I_(Na,L)导致SAN功能紊乱和心内传导障碍
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大多数心脏上的电压门控钠通道在细胞除极几毫秒内短暂开放,形成动作电位上升支。但是一些通道在几百毫秒后,动作电位的平台期仍然开放,形成持续性钠电流,又称晚钠电流(I_(Na,L))。I_(Na,L)增加可导致许多疾病,如长QT间期综合症(LQTS)的第3型(LQT3)。患者可因心室复极延迟,QT间期延长而导致严重室性心律失常。但是I_(Na,L)增大对窦房结和心脏传导系统的影响研究不多。本实验主要研究I_(Na,L)对LQT3小鼠模型中窦房结功能和心内传导系统的影响。研究发现I_(Na,L)可以导致LQT3小鼠模型的窦房结功能紊乱和心内传导障碍。而I_(Na,L)抑制剂雷诺嗪对海葵毒素Ⅱ(ATX-Ⅱ)诱导的LQT3小鼠离体心脏水平上对窦房结功能紊乱和室性心律失常具有一定的疗效。
     第一部分ATX-Ⅱ诱导的小鼠LQT3模型出现窦房结功能紊乱和心内传导障碍及雷诺嗪的拮抗作用
     目的:分别应用海葵毒素Ⅱ(ATX-Ⅱ)和雷诺嗪增强或抑制晚钠电流(I_(Na,L)),来证明I_(Na,L)致小鼠窦性心律失常和传导障碍作用。
     方法:实验采用不同浓度海葵毒素Ⅱ(ATX-Ⅱ)灌流小鼠离体心脏,构建LQT3模型。记录心电图(ECG)和单相动作电位(MAP),并与加用雷诺嗪后结果比较。并进行窦房结(sinoatrial node,SAN)组织标测研究以上药物对窦房结起搏和传导的影响。
     结果:研究发现1-10 nM ATX-Ⅱ灌流离体心脏后,小鼠心率明显减慢;PR间期,QT间期和QTc延长;单相动作电位时程(MAPD),窦房结恢复时间(SNRT)和校正的窦房结恢复时间(CSNRT)延长;早期后除极(EAD)和延迟后除极(DAD)明显增加并伴反复出现的室性心动过速(VT)和窦房缓慢型心律失常。窦房结组织标测发现ATX-Ⅱ减缓窦房结起搏和传导。ATX-Ⅱ的以上作用可被10μM雷诺嗪明显缓解。
     结论:ATX-Ⅱ作为I_(Na,L)增强剂可导致小鼠窦性心律失常和传导障碍,而I_(Na,L)阻断剂雷诺嗪则明显缓解以上心律失常。
     第二部分转基因LQT3小鼠模型出现窦房结功能紊乱和心内传导障碍
     目的:本研究利用转基因LQT3小鼠模型,验证Scn5a+/Δ小鼠易发生室性心律失常并观察窦房结和传导功能
     方法:利用转基因LQT3小鼠模型,记录体表心电图并行食道电刺激以统计心律失常事件。并行窦房结组织水平标测研究窦房结起搏传导功能。
     结果:除QT间期和QTc延长,Scn5a+/Δ小鼠出现明显的窦房结(sinoatrial node,SAN)功能紊乱。尽管基础状态ECG显示Scn5a+/Δ和野生型(WT)小鼠的心律失常发生率没有差别,但经程序电刺激(PES)后Scn5a+/Δ小鼠出现窦性心动过缓(sinusbradycardia,SB),窦性停博(sinus pause)或窦性间歇(sinus arrest)。窦房结组织水平Scn5a+/Δ小鼠起搏频率明显慢于WT小鼠。而且Scn5a+/Δ小鼠的窦房结恢复时间(SNRT)和校正的窦房结恢复时间(CSNRT)更长。小鼠整体水平研究还发现Scn5a+/Δ小鼠ECG出现PR间期和QRS波延长,以及Ⅱ-Ⅲ度房室传导阻滞。窦房结组织水平研究发现Scn5a+/Δ小鼠窦房结的兴奋向房间隔(septum,SEPT)和下腔静脉(inferior vena cava,IVC)方向传导明显减慢。
     结论:研究证实Scn5a+/Δ小鼠存在SAN功能降低,心内传导障碍。
The late sodium current (I_(Na,L))is a sustained component of the fast Na~+ current Asrecently appreciated,lots of cardiac diseases including the LQT3 are associated withabnormal INa,L enhancement.We hypothesized that an increase of I_(Na,L) may induce notonly prolonged QT and ventricular arrhythmia but also play a critical role in thepathophysiology of sinus node dysfunction and depressed intraventricular conductionin the LQT3.Anemone toxinⅡ(ATX-Ⅱ) (1-10 nmol/l) was used to enhance I_(Na,L) whileranolazine (10μm) was applied to block ATX-Ⅱ-induced I_(Na,L).Scn5a+/△transgenicmice were also used to verification our hypothesis.The data reveal that an increase ofI_(Na,L) induced the alterations in sinus node function and intracardiac conduction andpharmacological modulation of ranolazine may be the therapeutic potential.
