刚性与弹性支承圆弧钢拱的平面内稳定性及设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拱形钢结构以其优美的造型、合理的受力性能和相对良好的经济指标而在工程实践中得到广泛的使用。当拱圈上部有铺板密铺或是设置横向支承构件对其提供侧向约束时,钢拱主要发生平面内的失稳破坏。目前,国内外学者对拱的平面内稳定极限承载力的设计方法主要采用相关公式法。但是,这些公式的适用性和归一性有待进一步检验。
     本文对工字形截面三铰、两铰和无铰圆弧拱的平面内稳定性与极限承载力进行了系统的研究。根据有限元数值分析的结果,拟合得到了轴压拱的线弹性临界屈曲轴力,并与根据传统的经典理论得到的临界值进行了比较。利用临界轴力定义了圆弧拱的正则化长细比,采用Perry-Robertson公式的形式建立了以正则化长细比为变量的轴压拱稳定设计曲线。由于几何大变形的影响,轴力的二阶效应会导致截面上弯矩的增大,本文以三铰拱为例对弯矩放大系数进行了研究并给出了相应的计算公式。根据有限元分析结果,本文提出了压弯拱平面内稳定承载力设计的N-M相关公式,与以往学者研究成果不同的是:(1)轴力和弯矩数值采用一阶线弹性分析得到的控制截面的内力,而不是最大轴力与最大弯矩,因为这两个最大内力不一定出现在同一个截面上,这更符合工程设计的习惯;(2)公式中通过特定的系数考虑了支承条件、弯矩分布、几何二阶效应以及截面塑性开展能力等因素的影响。同时本文还对已有的设计公式进行了验证比较。
     钢拱常支承于其他结构上,拱脚在水平方向很难做到完全的刚性支承,拱的支座约束可以用拱脚处的水平弹簧进行等效替代。由于水平弹性约束的影响,拱脚会出现水平位移,拱的力学行为会发生显著改变。本文由圆弧拱线性平衡微分方程出发得到了水平弹性支承拱在面内竖向对称荷载作用下的内力及位移的解析解,并构造了一个反映支座约束程度的无量纲化系数——弹性柔度系数。根据拱与拱形梁在跨中轴力上的区别,提出了在线性计算范围内划分拱与拱形梁的标准。分析了支座弹簧刚度对扁度不同的拱内力分布的影响。利用有限元程序,在线弹性分析的范围内确定了拱由反对称屈曲转变为对称屈曲时弹性柔度系数的界限值,提出了临界荷载和跨中临界轴力与弹性柔度系数的关系表达式。
     本文利用有限元程序,在考虑了几何缺陷、残余应力和材料非线性的基础上,采用大挠度变形理论对水平弹性支承拱进行了弹塑性研究,分析了其平面内失稳特征和极限承载力。针对工字型截面,研究了不同荷载工况下支座刚度对拱的承载力和极限状态下拱脚位移的影响,并以弹性柔度系数为变量,分别拟合了无量纲化极限荷载以及极限状态下支座水平位移的计算公式。使用已有的两铰圆弧拱设计公式对弹性支承拱进行了验算,并提出了实用的简化设计准则。
     对考虑初始缺陷和材料塑性性能的双轴对称工字形截面压杆,采用大变形理论自编程序3D-Steel-Struct对其屈曲前后的变形曲线和受力性能进行了研究。利用解析方法分别对压杆进行了二阶弹性和二阶塑性的理论分析,推导了相应阶段轴压力与变形之间的关系。通过与有限元解的比较,构造了轴力与跨中挠度以及轴力与轴向位移之间的解析表达式,与数值解非常吻合。
     对轴压杆的延性进行了定义,利用有限元程序研究工字形截面绕强轴和绕弱轴、圆管截面以及单角钢截面绕弱轴和绕平行轴受压弯曲后的延性性能;同时提出了延性与长细比之间的计算表达式。
     对考虑初始缺陷和材料塑性性能的双轴对称工字形截面受弯及压弯杆件,利用解析方法分别得到二阶弹性和二阶塑性的荷载—位移关系,并通过与有限元解的比较,构造公式得到受弯及压弯杆件受荷全过程曲线的解析表达式。
Steel arches, with their elegant shapes, reasonable mechanical characteristics and relatively good economic have been widely used in engineering projects. When a slab encases the top flange of the arch and is mechanically anchored to it, or there are some lateral supports to provide restraints, in-plane stability of steel arches is needed to be concerned. Until recently, the in-plane ultimate load-carrying capacity of steel arches has been studied by several researchers, and the strength design methods with interaction equation are established. The applicability and normalization of these formulas need to be further examination.
