岩石变形特性与变形全过程统计损伤模拟方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩石作为一种含有缺陷的典型脆性材料,在各种复杂应力状态下所体现的本构关系是一个复杂的基础理论问题。尤其在岩体工程的运营阶段,岩石的变形特性将直接影响工程的正常使用。为此,本文综合运用连续损伤理论、细观损伤力学与概率统计理论,在探讨岩石损伤模型的基础上,考虑各种荷载状态,并对损伤变量合理演化,得到模拟各种复杂应力状态的岩石损伤本构模型,进而在岩体工程中进行应用。
     首先,在基于Lemaitre应变等价性理论的岩石损伤模型基础上,通过探讨岩石应变软化变形过程中损伤变量或损伤因子的变化规律,并结合岩石应变软化变形全过程特征及其损伤机理的研究,探讨了建立岩石损伤演化模型时考虑损伤阀值影响的必要性。在对现有岩石微元强度度量方法研究的基础上,提出了可考虑损伤阀值影响的新型岩石微元强度度量方法,并引进统计损伤理论,建立了可考虑损伤阀值影响的岩石统计损伤演化模型,该模型不仅能反映损伤阀值的影响,且能反映岩石损伤程度受应力状态影响和岩石损伤在不同应力状态下损伤起始点不同的特性。
     其次,岩石的体积变化特征是岩石力学研究的重要内容之一。针对现有岩石损伤模型的局限性与不足,将应力作用下的岩石抽象为空隙、损伤与未损伤材料三部分,以空隙率反映岩石体积或空隙的变化,以损伤变量或损伤因子反映岩石力学性态的改变程度,通过对各部分材料的微观受力及其与宏观应力和应变的关系进行分析,建立出可反映岩石变形过程中体积或空隙变化特性的新型岩石损伤模型,进而建立出能反映岩石体积变化特征的统计损伤本构模型,并提出了其参数确定方法。在该本构模型的基础上,通过探讨岩石脆延特性及其相互转化的力学机理与特点,利用求解多元函数极值的分析方法,建立岩石脆延特性相互转化条件的确定方法,该方法能同时反映岩石所受荷载状态与本身力学性质对岩石脆延特性及其相互转化特征的综合影响,完善了岩石本构模型的研究内容。
     再次,岩石应变软化变形破坏全过程模拟属于岩石力学研究的一个重要分支。在分析岩石应变软化变形全过程不同阶段变形特征基础上,针对现有岩石损伤模型难以反映岩石破坏后仍具残余强度特性的不足,假设受载岩石可抽象为损伤和未损伤两部分材料组成,其所受轴向荷载由这两部分材料共同承担,且损伤部分材料所受应力为残余强度,建立出可反映岩石破坏后仍具残余强度特征的新型损伤模型。然后,在此基础上建立出可反映岩石变形全过程特征的岩石统计损伤演化模型,进而建立出可模拟岩石应变软化变形全过程的损伤统计本构模型,并提出了其模型参数的确定方法。通过实例验证表明该模型能较好地反映岩石峰后残余强度阶段变形特征。
     最后,为完善岩石变形模拟过程的研究内容,对岩石的动态变形过程模拟进行了研究。针对岩石动态变形特点,引进Kelvin模型的研究思路与方法,将岩石变形过程中的动态应力视为静态应力分量与动态应力分量的叠加,分别以粘性元件和非线性元件模拟岩石单元动态应力分量与静态应力分量,并建立出岩石动态应力的力学分析模型,在此研究基础上,利用粘性元件的力学特性和统计损伤理论分别建立出粘性元件和非线性元件变形过程模拟方法,进而得到岩石三轴动态变形过程模拟方法,并提出其模型的参数确定方法。通过实例分析与讨论,表明了该方法具有较强的合理性和可行性。
As rock is a typical brittle material containing flaws, its constitutive relation under complicated stress is a complicated basic theoretical question. Especially on the operation phase of rock engineering, the deformation characteristic will directly influence the normal use of engineering. Based on reasons above, the continuous damage theory, microscopic damage mechanics and the theory of probability have been integrated to reasonably evolve the damage variable on the basis of damage constitutive models of rock considering various loading conditions simulate damage constitutive models of rock under varied complex stress state and apply results to rock engineering.