     PartⅠSinus Node Dysfunction and Intracardiac Conduction ina Murine Model of Long QT Syndrome Type 3 Induced byATX-Ⅱand Rescue Effect of Ranolazine
     Object:The aim of this study was to characterize the role of the late Na~+ current (I_(Na,L)) as amechanism for induction of both tachy- and brady-arrhythmias in murine heart andsino-atrial node tissue.
     Method:The sea anemone toxin ATX-Ⅱand ranolazine were used to evoke and block,respectively,I_(Na,L).
     Result:In sixteen hearts studied,exposure to 1 to 10 nM ATX-Ⅱcaused a slowing ofintrinsic heart rate and prolongations of the PR and QT intervals,the duration of themonophasic action potential,and the sinus node recovery time,accompanied by frequentoccurrences of early afterdepolarisations,delayed afterdepolarisations and rapid,repetitiveventricular tachycardiac and sino-atrial bradycardic arrhythmias.ATX-Ⅱalso slowed sinusnode pacemaking,and induced bradycardic arrhythmias in isolated sino-atrial preparations(n=5).The ATX-II-induced alteration of electrophysiological properties and occurrence ofarrhythmic events were significantly attenuated by 10μM ranolazine in intact hearts (n=11)and isolated sino-atrial preparations (n=5).
     Conclusion:The I_(Na,L) enhancer ATX-Ⅱcauses both tachy- and brady-arrhythmias in themurine heart,and these arrhythmias are markedly attenuated by the I_(Na,L) blocker,ranolazine(10μM).The results suggest that I_(Na,L) blockade may be the mechanism underlying thereductions of both brady- and tachy-arrhythmias by ranolazine that were observed duringthe MERLIN-TIMI clinical outcomes trial.
     PartⅡSinus Node Function and Intracardiac Conduction ina Murine Model of Long QT Syndrome Type 3
     Object:The aim of this study was to characterize the role of the late Na~+ current (I_(Na,L)) as amechanism for induction of both tachy- and brady-arrhythmias in murine heart andsino-atrial node tissue.
     Method:Scn5a +/△transgenic mice were used to verification our hypothesis.
     Result:The present experiments on an established murine,Scn5a+/△,model for LQT3extended previous reports of its ventricular arrhythmogenic properties.In addition tosignificant prolongations in QT and QTc intervals in common with human LQT3,Scn5a+/△mice showed evidence for significant sino-atrial node (SAN) dysfunction.Although baseline electrocardiographic heart rates in intact Scn5a+/△preparations wereindistinguishable from WT,anaesthetised Scn5a+/△mice showed episodes of sinusbradycardia,sinus pause or arrest.Isolated Scn5a +/△sino-atrial preparations showed lowermean intrinsic heart rates.Furthermore,Scn5a +/△mice showed a significant longer SNRTfollowing burst pacing.Both intact animals and isolated Scn5a+/△sino-atrial preparationsshowed evidence for depressed intra-atrial,atrioventricular node and intraventricularconduction in the Scn5a +/△in the absence of significant sino-atrial exit block.Conclusion:Thus electrocardiographic studies demonstrated episodes of second and thirddegree heart block,as well as prolonged PR intervals and QRS durations in Scn5a+/△.Multi-array electrode mapping studies demonstrated significantly greater latencies inconduction of excitation between SA node,and septum and inferior vena cava,but not theright atrium and superior vena cava in isolated Scn5a +/△sino-atrial preparations Togetherthese findings demonstrate alterations in sinus node function and intracardiac conductionthereby recapitulating phenotypic characteristics reported in the corresponding clinicalcondition.
