-350
    [126] Jahanmir S, Strakna T J, Quinn G D, et al. Effect of grinding on strength and surface integrity of silicon nitride:Part I,machining of advanced material. In: Maching of Advanced Materials,NIST Special Publication 847,1993,263-277
    [127] Jahanmir S, Strakna T J, Quinn G D, et al. Effect of grinding on strength and surface integrity of silicon nitride:Part Ⅱ, machining of advanced material. In: Maching of Advanced Materials,NIST Special Publication 847,1993,279-291
    [128] 彭海涛,金元生,杨业元.材料磨损机理的超声显微镜研究.摩擦学学报,1999,Vol.19(4):294-298
    [129] Ahn H S, Wei L H, Jahanmir S. Nondestructive dectection of damage produced by a sharp indenter in ceramics. Transactions of the ASME, Journal of Engineering Materials and Technology, 1996,118:402-409
    [130] Pfeiffer W, Hollstein T. Damage determination and strength prediction of machined ceramics by X-ray diffraction techniques. In: Machining of Advanced Materials, NIST Special Publication 847, Washington D C:Govemment Printing Office,1993,235-245
    
    
    [131] Xu H H K, Jahanmir S. Simple technique for observing subsurface damage in machining of ceramic. J.Amer.Ceram.Soc., 1994,77:1388-1390
    [132] Yoshikawa W., Zhang B, Tokura H. Observations of ceramic surface cracks by newly proposed methods. J.Ceram.Soc.Jpn., Int Ed.,1987,95:911-918
    [133] Liao T W, Sathyanarayanan G, Plebani L J, et al. Characterization of grinding-induced cracks in ceramics. Int.J.Mech.Sci., 1995,37:1035-1050
    [134] Wobker H G, Tonshoff H K. High efficency grinding of structural ceramics. In: Machining of Advanced Materials, NIST Special Publication 847,1993,171-183
    [135] Tsutsumi C, Okano K, Suto T. High quality machining of ceramics. J. Mater. Proc.Technol., 1993,37:639-654
    [136] Roth P, Tonshoff H K. Influence of microstructure on grindability of alumina ceramics. In: Machining of Advanced Material, NIST Special Publication 847,1993,247-261
    [137] Ahn Y, Chandrasekar S, Farris T N. Measurement of residual stresses in machined ceramics using the indentation technique. In: Machining of Advanced Materials, NIST Special Publication 847,1993,135-146
    [138] Kirchner H P. Residual stresses in hot-pressed Si_3N_4 grooved by singled-point grinding. J.Am.Ceram.Soc., 1982,65(1):55-60
    [139] Quinn G. Flexural strength of advanced structural ceramics: a round robin. J.Amer.Ceram.Soc., 1990,73:2374-2384
    [140] Rice R W. The effect of grinding direction on the strength of ceramics. In: The Science of Ceramic Machining and Surface Finishing, NBS Special Publication 348, 1972,365-376.
    [141] Hawmann M W, Cohen P H, Conway J C, et al. The effect of grinding on the flexure strength of a sialon ceramic. J.Mater.Sci.,1985,20:482-490
    [142] Rice R W. Effets of Ceramics Microstructural character on machining direction-strength anisotropy. In: Machining of Advanced Materials,NIST Special Publication 8471993,18
    [143] Allor R L, Govila R K, Whalen T J. Influence of machining on strength properties of turbine materials. Ceram.Eng.Sci.Pro., 1982,3:392-404
    [144] Allor R L, Baker R R. Effect of grinding variables on strength of hot pressed silicon nitride. ASME, 1983,83-GT-203
    [145] Ota M, Miyahara K. The influence of grinding on the flexural strength of ceramics.In: The 4th Int.Grinding.Conf.,SME Technical Paper,1990,MR 90-537
    