     In this thesis, in-plane inelastic stability behavior and strength design of three-hinged, two-hinged and fixed steel circular arches with I-section are studied systematically. Based on the results of finite element method (FEM), fitted values of linear elastic critical compression when arches subject to hydrostatic load are presented, and the obtained results are compared with classic buckling theory. The relationship between the arch stability coefficients and the normalized slenderness ratio which is defined using the critical compression is established in the form of Perry-Roberson formula. Second-order effect of axial compression due to the large displacement will lead to the increase of moment. This thesis studies the moment amplification factor of three-hinged arches and proposes the corresponding formulas. The interaction formula composed of compression and bending which are obtained by a first order analysis is proposed for the in-plane strength design of circular arches. Compared to other research, innovations of this thesis are:(1) axial compression and bending moment are internal forces of controlling section using first-order linear elastic analysis, rather than the maximum compression and maximum bending which dose not necessarily appear in the same cross-section. This approach is consistent with the habits of the engineering design.(2) in the formula, supporting condition, distribution of moment, geometric second-order effect and plastic capacity of cross-section are considered by some factors. Moreover, existing design formulas proposed by other researchers are verified in the thesis.
     An arch is often connected with other structures that provide elastic restraints to the arch. It can be considered to be supported elastically at both ends by horizontal springs. These elastic restraints significantly influence its behavior. Analytical solutions of horizontally elastically supported arches that are subjected to several vertical symmetric uniformly distributed loads are obtained based on linear equilibrium equations. A dimensionless elastic flexibility factor is introduced. By analyzing the linear analytical solutions and using the flexibility factor, criterions that distinguish between arches and arched beams are suggested. The effects of the stiffness of the horizontal end restraint on the distribution of internal forces are studied. By FEM, a limiting flexibility factor that distinguishes between in-plane linear elastic anti-symmetric bifurcation mode and symmetric snap-through mode is presented, and formulas for critical load and mid-span axial forces in term of elastic flexibility factor are proposed.
     In this thesis, an elasto-plastic finite element model is established to study the in-plane stability behavior and ultimate strength of steel circular arches with horizontal elastic restraints using large deformation theory by FEM. Initial geometric crookedness, residual stress and material inelasticity are considered in the investigation. In six load cases, the effects of the stiffness of end restraints on the bearing capacity of arches with I-section and horizontal displacement of supports in the limit state of load-carrying are studied. Based on the numerical results, formulas for dimensionless ultimate strength and displacement of supports in terms of elastic flexibility factor are proposed. The design formulas for pin-ended arches proposed by other researches are used for elastically supported arches, and a simplified design criterion is presented.
     This thesis investigates the deformation characteristics and mechanical properties of compressed bars with biaxial symmetric I-section. Based on the large deformation theory, a finite-element program of3D-Steel-Struct developed by the authors is used in the analysis. Initial geometric crookedness, residual stress and material inelasticity are considered in the investigation. Second order elastic and second order rigid-plastic analysis are carried out for imperfect members, and relation between axial compression and deformation are deduced. Analytical expressions of axial compression and deflection at mid-span and of axial compression and axial shortening are presented, and comparison shows the excellent agreement between the proposed explicit expressions and the numerical results.
     The axial ductility of compressed members is defined. This thesis studies the ductility of compressed bars with I-section revolving round the maximum and the minimum principal axes of inertia of an area, with tube section, and with L-section revolving round the minimum principal axis of inertia of an area and parallel axis respectively. Formulas relating the ductility to the slenderness are proposed.
     Second order elastic and second order rigid-plastic analysis are carried out for imperfect beams and beam-columns with biaxial symmetric I-section, and relation between load and deformation are deduced. Initial geometric crookedness, residual stress and material inelasticity are considered in the investigation. Based on the results of FEM, analytical expressions with good accuracy of relationship between load and deformation of beams and beam-columns are presented.
引文
[1]Koiter, W. T.. On the stability of elastic equilibrium, Thesis, Delft, H. J. Paris, Amsterdam,1945; English Translation issued as NASA TTF-10,1967.
    [2]A·H·金尼克.拱的稳定性[M].吕子华译.北京:建筑工程出版社,1958.
    [3]Timoshenko S P. Gere J M. Theory of elastic stability,2nd Edition [M]. New York:McGraw Hill Book Company, Inc.,1961.
    [4]Vlasov V. Z.. Thin walled elastic beams,2nd Edition [M]. Jerusalem:Israel Program for Scientific Translation,1961.
    [5]Radenkovic D. Bending of a curved bar in its own plane [J]. Quarterly Journal of Mechanic and Applied Mathematics,1954, Vol. VH, Pt.4.
    [6]Don O. Brush. Bo O. Almroth. Buckling of bars, plates, and shells [M]. New York:McGraw Hill Book Company, Inc.,1975.
    [7]Yoo C. H.. Flexural-torsional stability of curved beams [J]. Journal of the Engineering Mechanics Division,1982,108(6),1351-1369.
    [8]Yoo C. H., Pfeiffer P. A.. Elastic stability of curved members [J]. Journal of Structure Engineering, 1983,109(12),2922-2940.
