激光诱导模拟体液的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光诱导击穿光谱(Laser-Induced Breakdown Spectroscopy,简称LIBS)是一种新的多元素同时检测方法,其工作原理是利用高能脉冲激光束聚焦后入射到样品表面,产生激光等离子体,通过分析等离子体的光谱进行物质元素的定性分析和定量测量。目前临床上体液中各种成分的检测多数采用化学的方法,这些方法一般都需要对样品进行预处理,且不能多元素同时检测,对体液中微量元素的检测更是难以实现。因此本论文提出采用LIBS技术来检测体液成分。本论文以探索LIBS技术用于人体体液监测的可行性为目的,对模拟体液的激光诱导击穿光谱特性进行了系统的实验研究。
     本论文采用Nd:YAG脉冲激光器、echelle光谱仪、ICCD等仪器搭建了液体LIBS实验装置。并在此装置上分别针对各种实验参数展开了提高LIBS综合检测能力的实验研究,归纳出较为理想实验参数,激光器的工作频率为10Hz、采集次数为20次,透镜到样品表面的距离小于透镜焦距(具体值根据实验条件决定)。
     利用液体LIBS的实验系统,对模拟体液进行了定性分析和定量分析。通过对模拟体液全谱的测量,结果发现,可以同时探测到多种元素成分,且LIBS方法对金属元素比非金属更敏感,检测限更高。分别对纯有机物(葡萄糖)溶液和多种无机物溶液开展了LIBS探测的初步实验研究,在大量系列实验的基础上,总结出了各元素的特征谱线。为了进一步定量检测模拟体液各元素成分的含量,还开展了特征谱线的强度和各元素含量关系的研究,建立了部分元素的定标曲线,发现不同元素由于其本身特性不同,其定标曲线也不一样。实验表明:Na、Pb元素的定标曲线满足罗马金-赛伯公式,而As元素的定标曲线却满足多项式方法原理。
     总之,利用LIBS技术同时、快速、精确地检测出模拟体液中多种元素的含量的设想是完全可行的,并且现有的研究结果将为进一步开展LIBS体液研究提供技术支持和实验依据。
Laser-induced breakdown spectroscopy (LIBS) has been widely utilized as a multi-elemental analysis method. In LIBS, a high-power pulsed laser beam is focused onto the surface of a sample, ablating a small quantity of it. The ablated material is vaporized and then partially atomized, excited and ionized, producing a plasma plume above the surface. The emission spectrum from the plasma plume can be spectrally and temporally resolved and used for identification and quantification of the elements present in the plume. Chemic methods are used for recent clinical research on the detection of body fliud, which need sample treatment, and can't detect multi-elements simultaneously and trace elements. So we brought forward an assumption that LIBS was applied to analyze body fluid. Experiments were conducted in order to demonstrate the the feasibility of detecting body fluid using LIBS.
     Liquid experimental setup for LIBS system was established by a Nd:YAG laser、a echelle spectrometer、an intensified charged couple device (ICCD) detector, and a computer for control and data acquisition. In order to achieve higher sensitivity and more delicate analysis with LIBS, the experimental parameters including laser parameters、ICCD setup and lens-to-sample distance(LTSD) should be appropriately selected. In this paper, most spectra were acquired by accumulation of twenty single shots, ten hertz of laser work frequency, LTSD less than lens’s focus length.
     The qualitative and quantitative analyses of simulate body fluid were performed with LIBS. The qualitative results showed that LIBS method could detect multi-element simultaneously and detection limit of metal was higher than nonmetal. The experiments of organic and inorganic solution were carried on, respectively. Via a series of experiments data, characteristic spectra of different elements were analyzed and calibration curves of portion elements were recorded. Further more, it was demonstrated that the calibration curves of Na and Pb were consistent with Lomakin-Scheibe formula, but As disagreed.
     In a word, the detection assume of simulate body fluid using LIBS was validated. And all the existing results could provide technique-abet and experimental gist for the further investigation of body fluid with LIBS.