    
    [146] Zhang B, Howes T D. Subsurface evaluation of ground ceramics. Annals of the CIRP, 1995,44(1):263-266
    [147] Lawn B R, Evans A G, Marshall D B. Elastic/plastic indentation damage in ceramics: the median/radial crack system. J.Amer.Ceram.Soc., 1980,63:574-581
    [148] Inasaki I. Speed-stroke grinding of advanced ceramics. Annals of the CIRP,1988, 37(1):299-302
    [149] Lawn B R, Evans A G, A Model for crack initiation in elastic/plastic indentation field. J.Mater. Sci., 1977,12:2195-2199
    [150] Taniguchi N. Fundamental and application of technology——ultra-precision, ultra-fine machining and energy beam machining. Kogyo Chosakai Pulishing co.,Ltd., Tokyo, 1988,53-60
    [151] Marshall D B. Geometric effects in elastic/plastic indentation. J.Amer.Ceram.Soc., 1984,67:57-60
    [152] Lawn B R, Fuller F R. Equilibrium penny-like cracks in indentation fracture. J.Matre.Sci.,1975,10:2016-2024
    [153] 王西彬,任敬心,乐兑谦.结构陶瓷磨削力的实验研究.中国机械工程,1996,7(2):78-80
    [154] Bianchi E C.树脂结合剂金刚石砂轮在磨削高级陶瓷中的行为.机械工程师,2000,9:1-4
    [155] 沈剑云,骆灿彬,徐西鹏,徐燕申.特种陶瓷端面磨削的实验研究.金刚石与磨料磨具工程,2001,6(总126):39-42
    [156] Lee K W, Wong P K, Zhang J H. Study on the grinding of advanced ceramics with slotted diamond wheels. Journal of Materials Processing Technology, 2000,100:230-235
    [157] 仇中军,张飞虎,栾殿荣等.不同结合剂金刚石砂轮磨削氧化铝陶瓷工艺实验研究.金刚石与磨料磨具工程,2000,6(总120):25-27
    [158] 郭成,原所先,蔡光起.金刚石砂轮磨削Al_2O_3-Mo金属陶瓷的试验研究.金刚石与磨料磨具工程,1999,4(总112):16-18
    [159] 施平,袁峰,周国权等.高性能陶瓷材料的磨削加工.哈尔滨工业大学学报,1994,26(3):92-96
    [160] Matsuo T, Touge M, Yamada H. High-precision surface grinding of ceramics with superfine grain diamond cup wheels. Annals oft he CIRP, 1997,46(1):249-252
    [161] Namba Y, Shiokawa M, Yu J. Surface roughness generation mechanism of ultraprecision grinding of optical materials with a cup-type resinoid-bonded diamond wheel. Annals of the CIRP, 1997,46(1):253-256
    
    
    [162] 于爱兵,林彬,田欣利等.ZTM陶瓷材料的平面磨削.硬质合金,1995,12(6):246-249
    [163] 王西彬,师汉民,任敬心.结构陶瓷的磨削温度.华中理工大学学报,1996,24(4):14-18
    [164] 林彬,于思远,徐燕申等.Zr02和SiC陶瓷的表面磨削温度.天津大学学报,2000,33(6):
    [165] 殷玲,刘忠,陈日耀.陶瓷磨削中金刚石砂轮磨损形式及其生成原因.华中理工大学学报.1996,24(4):19-22
    [166] Zelwer O, Malkin S. Grinding of WC-Co cemented carbides. Transactions of the ASME, Journal of Engineering for Industry, 1980,102:209-220
    [167] Hegeman J B J W, Hosson J T M D, With G,de. Grinding of WC-Co hardmetals. Wear, 2001,248:187-196
    [168] 郭秀云,于思远,汪丽新等.磨削硬质合金材料去除机理的实验研究.硬质合金,1997,14(2):99-103
    [169] 郭秀云,于思远,林彬.硬质合金磨削温度场的实验研究.硬质合金,1999,16(1):34-37
    [170] 史兴宽,原京庭,任敬心等.硬脆材料光滑磨削表面形成过程的研究.西北工业大学学报,1998,16(2):216-220
    [171] Li G F, Wang L S, Yang L B. Multi-parameter optimization andcontrol of the cylindrical grinding process. Journal of Material Processing Technology,2002,129:232-236
    [172] Gong Y D, Wang B, Wang W S. The simulation of grinding wheels and ground surface roughness based on virtual reality technology. Journal of Material Processing Technology,2002,129:123 - 126
    [173] Vinolas J, Biera J, Liorente J I, et al. The use of an efficient and intuitive tool for the dynamic modeling of grinding processes. Annals of the CIRP, 1997,46(1):239-242
    [174] Rowe W B, Li Yan, Chen X, et al. An Intelligent multiagent approach for selection of grinding conditions. Annals of the CIRP, 1997,46(1): 243-246
    [175] 刘贵杰,巩亚东,王宛山.基于VB环境的砂轮智能选择系统开发.东北大学学报,2002,Vol.23(12):1181-1184
    [176] Xiao G, Malkin S. On-line optimization for internal plunge grinding. Annals of the CIRP, 1996,45(1):287-292
    [177] Li K, Liao T W. Modelling of ceramic grinding processes Part I, number of cutting points and grinding forces per grit. Journal of Materials Processing
    