    [9]Yoo C. H., Pfeiffer P. A.. Buckling of curved beams with in-plane deformation [J]. Journal of Structural Engineering,1984,110(2),291-300.
    [10]Papangelis J. P., Trahair N. S.. Flexural-torsional buckling of arches [J]. Journal of Structural Engineering,1987,113(4),889-906.
    [11]Trahair N. S., Papangelis J. P.. Flexural-torsional buckling of mono-symmetric arches [J]. Journal of Structural Engineering,1987,113(10),2271-2288.
    [12]Pi Y. L., Bradford M. A., Uy B.. In-plane stability of arches [J]. International Journal of Solids and Structures,2002,39(1),105-125.
    [13]Simitses G. J.. An introduction to the elastic stability of structures [J]. Journal of Applied Mechanics,1976,43(2),383-384.
    [14]Usami T., Koh S. Y.. Large displacement theory of thin-walled curved members and its application to lateral-torsional buckling analysis of circular arches [J]. International Journal of Solids and Structures,1980,16(1),71-95.
    [15]Rajasekaran S., Padmanabhan S.. Equations of curved beams [J]. Journal of Engineering Mechanics,1989,115(5),1094-1111.
    [16]Kang Y. J., Yoo C. H.. Thin-walled curved beams. Ⅰ:Formulation of nonlinear equations [J]. Journal of Engineering Mechanics,1994,120(10),2072-2101.
    [17]Kang Y. J., Yoo C. H.. Thin-walled curved beams. Ⅱ:Analytical solutions for buckling of arches [J]. Journal of Engineering Mechanics,1994,120(10),2102-2125.
    [18]Yang Y. B., Kuo S. R.. Static stability of curved thin-walled beams [J]. Journal of Engineering Mechanics,1986,112(8),821-841.
    [19]Yang Y. B., Kuo S. R.. Effect of curvature on stability of curved beams [J]. Journal of Structural Engineering,1987,113(6),1185-1202.
    [20]Kuo S. R., Yang Y. B.. New theory on buckling of curved beams [J]. Journal of Engineering Mechanics,1991,117(8),1698-1717.
    [21]Yang Y. B.. Recent researches on buckling of framed structures and curved beam [J]. Journal of Constructional Steel Research,1993,26(2-3),193-210.
    [22]Tong G. S., Pi Y. L., Bradford M. A., Tin-Loi F.. In-Plane nonlinear buckling analysis of deep circular arches incorporating transverse stresses [J]. Journal of Engineering Mechanics,2008, 134(5),362-373.
    [23]Simitses G. J., Hodges D. H.. Fundamentals of Structural Stability [M]. Boston:Elsevier,2006.
    [24]童根树.工形截面曲梁的弯曲和扭转[C]//中国钢结构稳定和疲劳协会.钢结构工程研究论文集1.北京:中国计划出版社,1996.
    [25]许均陶,童根树.任意开口薄壁截面圆弧曲梁弯扭精确分析[J].建筑结构学报,1997,18(3),22-28.
    [26]童根树,张磊.薄壁钢梁稳定性计算的争议及其解决[J].建筑结构学报,2002,22(3),41-51.
    [27]张磊.考虑横向正应力影响的薄壁构件稳定理论及其应用[D].杭州:浙江大学,2005.
    [28]童根树,许强.薄壁曲梁线性和非线性分析理论[M].北京:科学出版社,2004.
    [29]许强.薄壁曲梁线弹性理论和弹塑性稳定极限承载力分析[D].杭州:浙江大学,2002.
    [30]程鹏,童根树.圆弧拱平面内弯曲失稳一般理论[J].工程力学,2005,22(1),93-101.
    [31]程鹏.两铰圆弧拱非线性弯曲理论和弹塑性稳定[D].杭州:浙江大学,2005.
    [32]Fung Y. C., Kaplan A.. Buckling of low arches or curved beams of small curvature [M]. Washington:Technical Note 2840, NACA,1952.
    [33]Hoff N. J., Bruce V. G.. Dynamic analysis of laterally loaded flat arches [J]. Journal of Mathematical Physics,1954,32(4).
    [34]Simitses G. J.. Snapping of low pinned arches on an elastic foundation [J]. Journal of Applied Mechanics,1973,40(3),741-744.
    [35]Plaut R. H.. Stability of shallow arches under multiple loads [J]. Journal of the Engineering Mechanics Division,1978,104(5),1015-1026.
    [36]Gjelsvik A., Bodner S. R.. The energy criterion and snap buckling of arches [J]. Journal of Engineering Mechanics Division,1962,88(5),87-134.
    [37]Schreyer H. L., Masur E. F.. Buckling of shallow arches [J]. Journal of Engineering Mechanics, 1966,92(4),1-19.
    [38]Kerr A. D., Soifer M. T.. The linearization of the prebuckling state and its effect on determined instability loads [J]. Journal of Applied Mechanics,1969,36(4),775-783.