     In the first place, based on the damage constitutive model of rock under Lemaitre's hypothesis of strain equivalence, this paper discussed the necessity considering damage threshold to establish rock damage evolution model when exploring the law of damage variable or damage factor of strain softening deformation of rock, combined with the study of rock characteristics of strain softening deformation and mechanism of injury. On the existing rock micro-element strength measuring method, a new rock micro-element strength measuring method was put forward which could consider the impact of rock damage threshold. The statistical damage theory, and established the rock statistical damage evolution model which can weigh the impact of damage threshold of rock. This model can not only reflect the impact of damage threshold, but the damage degree by the influence of stress state and characteristics of varied damage starting point under varied stress states as well.
     Secondly, the volume change characteristic is a major concern in rock mechanics. Due to limitations and shortcomings of the current damage constitutive models of rock, this paper divided rock under stress into three parts:void, damaged and undamaged material. By using void ratio to reflect the rock volume or void changes, damage variable (or damage factor) to reflect the variable feature of rock mechanics, relationship between micro and macro stress and strain analysis of all parts of material has been analyzed. Then the new rock damage model has been established, which rock deformation is able to indicate the volume or void changes in size or characteristics. And the statistical damage constitutive model was built which can show the volume change characteristic of rock. Also the method determining its parameters was given. Based on this constitutive model, the determination approach on conditions of transforming brittleness into ductility of rock was offered by exploring the rock brittle mechanical properties and mechanism of mutual transformation and characteristics and the use of extreme value analysis to solve multi-function approach. This method is capable to display simultaneously the loading state of rock and its own mechanical properties' influence on rock's brittleness and ductility and their mutual transformation characteristics and perfected the research content of rock's constitutive model.
     Furthermore, the process simulation of rock deformation and destruction of strain softening is one of significant branches of rock mechanics research. in the analysis of various characteristics at different stages of the Strain softening of rock deformation process, due to the shortcomings that the existing rock damage model failed to indicate rock's residual strength properties after failure of rock, on the assumption that the loading rock is comprised of damaged and undamaged material and the axial load was shared by these two parts, the stress that damaged material bears is defined as residual strength, a new damage model was established showing rock's residual strength after failure. Then on the basis of this model, statistical damage evolution model of rock was built showing the whole deformation process and the statistical damage constitutive model was developed simulating the whole process of rock strain softening, the determination of the model parameters was given as well. The project case verified w that the model can better reflect the residual strength after the peak stage of rock deformation.
     Finally, to improve the simulation of rock deformation research content, the dynamic deformation process of rock was simulated. According to the dynamic deformation characteristics of rock, the research methodology of Kelvin model was introduced. The dynamic stress during rock deformation was considered as the superposition of dynamic and static components of stress. By using viscous components and non-linear components to simulate dynamic and static stress components respectively, the mechanics analysis model for dynamic stress of rock was built. Based on this study, taking advantage of the mechanical properties of viscous components and statistical damage theory, the simulation of the deformation process of viscous and non-linear components was proposed and the simulation of rock triaxial dynamic deformation process was put forward, the determination of model parameter was included too. The analysis and discussion of project case justified the rationality and feasibility of this method.
引文
[1]高大钊.岩土工程的回顾与前瞻.北京:人民交通出版社,2001:3-4
    [2]徐志英.岩石力学.北京:中国水利水电出版社,1993:12-14
    [3]Jaeger JC, Cook NGW.岩石力学基础.北京:科学出版社,1981:37-40
    [4]郑颖人,沈珠江,龚晓南.岩土塑性力学原理.北京:中国建筑工业出版社2002:140-145
    [5]周维垣.高等岩石力学.北京:水利电力出版社,1989:23-25
    [6]谢和平,陈忠辉.岩石力学.北京:科学出版社,2004:67-68
    [7]Wawersik WR, Fairhurat C. A Study of Brittle Rock Fractures in Laboratory Compression Experiments.International Journal Rock Mechanics Mining Science,1970,7:56-575
    [8]Fredrich J T, Evans B, Wong T F. Effect of grain size on brittle and semi-brittle strength; Implications for micro-mechanical modeling of failure in compression. J. Geophys. Res.,1990,95(B7):907-1092
    [9]林卓英,吴玉山,等.岩石在三轴压缩下脆—延性转化的研究.岩土力学,1992,13(2,3):45-53
    [10]唐春安.岩石破裂过程中的灾变.北京:煤炭工业出版社,1993:24-25
    [11]刘佑荣,唐辉明.岩体力学.武汉:中国地质大学出版社,1999:36-38
    [12]葛修润,周百海,刘明贵,等.岩石峰值后特性和数值模拟方法探讨.武汉:武汉测绘科技大学出版社,1994,389-397
    [13]Karman T. What influences the strength of the material.Journal of Hungarian Engineers and Architects.1910(10):212-216 (in Hungarian).