引文
[1] Brech F., Cross L.. Optical micro emission stimulated by a ruby laser. Appl. Spectrosc. 1962, 16: 59
    [2] D. A. Rusak, B. C. Castle. Recent trends and the future of laser-induced plasma spectroscopy. Trends in analytical chemistry, 1998, 17(8): 453-461
    [3] Wiggenhauser H., Schaurich D., Wilsch G., LIBS for non-destructive testing of element distributions on surfaces. NDT&E International. 1998, 31(4): 307-313
    [4] F. Dahmain. Ablation scaling in laser-produced plasma with laser intensity, laser wavelength, and target atomic number. Phys. Fluids B. 1992, 4: 1585-1588
    [5] G. A. Canavan, W. A. Proctor, P. E. Nielsen, S. D. Rockwood. CO2 laser air breakdown Calculation. IEEE J. Quantum Electron. 1972, 8: 564
    [6] M. Kuzuya, H. Matsumoto, H. Takechi, O. Mikami. Effect of laser energy and atmosphere on the emission characteristics of laser-induced plasma. Appl. Spectrosc. 1993, 47: 1659-1664
    [7] J. P. Singh, H. S. Zhang, F. Y. Yueh and et al. Investigation of the effects of atmospheric conditions on the quantification of metal hydrides using laser-induced breakdown spectroscopy. Applied Spectroscopy, 1996, 50(2): 764-773
    [8] Y. I. Lee, K. Song, H. K. Cha and et al. Influence of atmosphere and irradiation wavelength on copper plasma emission induced by exciter and Q-switched Nd: YAG laser ablation. Applied spectroscopy, 1997, 51(3): 959-964
    [9] Y. I. Lee, T. L. Thiem, G-Y. Kim,Y. Y. Teng, J. Sneddon. Interaction of a laser beam with metals. PartⅢ: The effect of a controlled atmosphere in laser-ablated plasma emission. Appl. Spectrosc. 1992, 6: 1597-1604
    [10] D. A. Rusak, M. Clara, and et al. Investigation of the effect of target water content on a laser-induced plasma. Applied Spectroscopy, 1997, 51(7): 1628-1631
    [11] B. Wolff-Rottke, J. Lhlemann, H. Schmidt, A. Scholl. Influence of the laser-spot diameter on photo-ablation rates. Appl. Phys. A. 1995, 60: 13-17
    [12] R. A. Multari, L. E. Foster, D. A. Cremers, M. J. Ferris. Effect of sampling geometry on elemental emissions in laser-induced breakdown spectroscopy. Appl. Spectrosc. 1996, 50(12): 1483- 1499
    [13] K. Kagawa, S. Yokoi. Application of the N2 laser microprobe spectro-chemical analysis. Spectrochim. Acta. B. 1982, 37: 789-795
    [14]崔执凤,黄时中,陆同兴,凤尔银,赵献章.激光诱导等离子体中电子密度随时间演化的实验研究.中国激光,1996,23(7):627-632
    [15]满宝元,苗勇,郭向欣,王公堂等.不同气压背景下激光烧蚀Al靶的发射光谱.科学通报, 1997,42(9) :997-1000
    [16]满宝元,王公堂,刘爱华,王象泰.不同气压背景下激光烧蚀Al靶产生等离子体特性分析.光谱学与光谱分析,1998,18(4):411-415
    [17]黄庆举,方尔梯.激光烧蚀Cu产生等离子体的连续辐射研究.激光与红外,1999,29(4):205-207
    [18]宋一中,李亮.激光诱导Al等离子体连续辐射研究.激光与红外,2000,30(1):148-150
    [19]宋一中,李尊营,朱瑞富,王建华.激光诱导Al等离子体吸收谱分析.光谱学与光谱分析,2002,22(2):192-194
    [20]宋一中,贺安之.Ar辅助Al等离子体辐射谱分析.激光与红外,2004,34(3):194-196
    [21]张延惠,宋一中.激光烧蚀金属靶时气体电离分析.光谱学与光谱分析,2000,20(1):25-27
    [22]张树东,冯旺军,陈冠英等.激光诱导Al等离子体的时间分辨光谱.应用激光,2000, 20(1):155-158
    [23]李澜,陈冠英,张树东.激光能量对激光诱导Cu等离子体特征辐射强度、电子温度的影响.原子与分子物理学报,2003,20(3):343-346
    [24]郑贤峰,唐晓闩,凤尔银等.缓冲气体对激光等离子体光谱特性影响的实验研究.原子与分子物理学报,2002,19(3):267-271
    [25]陈金忠,赵书瑞,魏艳红等.透镜与样品之间距离对激光等离子体辐射特性的影响.光谱学与光谱分析,2005,25(10):1693—1696
    [26]陈金忠,史金超,郭庆林等.高气压Ar气对激光诱导Cu等离子体电子温度的影响.光谱学与光谱分析,2007,27(6):1047—1050
    [27] Igor V. Cravetchi, Mike Taschuk, Ying Y. Tsui et al.. Scanning microanalysis of Al alloys by laser-induced breakdown spectroscopy. Spectrochimica Acta Part B, 2004, 59: 1439–1450
    [28] C. A. Smith, M. A. Martinez, D. K. Veirs, D. A. Cremers. Pu-239/Pu-240 isotope ratios determined using high resolution emission spectroscopy in a laser-induced plasma. Spectrochim.Acta Part B: tomic Spectroscopy. 2002, 57: 929-937