    [39]Oran C., Reagan R. S.. Buckling of uniformly compressed circular arches [J]. Journal of the Engineering Mechanics Division,1969,95(4),879-895.
    [40]Oran C., Bayazid H.. Another look at buckling circular arches [J]. Journal of the Engineering Mechanics Division,1978,104(6),1417-1432.
    [41]Oran C. General imperfection analysis in shallow arches [J]. Journal of the Engineering Mechanics Division,1980,106(6),1175-1193.
    [42]Bradford M. A., Uy B., Pi Y. L.. In-plane elastic stability of arches under a central concentrated load [J]. Journal of Engineering Mechanics,2002.128(7),710-719.
    [43]Huddleston J. V.. Finite deflections and snap-through of high circular arches [J]. Journal of Applied Mechanics.1968.35(4),763-769.
    [44]Austin W. J.. Ross T. J.. Elastic buckling of arches under symmetric loading [J]. Journal of the Structural Division,1976,102(5).1085-1095.
    [45]DaDeppo D. A., Schmidt R.. Nonlinear analysis of buckling and postbuckling behavior of circular arches [J]. Journal of Applied Mathematics and Physics,1969,20(6),847-857.
    [46]DaDeppo D. A., Schmidt R.. Sidesway buckling of deep circular arches under a concentrated load [J]. Journal of Applied Mathematics,1969,36(2),325-327.
    [47]DaDeppo D. A., Schmidt R.. Stability of two-hinged circular arches with independent loading parameter [J]. AIAA Journal,1974,12(3),385-386.
    [48]DaDeppo D. A., Schmidt R.. Large deflections and stability of hingeless circular arches under interacting loads [J]. Journal of Applied Mechanics,1974,41(4),989-994.
    [49]Schmidt R., DaDeppo D. A.. Buckling of clamped circular arches subjected to a point load [J]. Journal of Applied Mathematics and Physics,1972,23(1),146-148.
    [50]Kikuch F.. Accuracy and locking-free property of the beam element approximation for arch problems [J]. Computers and Structures,1984,19(1-2),103-110.
    [51]Calhoun P. R., DaDeppo D. A.. Nonlinear finite element analysis of clamped arches [J]. Journal of Structural Engineering,1983,109(3),599-612.
    [52]Elias Z. M., Chen K. L.. Nonlinear shallow curved-beam finite element [J]. Journal of Engineering Mechanics,1988,114(6),1076-1087.
    [53]Wen R. K., Lange L. G.. Curved beam element for arch buckling analysis [J]. Journal of the Structural Division,1981,107(11),2053-2069.
    [54]Wen R. K., Suhendro B.. Nonlinear curved beam element for arch structures [J]. Journal of Structural Engineering,1991,117(11),3496-3515.
    [55]Stolarski H., Belytschko T.. Membrane locking and reduced integration for curved elements [J]. Journal of Applied Mechanics,1982,49,172-176.
    [56]Stolarski H., Belytschko T.. Shear and membrane locking in curved C0 elements [J]. Computer Methods Applied Mechanics and Engineering,1983,41(3),279-296.
    [57]Noor A. K., Peter J. M.. Mixed model and reduced/selective integration displacement model for nonlinear analysis of curved beams [J]. International Journal for Numerical Methods in Engineering,1981,17(4),615-631.
    [58]Dawe D. J.. Numerical studies using circular arch finite elements [J]. Computers and Structures, 1974,4(4),729-740.
    [59]Dawe D. J.. Curved finite elements for the analysis of shallow and deep arches [J]. Computers and Structures,1974,4(3),559-580.
    [60]Prathap G. The curved beam/deep arch/finite ring element revisited [J]. International Journal for Numerical Methods in Engineering,1985.21(3),389-407.
    [61]Raveendranath P., Singh G., Pradhan B.. Free vibration of arches using a curved beam element based on a coupled polynomial displacement field [J]. Computers and Structures,2000,78(4). 583-590.
    [62]Pi Y. L., Trahair N. S.. Three-dimensional nonlinear analysis of elastic arches [J]. Engineering Structures,1996,18(1),49-63.
    [63]Pi Y. L., Trahair N. S.. Non-linear buckling and postbuckling of elastic arches [J]. Engineering Structures,1998,20(7),571-579.
    [64]Rubin M. B.. Buckling of elastic shallow arches using the theory of a Cosserat point [J]. Journal of Engineering Mechanics,2004,130(2),216-224.
    [65]剧锦三.拱结构的稳定性研究[D].北京:清华大学,2001.
    [66]剧锦三,郭彦林,刘玉擎.拱结构的弹性二次屈曲性能[J].工程力学,2002,19(8),109-112.
    [67]宋伯铨,姚坚.两铰弹性圆拱的静力稳定性分析[J].浙江大学学报(自然科学版),1992,26(5),536—543.