    [14]高磊,等.矿山岩体力学.北京:冶金工业出版社,1979:14-15.
    [15]Gowd TN, Rummel F. Effects of confining pressure on the fracture behavior of a porous rock. Int J. Rock Mech. Min. Sci and Geomech, Abstra,1980, 17:225-229.
    [16]Fredrich JT. Effects of grain size on brittle and semi-brittle strength: implications for micromechanical modeling of failure in compression. Journal of Geophysical Research,1990,95:907-920
    [17]邓小亮.三轴压缩下大理岩应力应变全过程的力学特性的试验研究.桂林冶金地质学院学报1993,13(3):272-277
    [18]K Mogi. Fracture and flow of rocks under high triaxial compression. Journal of Geophysical Research,1971,76:1255-1269
    [19]朱维申,张乾兵,李勇,等.真三轴荷载条件下大型地质力学模型试验系统的研制及其应用.岩石力学与工程学报.2010,29(1):1—7
    [20]葛修润,周百海,刘明贵等.电液伺服自适应控制岩石力学实验机及其对岩石力学某些问题研究的意义.岩土力学.1992,13(2):8-13
    [21]田和金,李汤,王爱华等.岩石动力学试验及其在油田开发中的应用.岩石力学与工程学报.2000,19(Z1):889—894
    [22]信礼田,何翔,苏敏.强冲击载荷下岩石的力学性质.岩土工程学报,1996,(6):61-68
    [23]Kolsky H. An investigation of the mechanical properties of materials at very high rates of loading. Proceedinds of the Physical Society,1949,62:676-700
    [24]Friedman M, Perkins RD, Green SJ. Observation of brittle-deformation features at the maximum stress of westly granite and solenhofen limestone. Journal Rock Mechanics Mining Science,1970,7:297-306
    [25]Grady DE. The mechanics of fracture under high-rate stress loading. Mechanics of Geomaterials,1985,129-155
    [26]Lankford J. The Role of Tensile Microfracture in the strain rate dependence of the compressive strength of fine-grained limestone analogy with strong ceramics. Journal Rock Mechanics Mining Science,1981,18:173-175
    [27]Olsson WA. The compressive strength of Tuff as a function of strain rate from 10-6 to 103/sec. Journal Rock Mechanics Mining Science,1991,24(3):231-250
    [28]吴绵拔,刘远惠.中等应变速率对岩石力学特性的影响.岩土力学,1980,(1):51—58
    [29]朱瑞赓,吴绵拔.不同加载速率下花岗岩的破坏判据.爆炸与冲击,1984,4(1):1-9
    [30]Brace WF, Martin RJ. A test of the law of effective stress for crystalline rock of low porosity. Journal Rock Mechanics Mining Science,1968,5:415-426
    [31]Donath FA, Fruth LS. Dependence of strain-rate effects on deformation mechanism and rock type. Journal of the Geological Society,1971,79:347-371
    [32]Sangha CM, Dhir RIC. Strength and deformation of rock subjected to multiaxial compressive stress. Journal Rock Mechanics Mining Science,1975,12:277-282
    [33]Masuda K, Mizutani H, Yamada L. Experimental study of strain-rate dependence and pressure dependence of failure properties of granite. Journal of Physics of the Earth,1987,35:37-66.