引文
[1]Catterall WA.Molecular mechanisms of gating and drug block of sodium channels.Novartis Found Symp 2002;241:206-218;discussion 218-232.
    [2]Goldin AL,Barchi RL,Caldwell JH,Hofmann F,Howe JR,Hunter JC et al.Nomenclature of voltage-gated sodium channels.Neuron 2000;28:365-368.
    [3]Goldin AL.Resurgence of sodium channel research.Annual review of physiology 2001;63:871-894.
    [4]Marban E,Yamagishi T,Tomaselli GF.Structure and function of voltage-gated sodium channels.The Journal of physiology 1998;508(Pt 3):647-657.
    [5]Fozzard HA,Hanck DA.Structure and function of voltage-dependent sodium channels:comparison of brain Ⅱ and cardiac isoforms.Physiological reviews 1996;76:887-926.
    [6]Bezanilla F.The voltage sensor in voltage-dependent ion channels.Physiol Rev 2000;80:555-592.
    [7]Yellen G.The moving parts of voltage-gated ion channels.Q Rev Biophys 1998;31:239-295.
    [8]Moric-Janiszewska E,Herbert E,Cholewa K,Filipecki A,Trusz-Gluza M,Wilczok T.Mutational screening of SCN5A linked disorders in Polish patients and their family members.JAppl Genet 2004;45:383-390.
    [9]Stuhmer W,Conti F,Suzuki H,Wang XD,Noda M,Yahagi Net al.Structural parts involved in activation and inactivation of the sodium channel.Nature 1989;339:597-603.
    [10]Yang N,Horn R.Evidence for voltage-dependent S4 movement in sodium channels.Neuron 1995;15:213-218.
    [11]Yang N,George AL,Jr.,Horn R.Molecular basis of charge movement in voltage-gated sodium channels。 Neuron 1996;16:113-122.
    [12]Mannuzzu LM,Moronne MM,Isacoff EY.Direct physical measure of conformational rearrangement underlying potassium channel gating.Science(New York, NY 1996; 271: 213-216.
    [13] Cha A, Snyder GE, Selvin PR, Bezanilla F. Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy. Nature 1999; 402: 809-813.
    [14] Bendahhou S, O'Reilly A O, Duclohier H. Role of hydrophobic residues in the voltage sensors of the voltage-gated sodium channel. Biochimica et biophysica acta 2007; 1768:1440-1447.
    [15] Aldrich RW, Stevens CF. Inactivation of open and closed sodium channels determined separately. Cold Spring Harbor symposia on quantitative biology 1983; 48 Pt 1:147-153.
    [16] Gillespie JI, Meves H. The time course of sodium inactivation in squid giant axons. The Journal of physiology 1980; 299: 289-307.
    [17] Goldman L, Kenyon JL. Delays in inactivation development and activation kinetics in myxicola giant axons. The Journal of general physiology 1982; 80: 83-102.
    [18] Horn R, Vandenberg CA. Statistical properties of single sodium channels. The Journal of general physiology 1984; 84: 505-534.
    [19] Miyamoto K, Nakagawa T, Kuroda Y. Solution structures of the cytoplasmic linkers between segments S4 and S5 (S4-S5) in domains Ⅲ and Ⅳ of human brain sodium channels in SDS micelles. J Pept Res 2001; 58: 193-203.
    [20] Motoike HK, Liu H, Glaaser IW, Yang A-S, Tateyama M, Kass RS. The Na~+ Channel Inactivation Gate Is a Molecular Complex: A Novel Role of the COOH-terminal Domain. J Gen Physiol 2004; 123:155-165.
    [21] McNulty MM, Kyle JW, Lipkind GM, Hanck DA. An inner pore residue (Asn406) in the Na_v1.5 channel controls slow inactivation and enhances mibefradil block to T-type Ca2+ channel levels. Mol Pharmacol 2006; 70: 1514-1523.