    [68]张建民,秦容,郑皆连.拱结构双重非线性稳定分析的样条有限点法[J].工程力学,2002,19(2),17-21.
    [69]Onat E. T.. Limit analysis of arches [J]. Journal of the Mechanics and Physics of Solids,1953,1, 71-89.
    [70]Stevens L. K.. Carrying capacity of mild-steel arches [J]. ICE Proceedings,1957,6(3),493-514.
    [71]Coronfirth R. C., Childs S. B.. Computer analysis of two hinged circular arches [J]. Journal of the Structural Division,1967,93(2),319-338.
    [72]Trahair N. S., Pi Y. L., Clarke M. J., Papangelis J. P.. Plastic design of steel arches [J]. Advanced in Steel Structures,1997,1(1),1-7.
    [73]Kuranishi S., Lu L.-W.. Load carrying capacity of two hinged steel arches [C]//JSCE. Proceedings of Japan Society of Civil Engineering. Tokyo Japan,1972, No.204,129-140.
    [74]Shinke T., Namita T.. Analysis of in-plane elasto-plastic buckling and load carrying capacity of arches [C]//JSCE. Proceedings of Japan Society of Civil Engineering. Tokyo Japan,1975, No.244, 57-70.
    [75]Shinke T. Analysis and experiments of in-plane load carrying capacity of arches [C]//JSCE. Proceedings of Japan Society of Civil Engineering. Tokyo Japan,1977, No.267,34-52.
    [76]Komatsu S., Shinke T.. Practical formulation for in-plane load carrying capacity of arches [C]// JSCE. Proceedings of Japan Society of Civil Engineering. Tokyo Japan,1977, No.267,39-52.
    [77]Kuranishi S., Yabuki T. Some numerical estimation of ultimate in-plane strength of two hinged steel arches [C]//JSCE. Proceedings of Japan Society of Civil Engineering. Tokyo Japan,1979, No.287,155-158.
    [78]DIN 18800-Ⅱ Structural Steelwork [S]. Berlin:Deutsches Institutfur Normung e. V.,1990.
    [79]Yabuki T., Kuranishi S.. Ultimate strength design of steel arch bridge structures [C]//IABSE. Proceedings of International Association for Bridge and Structural Engineering.1985, p-84/85, 57-64.
    [80]Pi Y. L., Trahair N. S.. In-plane inelastic buckling and strengths of steel arches [J]. Journal of Structural Engineering,1996,122(7),734-747.
    [81]Pi Y. L., Trahair N. S.. In-plane buckling and design of steel arches [J]. Journal of Structural Engineering,1999,125(11),1291-1298.
    [82]Pi Y. L., Bradford M. A.. In-plane strength and design of fixed steel I-section arches [J]. Engineering Structures,2004,26(3),291-301.
    [83]Ziemian R. D.. Guide to Stability Design Criteria for Metal Structures,6th Edition [M]. New Jersey: John Wiley & Sons, Inc.,2010.
    [84]钢结构设计规范(GB 50017-2003)[S].北京:中国计划出版社,2003.
    [85]拱形钢结构技术规程(JGJ/T 249-2011)[S].北京:中国建筑工业出版社,2011.
    [86]林冰.钢拱平面内稳定性及稳定承载力设计方法研究[D].北京:清华大学,2007.
    [87]黄李骥,郭彦林.实腹圆弧钢拱的平面内稳定极限承载力设计理论及方法[J].工程力学,2007,28(3),15—22.
    [88]黄李骥.腹板开洞工形截面拱的稳定性能及设计方法研究[D].北京:清华大学,2005.
    [89]郭宇飞.钢管桁架拱的平面内稳定性能及设计方法研究[D].北京:清华大学,2008.
    [90]Roorda J.. Stability of structures with small imperfections [J]. Journal of the Engineering Mechanics Division,1965,91(1),87-106.
    [91]Sakimoto T., Yamao T., Komatsu S.. Experimental study on ultimate strength of steel arches [J]. Transactions of the Japan Society of Civil Engineers,1980,11,48-48.
    [92]郭彦林,林冰,郭宇飞.压弯圆弧拱平面内稳定承载力设计方法的理论与试验研究[J].土木工程学报,2011,44(3),8—15.
    [93]Raymond H. P.. Buckling of shallow arches with supports that stiffen when compressed [J]. Journal of Engineering Mechanics,1990,116(4),973-976.
    [94]Pi Y. L., Bradford M. A., Tin-Loi F., Gilbert R. I.. Geometric and material nonlinear analyses of elastically restrained arches [J]. Engineering structures,2007,29(3),283-295.
    [95]Pi Y. L., Bradford M. A., Tin-Loi F.. Nonlinear analysis and buckling of elastically supported circular shallow arches [J]. International Journal of Solids and Structures,2007,44(7-8), 2401-2425.
    [96]Pi Y. L., Bradford M. A., Tin-Loi F.. Non-linear in-plane buckling of rotationally restrained shallow arches under a central concentrated load [J]. International Journal of Non-Linear Mechanics,2008,43(1),1-17.