    [34]于亚伦.用三轴SHPB装置研究岩石的动载特性.岩土工程学 报.1992,14(3):76—79
    [35]J.Lemaitre. A continuous damage mechanics model for ductile materials, J.Eng.Mater.Tech.,107,1985:83-89
    [36]J.Lemaitre. How to use damage mechanics. Nuclear Engineering, in advances in fracture research, Vol.4,5th International Conferences on Fracture, 1981:1499-1506
    [37]J. Lemaitre, R. Desmorat, M. Sauzay. Anisotropic damage law of evolution. European Journal of Mechanics-A/Solids,2000,19:187-203
    [38]鞠杨,谢和平.基于应变等效性假说的损伤定义的适用条件.应用力学学报,1998,15(1):43—50
    [39]沈珠江,章为民.损伤力学在土力学中的应用.第三届全国岩土力学数值分析及解析方法讨论会论文集.珠海:1988
    [40]Krajcinovic D. Damage Mechanics. Mechanics of Material,1989,8:117-197
    [41]Kachanov M. Effective elastic properties of cracked solids:critical review of some basic concepts. Applied Mechanics Reviews,1992,45:304-335
    [42]Bazant Z P. Mechanics of distributed cracking. Applied Mechanics Reviews, 1986,39:675-705
    [43]冯西桥.脆性材料的细观损伤理论和损伤结构的安定分析.清华大学博士学位论文,1995
    [44]Rabotnov, Yu N. On the equations of state for creep. Progress in Applied Mechanics,1963,307-315
    [45]Taehyo Park, Voyiadjis GZ. Kinematic description of damage. Journal of Applied Mechanics,1986,65:March:93-97
    [46]Murakami S. Mechanical modeling ofmaterial damage. Journal of Applied Mechanics,1988,55:June:280-286
    [47]Murakami S, Ohno N. A continuum theory of creep and creep damage. Proceeding of 3rd IUTAM Symposium on creep in st ruct ures (Edit ed by Pont er, A R S and Hayhurst D R). Springer-Verlag,1980,422-443
    [48]吕运水,陈幸福.关于损伤张量的比阶.应用数学与力学,1989,10:12—17
    [49]Krajeinovc D, Fonseka G U. The continuous damage theory of brittlematerials, part Ⅰ and part Ⅱ. ASME Journal of Applied Mechanics,1981,48:809-824
    [50]Rousselier G. Finite deformation constitutive relations including ductile fracture damage. Three-dimensional Constitutive relations and Ductile Fracture(Eds:S.Nemat-nflsser), North-Holland Publishing Company,1981
    [51]Shen W,Pang LH,Yue,Shen ZJ,Tang XD.Elastic damage and energy dissipation in anisotropic sold material.Engineering Fracture Mechanics, 1987,33(1):92-106
    [52]Needleman. A Computational mechanics at the mesoseale. Acta Materialia. 2000,46(1):105-124
    [53]Gurson AL.Theory of ductile rupture by void nucleation and growth:Part I:Yield criteria and flow rules for porous ductile mesa.Journal of Engineering Materials and Technical,1977,99:2-15
    [54]Bao G. A micromechanical model for damage in metal matrix composites. Damage Mechanies and Localization,1992, AMD-Vol 142/MD-Vol 34:1-12
    [55]Llorca J, Needleman A, Suresh S. An analysis of the effects of matrix void growth on deformation and ductility of metal-ceralnic composites. Acta Metallurgica,1991,39(10):2317-2335
    [56]Walter M E, Ravichandran G, Ortiz M. Computational modelling of damage evolution in unidirectional fiber reinforced ceramic matrix composites. Computer Mechanics,1997,20:192-198
    [57]Brocks W, Hao S,Steiglich D. Micromechanical modellling of the damage and toughness behaviour of nodular cast iron materials. Proceedings of Eurdmegh-Mechamat Conferences Local Approaches to Fracture, Fontainebleau, 1996
    [58]Mozheu V V, Kozhevnlkova L L. Unit cell evolution in structure damageable particulate-filled elastomeric composites under simple extension. Journal of Adhesion,1996:209-219
    [59]Mozhev VV, Kozhevnikova LL. Highly predictive structural cell for particulate polymerle composltfs. Journal of Adhesion,1997,62:169-186
    [60]Nemat-Nasser S, Obata M. A microcrack model of dilatancy in brittle materials.Transaction of the ASME,1988,55(3):24-35
    [61]Tu JW, Lee X. Micromechanical damage models for brittle solids,part Ⅰ:tensile loadings.Journal of Engineering Mechanics,1991,117(7):1495-1514
    [62]Tu JW, Lee X. Micromechanical damage models for brittle solids, part Ⅱ:compressive loadings. Journal of Engineering Mechanics,1991,117(7): 1515-1536
    [63]Dragon A, Mroz Z. A continuum model for plastic-brittle behavior of rock and concret. International Journal Rock Mechanics Mining Science.1979,17: 121-137
    [64]Loland KE. Continuum damage model for load response estimation of concret. Cement and Concrete Research,1980,10:395-402
    [65]余天庆.混凝土的分段线性损伤模型.岩石混凝土断裂与强度.1982.2:14-16.