    Technology, 1997,65:1-10
    [178] Warnecke G, Barth C. Optimization of the dynamic behavior of grinding wheels for grinding of hard and brittle materials using the finite element method. Annals of the CIRP,2000,48(1):261-264
    [179] 王成勇,孙勇红,宋月贤.金刚石框架锯锯切研究(Ⅶ)-计算机模拟框架锯锯切过程基础.金刚石与磨料磨具工程,2003.2(总134):1-6
    [180] 王成勇,孙勇红,王巧生.金刚石框架锯锯切研究(Ⅷ)-计算机模拟框架锯锯切过程.金刚石与磨料磨具工程,2003.3(总135):1-8
    [181] Snoeys R, Brown D. Dominating parameters in grinding wheel and workpiece regenerative chatter. In: Proceedings of the 9th international Machine Tool Design and Research,1969,325-348
    [182] Bartalucci B, Lisini G G. Grinding process instability. ASME,Journal of Engineering for Industry, 1969,91:597
    [183] Thompson R A. The dynamic behavior of surface grinding Part 1, a mathematical treatment of surface grinding. ASME, Journal of Engineering for industry, 1971,50:485-497
    [184] Thompson R A. On doubly regenerative stability of a grinder:the theory of chatter groeth. ASME Journal of Engineering for industry, 1986,108(2):75-82
    [185] Thompson.R.A. On doubly regenerative stability of a grinder: the effect of contact stiffness and wave filtering. ASME Journal of Engineering for industry, 1992,Vol. 114:53-60
    [186] Biera J, Vinolas J, Nieto FJ. Tune domain dynamic modeling of external plunge grinding process. International Journal of Machine Tool and Manufacture, 1997,37(11): 1555-1572
    [187] Malkin S. Grinding Technology Theory and applications of machining with abrasives. NewYork:Ellis Horwood Limited,1989
    [188] Yang F L, Zhang Bi, Wang J X, et al. The effect of grinding machine stiffness on surface integrity of silicon nitride. Journal of Manufacturing Science and Engineering,2001,123:591-600
    [189] Takano F, Kisimoto Y. Grinding performance of super abrasive wheel with added cluster diamond (4th Report). In: Spring Conference' 94 of JSPE, 101-105
    [190] 王先逵,李庆祥,刘成颖.精密加工技术实用手册.北京:机械工业出版社,2001
    [191] Jahammir S, Xu H H K, Ives L K. Mechanisms of material removal in abrasive machining of ceramics. In: Machining of Ceramics and Composites, New york:
    
    Marcel Dekker,1999,11-84
    [192] Huang H, Liu Y C. Experimental investigations of machining characteristics and removal mechanisms of advanced ceramics in high speed deep grinding. International Journal of Machine Tool & Manufacture, 2003,43:811-823

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700