    [97]Bradford M. A., Wang T., Pi Y. L., Gilbert R. I.. In-Plane Stability of Parabolic Arches with Horizontal Spring Supports.Ⅰ:Theory [J]. Journal of Structural Engineering,2007,133(8), 1130-1137.
    [98]建筑抗震设计规范(GB 50011-2010)[S].北京:中国建筑工业出版社,2010.
    [99]Eurocode 3:Design of steel structures Part1:General rules and rules for buildings [S]. Brussels: Commission of European Communities,2003.
    [100]童根树.钢结构设计方法[M].北京:中国建筑工业出版社,2007.
    [101]Vidic T., Fajfar P., Fischinger M.. Consistent inelastic design spectra:strength and displacement [J]. Earthquake Engineering and Structural Dynamics,1994,23(5),507-521.
    [102]Lee L. H., Han S. W., Oh Y. H.. Determination of ductility factor considering different hysteretic models [J]. Earthquake Engineering and Structural Dynamics,1999,28(9),957-977.
    [103]Borzi B., Elnashai A. S.. Refined force reduction factors for seismic design [J]. Engineering Structures,2000,22(10),1244-1260.
    [104]Jorge L. V., Jennifer E. T., Richard E. K.. Development of seismic force reduction and displacement amplification factors for autoclaved aerated concrete structures [J]. Earthquake Spectra,2006,22(1),267-286.
    [105]建筑工程抗震性态设计通则(试用)(CECS 160-2004)[S].北京:中国计划出版社,2004.
    [106]Uniform Building Code [S]. California:International Conference of Building Officials,1997.
    [107]Eurocode 8:Design of structures for earthquake resistance [S]. Brussels:Commission of European Communities,2003.
    [108]The Building Standard Law of Japan [S]. Tokyo:The Building Center of Japan,2004.
    [109]赵永峰,童根树.修正Clough滞回模型下的地震力调整系数[J].土木工程学报,2006,39(10),34-41.
    [110]黄金桥.钢结构弹塑性动力学和抗震设计理论[D].杭州:浙江大学,2004.
    [111]连尉安,张耀春.钢支撑及框架—中心支撑双重抗侧力体系研究现状、不足及改进[J].地震工程与工程振动,2005,25(3),67-75.
    [112]陈富生,邱国桦,范重.高层建筑钢结构设计[M].北京:中国建筑工业出版社,2004.
    [1]建筑结构荷载规范(GB 50009-2001)[S].北京:中国建筑工业出版社,2001.
    [2]钢结构设计规范(GB 50017-2003)[S].北京:中国计划出版社,2003.
    [3]Pi Y. I., Trahair N. S.. In-plane buckling and design of steel arches [J]. Journal of Structural Engineering,1999,125(11),1291-1298.
    [4]程鹏.两铰圆弧拱非线性弯曲理论和弹塑性稳定[D].杭州:浙江大学,2005.
    [5]黄李骥,郭彦林.实腹圆弧钢拱的平面内稳定极限承载力设计理论及方法[J].建筑结构学报,2007,28(3),15-22.
    [6]拱形钢结构技术规程(JGJ/T 249-2011)[S].北京:中国建筑工业出版社,2011.
    [7]A·H·金尼克.拱的稳定性[M].吕子华译.北京:建筑工程出版社,1958.
    [1]Pi Y. L., Trahair N. S.. In-plane buckling and design of steel arches [J]. Journal of Structural Engineering,1999,125(11),1291-1298.
    [2]程鹏.两铰圆弧拱非线性弯曲理论和弹塑性稳定[D].杭州:浙江大学,2005.
    [3]黄李骥,郭彦林.实腹圆弧钢拱的平面内稳定极限承载力设计理论及方法[J].建筑结构学报,2007,28(3),15—22.
    [4]林冰.钢拱平面内稳定性及稳定承载力设计方法研究[D].北京:清华大学,2007.
    [5]拱形钢结构技术规程(JGJ/T 249-2011)[S].北京:中国建筑工业出版社,2011.
    [6]龙驭球,包世华.结构力学教程(Ⅰ)[M].北京:高等教育出版社,2000.
    [7]A·H·金尼克.拱的稳定性[M].吕子华译.北京:建筑工程出版社,1958.
    [8]钢结构设计规范(GB 50017—2003)[S].北京:中国计划出版社,2003.
    [1]Pi Y. L., Bradford M. A.. In-plane strength and design of fixed steel I-section arches [J]. Engineering Structures,2004,26(3),291-301.
    [2]林冰.钢拱平面内稳定性及稳定承载力设计方法研究[D].北京:清华大学,2007.
    [3]拱形钢结构技术规程(JGJ/T 249-2011)[S].北京:中国建筑工业出版社,2011.