    [66]Dems K, Mroz Z. Stability condition for brittle plastic structure with propagation damage surface. Structure Mechanics,1985,13(1):85-122
    [67]L M Kachanov.连续介质损伤力学引论(杜善义译).哈尔滨:哈尔滨工业大学出版社,1989:3-7
    [68]Kachanov LM. Introduction to Continuum Damage Mechanics. Martinus Nijhoff Publishers, Dordrecht, The Netherlands,1986:11-19
    [69]Kachanov LM. Effective elastic properties of cracked solids:Critical review of some basic concepts. Applied Mechanics Review,1992,45(8):304-335
    [70]Kachanov LM, Tsukrov I, Shafiro B. Materials with fluid-saturated cracks and cavities:fluid pressure polarization and effective elastic response. International Journal of Fracture,1995,73(4):61-66
    [71]Budiansky B. On the elastic modulus of heterogeneous material. Journal of Mechanics physical Solids,1965,13(4):223-227
    [72]Budiansky B, Oconnell R J. Elastic moduli of a cracked solid. International Journal of Solids Structures,1976,12(2):81-97
    [73]高路彬.混凝土变形与损伤的分析.力学进展.1993,23(4):510-519
    [74]高路彬,程庆国.一种新的各向同性损伤本构模型及其应用.中国铁道科学.1989,10(2):1-11
    [75]刑修三.非平衡统计断裂力学基础.力学进展.1991,21(2):153-168
    [76]刑修三.损伤和断裂的统一.力学学报.1991,23(1):123-126
    [77]高峰,谢和平,巫静波.岩石损伤和破碎相关性的分形分析.岩石力学与工程学报,1999,18(5):503-506
    [78]高峰,谢和平,赵鹏.岩石块度分布的分形性质及细观结构效应.岩石力学与工程学报,1994,13(3):240-246
    [79]谢和平.岩石、混凝土损伤力学.北京:中国矿业出版社,1990:21-31
    [80]陈卫忠,李术才,朱维申等.考虑裂隙闭合和摩擦效应的节理岩体能量损伤理论与应用.岩石力学与工程学报.2000,19(2):131-135
    [81]李新平,朱维申.多裂隙岩体的损伤分析及工程应用.岩土工程学报.1992,14(4):1-8
    [82]李新平,朱维申.多裂隙岩体的损伤断裂模型和模型试验.岩土力学.1991,12(2):1-5
    [83]夏蒙棼,柯孚久,白洁等.破坏现象耦合斑图演化诱致突变的系统统计.科学 通报.1993,44(6):562-572
    [84]夏蒙棼,韩闻生,白洁等.统计细观损伤力学和损伤演化诱致突变(Ⅰ).力学进展.1995,25(1):1-40
    [85]夏蒙棼,韩闻生,白洁等.统计细观损伤力学和损伤演化诱致突变(Ⅱ).力学进展.1995,25(2):145-172
    [86]Zheng QS, Hwang KC. Two-dimensionl elastic compliance of materials with holes and microcracks. Proceedings of the Royal Society of London, A452: 2493-2507
    [87]Zheng QS, Hwang KC. Reduced dependence of defect compliance on matrix and inclusion elastic properties in two-dimensional elasticity. Proceedings of the Royal Society of London, A453:353-364
    [88]柯孚久,白以龙,夏蒙棼.理想微裂纹系统演化的特征.中国科学(A辑),1990,20:621-631
    [89]MAJORANA C, MAZARS J. Thermohygrometric and mechanical behaviour of concrete using damage models, Materials and Structures,1997,30:34-41
    [90]Frantziskonis G, Desai CS. Constitutive model with strain softening. International Journal of Solids and Structures,1987,23(6):733-750
    [91]徐卫亚,韦立德.岩石损伤统计本构模型研究.岩石力学与工程学报,2002,21(6):787-791
    [92]杨友卿.岩石强度的损伤力学分析.岩石力学与工程学报,1998,18(1):23-27
    [93]侯景鹏,史巍,刘世华.损伤力学在混凝土强度分析中的应用.2000,20(2):34-38
    [94]樊运晓.损伤KAISER效应记忆机理的探讨.岩石力学与工程学报,2000,19(2):254-258
    [95]刘世华.混凝土全应力应变曲线分析.沈阳大学学报.2000,12(4):25-27
    [96]谢和平,李世平.硂受压损伤力学本构模型的研究.工程力学,1996,13(1):44-53