    [29] M. D. Mowery, R. Sing, J. Kirsch, A. Razaghi, S. Be’chard, R. A. Reed. Rapid at-line analysis of coating thickness and uniformity on tablets using laser induced breakdown spectroscopy. J. Pharm. Biomed. Anal. 2002, 28: 935-943
    [30] Samek O., Beddows D. C. S., Telle H. H., Kaiser J., et. al. Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples. Spectrochimica Acta Part B: Atomic Spectroscopy. 2001, 56(6):865-875
    [31] Michela Corsi, Gabriele Cristoforetti, Montserrat Hidalgo et al.. Double pulse calibration-free laser-induced breakdown spectroscopy: A new technique for in situ standard-less analysis of polluted soils. Applied Geochemistry, 2006, 21:748-755
    [32] M. A. Gondal, T. Hussain, Z. H. Yamani et al.The role of various binging materials for trace elemental analysis of powder samples using laser-induced breakdown spectroscopy. Talanta, 2007, 72: 642-649
    [33] Pichahchy A. E., Cremers D. A. Elemental analysis of metals under water using laser-induced breakdown spectroscopy. Spectrochimica Acta Part B. 1997, 52(1): 25-39
    [34] Carhoff C., Lorenzen C., Nick K., Siebeneck H.. Liquid steel analysis by laser-induced emission spectroscopy. SPIE 1012. In process Optical Measurements, 1998, 194
    [35] M. A. Gondal, T. Hussain. Determination of poisonous metals in wastewater collected from paint manufacturing plant using laser-induced breakdown spectroscopy. Talanta, 2006, 8422-8430
    [36] John D. Hybl, Gregg A. Lithgow and Steven G. Buckley. Laser-Induced Breakdown Spectroscopy Detection and Classication of Biological Aerosols. Applied spectroscopy, 2003, 57(10): 1207-1214
    [37] R. T. Wainner, R. S. Harmon, A. W. Miziolek et al.. Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments. Spectrochimica Acta Part B, 2001, 56: 777-793
    [38] Z. W. Hwang, Y. Y. Teng, K. P. Li, J.Sneddon. Interaction of a Laser beam with metals. PartⅠ: Quantitative studies of plasma emission. Appl. Spectrosc. 1991, 45(3): 435-441
    [39] B. C. Castle, K. Talabardon, B. W. Smith, J. D. Winefordner. Variable influencing the precision of laser-induced breakdown spectroscopy measurment. Appl. Spectrosc. 1998, 52(5):649-657
    [40] T. L. Thiem, R. H. Salter, J A Gardner. et. al.. Quantitative simultaneous elemental determinations in alloys using laser-induced breakdown spectroscopy (LIBS) in an ultra-high vacuum. Appl. Spectrosc. 1994, 48 (1): 58-64
    [41] Kurniawan H., Kagawa K., Okamoto M. et al.. Emission spectro-chemical analysis of glass containing Li and K in high concentrations using a XeCl excimer laser-induced shock wave plasma. Appl. Spectrosc. 1996, 50(3): 299-305
    [42] Ernst W. E., Farson D. F., Sames D. J.. Determination of copper in A533b Steel for the assessment of radiation embrittlement using laser-induced breakdown spectroscopy. Appl. Spectrosc. 1996, 50(3): 306
    [43] D. A. Cremers, J. E. Barefield, A. C. Koskelo. Remote element analysis by laser-induced breakdown spectroscopy using a Fiber-optic cable. Appl. Spectrosc. 1995, 49(6): 857-860
    [44] K. Y. Yamamoto, D. A. Cremers, M. J. Ferris, L. E. Foster. Detection of metals in the environment using a portable laser-induced breakdown spectroscopy instrument. Appl. Spectrosc. 1996, 50(2): 222-233
    [45] A. S. Eppler, D. A. Cremers, D. D. Hickmott, M. J. Ferris, A. C. Koskelo. Matrix effects in the detection of Pb and Ba in soils using laser-induced breakdown spectroscopy. Appl. Spectrosc. 1996, 50: 1175-1181
    [46] A. V. Pakhomov, W. Nichols, J. Borysow. Laser-induced breakdown spectroscopy for detection of lead in concrete. Appl. Spectrosc. 1996, 50(7): 880-884