    [4]龙驭球,包世华.结构力学教程(Ⅰ)[M].北京:高等教育出版社,2000.
    [5]A·H·金尼克.拱的稳定性[M].吕子华译.北京:建筑工程出版社,1958.
    [6]钢结构设计规范(GB 50017-2003)[S].北京:中国计划出版社,2003.
    [1]Timoshenko S. P., Gere J. M.. Theory of elastic stability,2nd Edition [M]. New York:McGraw Hill Book Company. Inc.,1961.
    [2]Trahair N. S., Bradford, M. A., Nethercot D. A.. The behaviour and design of steel structures to BS5950,3rd Edition [M]. London:E&FN Span,2001.
    [3]Raymond H. P.. Buckling of shallow arches with supports that stiffen when compressed [J]. Journal of Engineering Mechanics,1990,116(4),973-976.
    [4]Pi Y. L., Bradford M. A., Tin-Loi F.. Non-linear in-plane buckling of rotationally restrained shallow arches under a central concentrated load [J]. International Journal of Non-Linear Mechanics,2008, 43(1),1-17.
    [5]Pi Y. L., Bradford M. A., Tin-Loi F.. Nonlinear analysis and buckling of elastically supported circular shallow arches [J]. International Journal of Solids and Structures,2007,44(7-8),2401-2425.
    [6]Bradford M. A, Wang T., Pi Y. L., Gilbert R. I.. In-Plane Stability of Parabolic Arches with Horizontal Spring Supports. I:Theory [J]. Journal of Structural Engineering,2007,133(8), 1130-1137.
    [7]Pi Y. L., Bradford M. A., Tin-Loi F., Gilbert R. I.. Geometric and material nonlinear analyses of elastically restrained arches [J]. Engineering Structures,2007,29(3),283-295.
    [8]程鹏.两铰圆弧拱非线性弯曲理论和弹塑性稳定[D].杭州:浙江大学,2005.
    [9]程鹏,童根树.圆弧拱平面内弯曲失稳一般理论[J].工程力学,2005,22(1),93-101.
    [10]童根树.钢结构的平面内稳定[M].北京:中国建筑工业出版社,2005.
    [11]Pi Y. L., Bradford M. A., Uy B.. In-plane stability of arches [J]. International Journal of Solids and Structures,2002,39(1),105-125.
    [12]Bradford M. A., Uy B., Pi Y. L.. In-plane elastic stability of arches under a central concentrated load [J]. Journal of Engineering Mechanics,2002,128(7),710-719.
    [1]Komatsu S., Shinke T.. Ultimate load carrying capacity of steel arches [J]. Journal of Structural Division,1977,103(12),2323-2326.
    [2]Kuranishi S., Yabuki T.. Some numerical estimations of ultimate in-plane strength of two-hinged steel arches [C]//Proceedings of Japan Society of Civil Engineers. Tokyo Japan,1979,155-158.
    [3]Verstappen I., Snijder H. H., Bijlaard F. S. K., et al. Design rules for steel arches——in-plane stability [J]. Journal of Constructional Steel Research,1998.46(1-3),125-126.
    [4]Pi Y. L., Trahair N. S.. In-plane inelastic buckling and strengths of steel arches [J]. Journal of Structural Engineering,1996,122(7),734-747.
    [5]Pi Y. L., Trahair N. S.. In-plane buckling and design of steel arches [J]. Journal of Structural Engineering,1999,125(11),1291-1298.
    [6]黄李骥,郭彦林.实腹圆弧钢拱的平面内稳定极限承载力设计理论及方法[J].建筑结构学报,2007,28(3),15—22.
    [7]程鹏.两铰圆弧拱非线性弯曲理论和弹塑性稳定[D].杭州:浙江大学,2005.
    [8]Raymond H. P.. Buckling of shallow arches with supports that stiffen when compressed [J]. Journal of Engineering Mechanics,1990,116(4),973-976.
    [9]Pi Y. L., Bradford M. A., Tin-Loi F.. Non-linear in-plane buckling of rotationally restrained shallow arches under a central concentrated load [J]. International Journal of Non-Linear Mechanics,2008, 43(1),1-17.
    [10]Pi Y. L., Bradford M. A., Tin-Loi F.. Nonlinear analysis and buckling of elastically supported circular shallow arches [J]. International Journal of Solids and Structures.2007,44(7-8),2401-2425.
    [11]Bradford M. A., Wang T., Pi Y. L., Gilbert R. I.. In-Plane Stability of Parabolic Arches with Horizontal Spring Supports. Ⅰ:Theory [J]. Journal of Structural Engineering,2007,133(8), 1130-1137.
    [12]Pi Y. L., Bradford M. A., Tin-Loi F., Gilbert R. I.. Geometric and material nonlinear analyses of elastically restrained arches [J]. Engineering structures,2007,29(3),283-295.
    [13]Pi Y. L., Bradford M. A., Uy B.. In-plane stability of arches [J]. International Journal of Solids and Structures,2002,39(1),105-125.