    [97]陈瀚海.用Weibull理论研究脆性材料的损伤概率.水利学报,1996,6:45-48
    [98]秦跃平.岩石损伤力学模型及其本构方程的探讨.岩石力学与工程学报.2001,20(4):560-562
    [99]秦跃平,张金峰,王林.岩石损伤力学理论模型初探.岩石力学与工程学报.2003,22(4):646-650
    [100]秦跃平,张文标,王磊.岩石损伤力学模型分析.岩石力学与工程学报.2003,22(5):702-705
    [101]刑纪波,俞良群,王永嘉.三维梁-颗粒模型与岩石材料细观力学行为模拟.岩石力学与工程学报,1999,18(6):627-630
    [102]邢纪波,俞良群,张瑞丰.用于模拟颗粒增强复合材料破坏过程的梁-颗粒细 观模型的实验验证.实验力学,1998,13(3):377—382
    [103]周廷藩,杨国贤.杆系结构程序设计.北京:人民交通出版社,1990
    [104]Beedle SL, Ready JA, Johnston B G. Tests of columns under combined thrust and moment. Int Proc of Scoiety of Experimental Stress Analysis. 1950,8:109-132
    [105]赵纪生,陶夏新.基于损伤理论的多孔介质动力解析.湘潭矿业学院学报,2001,16(4):48—54
    [106]杨更社.岩石类材料单轴压缩损伤变量与纯剪切损伤变量间的关系.力学与实践,1994,16(1):34—36
    [107]范华林,金丰年.岩石损伤定义中的有效模量法.岩石力学与工程学报,2000,19(4):432—435
    [108]龚晓南.土塑性力学(第二版).杭州:浙江大学出版社,1999
    [109]胡黎明,濮家骝.损伤模型接触面单元在有限元计算分析中的应用.土木工程学报,2002,35(3):73—77
    [110]胡黎明,濮家骝.土与结构物接触面损伤本构模型.岩土力学,2002,23(1):6—11
    [111]张平,李宁,贺若兰.含裂隙类岩石材料的局部化渐进破损模型研究.岩石力学与工程学报,2006,25(10):2043—2050
    [112]Zhou GL, Tham LG, Lee PK. A phenomenological constitutive model for rocks with shear failure mode.International Journal Numerical Analytical Methods in Geomechanics,2001,25(4):391-414
    [113]曹文贵,赵明华,刘成学.基于统计损伤理论的德鲁克—普拉格岩石强度准则的修正.水利学报,2004,35(9):18—23
    [114]郑永来,周澄,夏颂佑.岩土材料粘弹性连续损伤本构模型探讨.海河大学学报,1997,25(2):114—116
    [115]王道荣,胡时胜.冲击载荷下混凝土材料损伤演化规律的研究.岩石力学与工程学报,2003,22(2):223—226
    [116]李夕兵,左宇军,马春德.中应变率下动静组合加载的本构模型.岩石力学与工程学报.2006(25):5,865-874
    [117]陈健云,白卫峰.考虑动态应变率效应的混凝土单轴拉伸统计损伤模型.岩石力学与工程学报.2007(26):8,1603-1611
    [118]曹文贵,方祖烈,唐学军.岩石损伤软化统计本构模型之研究.岩石力学与工程学报.1998,17(6):628-633
    [119]唐春安,朱万成.混凝土损伤与断裂—数值试验.北京:科学出版社,2003
    [120]村上澄男.损伤力学—材料损伤与断裂的连续介质力学处理(日).1982
    [121]曹文贵,赵明华,唐学军.岩石破裂过程的统计损伤模拟研究.岩土工程学 报,2003,25(2):184—187
    [122]曹文贵,赵明华,刘成学.基于Weibull分布的岩石损伤软化模型及其修正方法研究.岩石力学与工程学报,2004,23(19):3226—3231
    [123]曹文贵,赵明华,田政海.岩石变形破坏全过程的概率损伤方法研究.湖南科技大学学报(自然科学版),2004,19(4):21—24
    [124]曹文贵,赵明华,刘成学.岩石损伤统计强度理论研究.岩土工程学报,2004,26(6):820-823
    [125]曹文贵,莫瑞,李翔.基于正态分布的岩石软硬化损伤统计本构模型及其参数确定方法探讨.岩土工程学报.2007,29(5):671—678
    [126]曹文贵,张升.基于Mohr-Coulomb准则的岩石损伤统计分析方法研究.湖南大学学报(自然科学版),2005,32(1):43-47
    [127]陈忠辉,傅宇方,唐春安.岩石破裂声发射的围压效应.岩石力学与工程学报,1997,16(1):65—70
    [128]杨圣奇,徐卫亚,韦立德,苏承东.单轴压缩下岩石损伤统计本构模型与试验研究.河海大学学报,2004,32(2):200-203
    [129]曹文贵,张升,赵明华.基于新型岩石损伤定义的岩石损伤统计本构模型探讨.岩土力学,2006,27(1):41—46
    [130]曹文贵,张升,赵明华.软化与硬化特性转化的岩石损伤统计本构模型之研究.工程力学.2006,23(11):110-115
    [131]张毅,廖华林,李根生.岩石连续损伤统计本构模型.石油大学学报,2004,28(3):37—39
    [132]杨明辉,赵明华,曹文贵.岩石损伤软化统计本构模型参数的确定方法.水利学报,2005,36(3):345—349
    [133]谢和平.岩石混凝土损伤力学.北京:中国矿业出版社,1990
    [134]杨强,吴荣宗,周维垣.基于正则结构的各向异性损伤演化律.力学学报,2002,34(1):47-56
    [135]谢和平,董毓利等.不同围压下混凝土受压弹塑性损伤本构模型的研究.煤炭学报,1996,21(3):265-270
    [136]任建喜,葛修润.单轴压缩岩石损伤演化细观机理及其本构模型研究.岩石力学与工程学报,2001,20(4):425—431
    [137]杨更社.岩石损伤与CT检测技术.西安矿业学院学报,1997,17(3):195-198