    [47] Straits D. N., Eland K. L., Angel S. M.. Dual-pulse LIBS using a pre-ablation spark for enhanced ablation and emission. Appl. Spectrosc. 2000, 54(9): 1270-1274
    [48] B. C. Castle. Laser-induced breakdown spectroscopy: fundamentals, instrumentation, and applications. University of Florida Dissertation. 1998
    [49] Jensen L. C., Langford S. C., Dickinson J. T., Addleman R. S.. Mechanistic studies of laser-induced breakdown spectroscopy of model environment. Spectrochimica Acta Part B: Atomic Spectroscopy. 1995, 50(12): 1501-1519
    [50] D. A. Cremers, L. J. Radziemski, T. R. Loree. Spectrochemical analysis of liquids using the laser spark. Appl. Spectrosc. 1984, 38(5): 721-729
    [51] J. R. Wachter, D. A. Cremers. Determination of uranium in solution using laser-induced breakdown spectroscopy. Appl. Spectrosc. 1987, 41(6): 1042-1048
    [52] F. Y. Yueh, R. C. Sharma. et al..Evaluation of laser-induced breakdown spectroscopy as technetium monitor. Journal of the Air&Waste Management Association. 2000
    [53] Yoshiro I., Osamu U., Susumu N., Determination of colloidal iron in water by laser-induced breakdown spectroscopy. Anal. Chem. Acta. 1999, 299: 401-405
    [54] Aragon C., Aguilera J. A., Campos J.. Determination of carbon content in molten steel using laser-induced breakdown spectroscopy. Appl. Spectrosc. 1993, 47: 606-608
    [55] Arca G., Ciucci A., Palleschi V.. et al.. IEEE-International Geoscience and Remote Sensing Symposium. 1996, 2: 856
    [56] D. C. Smith, R. T. Brown. Aerosol-induced air breakdown with CO2 Laser Radiation. Appl. Phys. 1975, 46: 1146-1154
    [57] D. A. Cremers, L. J. Radziemski. Detection of chlorine and fluorine in air by laser-induced breakdown spectroscopy. Anal. Chem. 1983, 55: 1251-1256
    [58] Tran M., Sun Q., Smith B. W.. Detection of gaseous and particulate fluorides by laser induced plasma spectroscopy. Appl. Spectrosc. 2001, 55(11): 1455-1461
    [59] Casini M., Harith M. A., Palleschi V.. Laser and Particle Beams. 1991, 9: 633
    [60]陆同兴,路轶群.激光光谱技术原理及应用,中国科学技术大学出版社,1999年10月第一版,270-280
    [61] Mohamad S., Paolo C.. Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization. Appl. Spectro. 1995, 49(4): 499-507
    [62] M. Milan, J. J. Laserna. Spectrochimica Acta Part B, 2001, 56: 275-288
    [63]陆同兴,路轶群.激光光谱技术原理及应用,中国科学技术大学出版社,1999年10月第一版, 34-51
    [64]辛仁轩.等离子体发射光谱分析,化学工业出版社,114-117
    [65] M. H. Key, R. J. Hutcheon. Spectroscopy of laser-induced plasma. Advances in Atomic and Molecular Physics. 1980, 16: 201
    [66] V. L. Jacobs, J. Davis, J. E. Rogerson, M. Blaha. Dielectronic recombination rates, ionization equilibrium and radioactive energy-loss rates for neon, magnesium, and sulfur ions in low-density plasma. Astrophys. J. 1979, 230: 627-638
    [67] Wilson R.. J. Quant. Spectrosc.&Radiat. Transfer. 1962, 2: 477
    [68] N. Konjevic. Plasma broadening and shifting of nonhydrogenic spectral lines: Present status and applications. Phys. Rep. 1999, 316: 339-401
    [69] Bate D. R., Kingston A. E., McWhirter R. W. P.. Recombination between electrons and atomic ions. I: Optically thin plasma. Proc. R. Soc. (London). A. 1962, 267: 297-312
    [70] H. R. Griem. Spectral Line Broadening by Plasma. Academic Press. Academic Press. New York. 1974
    [71]郭德济,孙洪飞,胡皆汉.光谱分析法,重庆大学出版社,1994年12月第二版,第二章第七节
    [72] Castle B, Talabardn K, Smith B W, Winefordner J D, Applied Spectroscopy, 1998, 52: 649
    [73] Slle B, Cremers D A, Roger S M, Wiens C, Spectrochemica Acta Part B, 2005, 60: 479

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700