    [14]Bradford M. A., Uy B., Pi Y. L.. In-plane elastic stability of arches under a central concentrated load [J]. Journal of Engineering Mechanics,2002,128(7),710-719.
    [1]Timoshenko S. P., Gere J. M.. Theory of elastic stability,2nd Ed [M]. New York:McGraw Hill Book Company, Inc.,1961.
    [2]F.伯拉希.金属结构的屈曲强度[M].同济大学钢木结构教研室译.北京:科学出版社,1965.
    [3]吕烈武,沈世钊,沈祖炎,胡学仁.钢结构构件稳定理论[M].北京:中国建筑工业出版社,1983.
    [4]Vidic T., Fajfar P., Fischinger M.. Consistent inelastic design spectra:strength and displacement [J]. Earthquake Engineering and Structural Dynamics,1994,23(5),507-521.
    [5]Lee L. H., Han S. W., Oh Y. H.. Determination of ductility factor considering different hysteretic models [J]. Earthquake Engineering and Structural Dynamics,1999,28(9),957-977.
    [6]Borzi B., Elnashai A. S.. Refined force reduction factors for seismic design [J]. Engineering Structures,2000,22(10),1244-1260.
    [7]Jorge L. V., Jennifer E. T., Richard E. K.. Development of seismic force reduction and displacement amplification factors for autoclaved aerated concrete structures [J]. Earthquake Spectra,2006,22(1), 267-286.
    [8]Tremblay R.. Inelastic seismic response of steel bracing members [J]. Journal of Constructional Steel Research,2002,58(5-8),665-701.
    [9]Loov R. A simple equation for axially loaded steel column design curves [J]. Canadian Journal of Civil Engineering,1996,23(1),272-276.
    [10]童根树.钢结构的平面内稳定[M].北京:中国建筑工业出版社,2005.
    [11]张磊.考虑横向正应力影响的薄壁构件稳定理论及其应用[D].杭州:浙江大学,2005.
    [12]Yang Y. B., Shieh M. S.. Solution method for nonlinear problems with multiple critical points [J]. AIAA Journal,1990,28(12),2110-2116.
    [13]Powell G., Simons J.. Improved iteration strategy for nonlinear structures [J]. International Journal for Numerical Methods in Engineering,1981,17,1455-1467.
    [14]钢结构设计规范(GB 50017-2003)[S].北京:中国计划出版社,2003.
    [15]沈永欢.实用数学手册[M].北京:科学出版社,1992.
    [1]罗桂发.钢支撑和框架的弹塑性抗侧性能及其协同工作[D].杭州:浙江大学,2011.
    [2]连尉安,张耀春.钢支撑及框架—中心支撑双重抗侧力体系研究现状、不足及改进[J].地震工程与工程振动,2005,25(3),67—75.
    [3]Martinelli L., Mulas M. G., Perotti F.. The seismic response of concentrically braced moment-resisting steel frames [J]. Earthquake Engineering and Structural Dynamics,1996,25(11), 1275-1299.
    [4]Martinelli L., Mulas M. G., Perotti F.. The seismic behaviour of steel moment-resisting frames with stiffening braces [J]. Engineering Structures,1998,20(12),1045-1062.
    [5]建筑抗震设计规范(GB 50011—2010)[S].北京:中国建筑工业出版社,2010.
    [6]童根树.钢结构设计方法[M].北京:中国建筑工业出版社,2007.
    [7]赵永峰,童根树.修正Clough滞回模型下的地震力调整系数[J1.土木工程学报,2006,39(10),34-41.
    [8]黄金桥.钢结构弹塑性动力学和抗震设计理论[D].杭州:浙江大学,2004.
    [1]罗桂发.钢支撑和框架的弹塑性抗侧性能及其协同工作[D].杭州:浙江大学,2011.
    [2]Kiggins S., Uang C. M.. Reducing residual drift of buckling-restrained braced frames as a dual system [J]. Engineering Structures,2006,28(11),1525-1532.
    [3]Martinelli L., Mulas M. G., Perotti F.. The seismic behaviour of steel moment-resisting frames with stiffening braces [J]. Engineering Structures,1998,20(12),1045-1062.
    [4]Godinez-Dominguez E. A., Tena-Colunga A.. Nonlinear behavior of code-designed reinforced concrete concentric braced frames under lateral loading [J]. Engineering Structures,2010,32(4), 944-963.
    [5]陈富生,邱国桦,范重.高层建筑钢结构设计[M].北京:中国建筑工业出版社,2004.
    [6]建筑抗震设计规范(GB 50011—2010)[S].北京:中国建筑工业出版社,2010.
    [7]李国强,沈祖炎.杆系钢结构弹塑性变形实用分析法[J].工业建筑,1992,3,30—33.
    [8]钢结构设计规范(GB 50017—2003)[S].北京:中国计划出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700