    [138]尚嘉兰,孔常静等.岩石细观损伤破坏的观测研究.实验力学,1999,14(3):373—383
    [139]邓建,李夕兵,古德生.岩石力学参数概率分布的信息熵推断.岩石力学与工程学报,2004,23(7):2177—2181
    [140]Allan D. Woodbury. A FORTRAN program to produce minimum relative entropy distributions. Computers & Geosciences,2004(30):131-138
    [141]杨圣奇,徐卫亚,苏承东.考虑尺寸效应的岩石损伤统计本构模型研究.岩石力学与工程学报,2005,24(12):4484-4490
    [142]Sidoroff F. Description of anisotropic damage to elasticity. IUTAM, Colloqium, Physical Nolinearities in Structural Analysis,1981:237-244
    [143].Ottosen NE, Runesson K. Properties of discontinuous bifurcation solutions in elasto-plasticity. International Journal of Solids and Structures,1991,27(4): 2401-2421
    [144]Ju JW. On Energy-Based Coupled Elasto-Plasticity Damage Theories:Constit utive Modeling and Computational Aspects. International Journal of Solids and Structures,1989,25(7):803-833
    [145]F.M.Sciarra. Theory of Damage Elasto-Plastic Models. Journal of Engineering Mechanics,1997,123:1003-1011
    [146]B.Budiansky. On the Elastic Modulus of Heterogeneous Material. Journal of Mechnaics Physicals Solids,1965,13:223-227
    [147]Wang JG, Ichikawa Y, Leung CF. A constitutive model for rock interfaces and joints. International Journal of Rock Mechanics and Mining Sciences, 2003,40(1):41-53
    [148]Gao F, Xie HP. Statistical fractal strength theory for brittle materials. Acta Mechanics Solida Sinica,1996,9(1):42-51
    [149]杨圣奇,苏承东,徐卫亚.大理岩常规三轴压缩下强度和变形特性的试验研究.岩土力学.2005,26(3):475-478
    [150]朱珍德,张勇,王春娟.大理岩脆延性转换的微观机理研究.煤炭学报.2005,30(1):31-35
    [151]伞桂兰.几种岩石残余强度的研究.水电工程研究,1992,2:12-16
    [152]Green SJ., Leasia JD., Perkins RD, Jones AH. Triaxial Stress Behavior of Solenhofen Limestone and Westerly Granite at High Strain Rates. Journal of Geophysical Research,1972,77(20):3711-3724
    [153]Grady DE, Kipp ME. Continuum modeling of explosive fracture in oil shale. International Journal Rock Mechanics Mining Science,1980,17:147-157
    [154]赖勇,张永兴.基于单轴受压的岩石三轴应变指标确定方法研究.岩石力学与工程学报,2009,(28)z2:3435-3441
    [155]任建喜,葛修润.单轴压缩岩石损伤演化细观机理及其本构模型研究.岩石力学与工程学报,2001,20(4):425—431
    [156]任建喜.三轴压缩岩石细观损伤扩展特性的实时检测.实验力学,2001,16(4):387-394
    [157]孙红,赵锡宏.软土初始损伤门槛值的真三轴试验研究.水利学报,2002,7:93-97
    [158]庞桂珍,宋飞.一种岩石的损伤流变模型.西安科技大学学报,2008,(28)3:429-433
    [159]宋飞,赵法锁.考虑损伤门槛的统计损伤本构模型研究.煤田地质与勘探,2007,35(3):59-62
    [160]Kawamoto T. Deformation and fracturing behavior of discontinuous rock mass and damage mechanics theory. International Journal Numerical & Analytical Methods Geomech,1988, (12):1-30
    [161]沈珠江.结构性粘土的弹塑性损伤模型.岩土工程学报,1993,15(3):21-28
    [162]韦立德,杨春和,徐卫亚.考虑体积塑性应变的岩石损伤本构模型研究.工程力学.2006,(23)1:139-143
    [163]黄伟,沈明荣,张清照.高围压下岩石卸荷的扩容性质及其本构模型研究.岩石力学与工程学报,2010,29(S2):3475-3481
    [164]刘维国,单钰铭,傅荣华.岩石扩容过程中的体积应变与超声横波速度.成都理工大学学报(自然科学版),2006,33(4):360-364
    [165]刘荣和,冯文光,龙玲,刘维国.岩石孔隙体积压缩系数实验研究.石油钻采工艺.2009,(31)4:79-82
    [166]宋卫东,明世祥,王欣,杜建华.岩石压缩损伤破坏全过程试验研究.岩石力学与工程学报,2010,(29)S2:4180-4187
    [167]Heard HC. Effect of large changes in strain rate in the experimental deformation of Yule marble. Journal of Geology,1963,71:162-195
    [168]张平,李宁,贺若兰.含裂隙类岩石材料的局部化渐进破损模型研究.岩石力学与工程学报.2006,25(10):2043-2050
    [169]梁正召,杨天鸿,唐春安,张娟霞,唐世斌,于庆磊.非均匀性岩石破坏过程的三维损伤软化模型与数值模拟.岩土工程学报,2005,27(12):1447-1452
    [170]陈庆敏,张农,赵海云,张少华.岩石残余强度与变形特性的试验研究.中国矿业大学学报,1997,26(3):42-45
    [171]Yumlu M, Ozbay MU. Study of the behaviour of brittle rocks under plane strain and triaxial loading conditions. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1995,32(7):725-733
    [172]徐卫亚,韦立德.岩石损伤统计本构模型的研究.岩石力学与工程学报,2002,21(6):787-791
    [173]湖南大学岩土工程研究所.湖南省潭邵高速公路岩溶及采空区路、桥基础设计施工与质量监控方法研究,2003
    [174]沈明荣,陈建峰.岩体力学.同济大学出版社.2006
    [175]Janach W. The role of bulking in brittle failure of rock under rapid compression.International Journal Rock Mechanics Mining Science,1976,13: 177-186
    [176]Chong KP, Hoyt PM, Smith JW. Effects of strain rate on oil shale fracturing.International Journal Rock Mechanics Mining Science,1980,17: 35-43
    [177]Serdengecti S, Boozer GD. The effect of strain rat and temperature on the behavior of rocks subjected to triaxial compression. Bulletin of the Mineral industries experiment station 4th symposium on rock mechanics,1961
    [178]Blanton TL. Effect of strain rate from 10-2-10/sec in triaxial compression tests on the three rocks. International Journal Rock Mechanics Mining Science,1981,18:47-62
    [179]Gran JK, Florence AL, Colton JD. Dynamic triaxial tests of high-strength concrete. Journal of Engineering Mechanics(ASCE),1989,115(5):891-904
    [180].Grote DL,.Park SW, Zhou M. Dynamic behavior of concrete at high strain rates and pressures:I. experimental characterization. International Journal of Impact Engineering,2001(25):869-886
    [181]章根德.岩石在动荷载作用下的脆性破裂.岩土工程学报,1981,3(2):43-49
    [182]王林,于亚伦.三轴SHPB装置的研究.第二届全国岩石动力学学术会议论文选集,宜昌.1990
    [183]Li HB, Zhao J, Li TJ. Triaxial Compression Tests of a granite at different strain rates and confining pressures. International Journal of Rock Mechanics and Mining Sciences,1999,36(8):1057-1063
    [184]李海波,赵坚,李廷芥.滑移型裂纹模型在研究岩石动态单轴抗压强度中的应用.岩石力学与工程学报,2001,20(3):315-319
    [185]杨军,高文学,金乾坤.岩石动态损伤特性实验及爆破模型.岩石力学与工程学报,2001,20(3):320-323
    [186]单仁亮,薛友松,张倩.岩石动态破坏的时效损伤本构模型.岩石力学与工程学报,2003,22(11):1771-1776
    [187]于亚伦.岩石动力学.北京:北京科技大学铅印教材,1990
    [188]肖诗云,林皋,王哲.Drucker-Prager材料一致率型本构模型.工程力学.2003,20(4):147-151
    [189]陈庆宣,王维襄,孙叶.岩石力学与构造应力场分析.北京:地质出版社,1998
    [190]曹文贵,李翔,刘峰.裂隙化岩体应变软化损伤本构模型探讨.岩石力学与工程学报,2007,26(12):2488-2494
    [191]李刚,陈正汉,谢云,祝文化.高应变率条件下三峡工程花岗岩动力特性的实验研究.岩土力学,2007,28(9):1833-1840

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700