    [22] O'Reilly JP, Shockett PE. Slow-inactivation induced conformational change in domain 2-segment 6 of cardiac Na~+ channel. Biochem Biophys Res Commun 2006; 345: 59-66.
    [23] Alekov AK, Peter W, Mitrovic N, Lehmann-Horn F, Lerche H. Two mutations in the Ⅳ/S4-S5 segment of the human skeletal muscle Na~+ channel disrupt fast and enhance slow inactivation. Neuroscience letters 2001; 306: 173-176.
    [24] McCollum IJ, Vilin YY, Spackman E, Fujimoto E, Ruben PC. Negatively charged residues adjacent to IFM motif in the DⅢ-DⅣ linker of hNa(v)1.4 differentially affect slow inactivation. FEBS Lett 2003; 552:163-169.
    [25] Zimmer T, Surber R. SCN5A channelopathies - An update on mutations and mechanisms. Prog Biophys Mol Biol 2008; 98:120-136.
    [26] Dumaine R, Towbin JA, Brugada P, Vatta M, Nesterenko DV, Nesterenko W et al. Ionic mechanisms responsible for the electrocardiographic phenotype of the Brugada syndrome are temperature dependent. Circ Res 1999; 85: 803-809.
    [27] Veldkamp MW, Viswanathan PC, Bezzina C, Baartscheer A, Wilde AA, Balser JR. Two distinct congenital arrhythmias evoked by a multidysfunctional Na(~+) channel. Circ Res 2000; 86: E91-97.
    [28] Aldrich RW SC. Voltage-dependent gating of single sodium channels from mammalian neuroblastoma cells. J Neurosci 1987; 7: 418-431.
    [29] Sheets MF KJ, Kallen RG, Hanck DA. The Na channel voltage sensor associated with inactivation is localized to the external charged residues of domain IV, S4. Biophys J 1999; 77: 747-757.
    [30] Hanck DA, Sheets MF. Site-3 toxins and cardiac sodium channels. Toxicon 2007; 49: 181-193.
    [31] Chandra R SC, Grant AO. Multiple effects of KPQ deletion mutation on gating of human cardiac Na channels expressed in mammalian cells. Am J Physiol 1998; 274: H1643-H1654.
    [32] Kambouris NG, Nuss HB, Johns DC, Tomaselli GF, Marban E, Balser JR. Phenotypic characterization of a novel long-QT syndrome mutation (R1623Q) in the cardiac sodium channel. Circulation 1998; 97: 640-644.
    [33] Blechschmidt S, Haufe V, Benndorf K, Zimmer T. Voltage-gated Na~+ channel transcript patterns in the mammalian heart is species-dependent. Progress in biophysics and molecular biology 2008; 98: 309-318.
    [34] Haufe V, Camacho JA, Dumaine R, Gunther B, Bollensdorff C, von Banchet GS et al. Expression pattern of neuronal and skeletal muscle voltage-gated Na~+ channels in the developing mouse heart. The Journal of physiology 2005; 564: 683-696.
    [35] Haufe V, Chamberland C, Dumaine R. The promiscuous nature of the cardiac sodium current. Journal of molecular and cellular cardiology 2007; 42: 469-477.
    [36] Irisawa H, Brown HF, Giles W. Cardiac pacemaking in the sinoatrial node. Physiological reviews 1993; 73:197-227.
    [37] Papadatos GA, Wallerstein PM, Head CE, Ratcliff R, Brady PA, Benndorf K et al. Slowed conduction and ventricular tachycardia after targeted disruption of the cardiac sodium channel gene Scn5a. Proc NatlAcad Sci USA 2002; 99: 6210-6215.
    [38] Lei M, Jones SA, Liu J, Lancaster MK, Fung SS, Dobrzynski H et al. Requirement of neuronal- and cardiac-type sodium channels for murine sinoatrial node pacemaking. The Journal of physiology 2004; 559: 835-848.
    [39] Kodama I, Nikmaram MR, Boyett MR, Suzuki R, Honjo H, Owen JM. Regional differences in the role of the Ca~(2+) and Na~+ currents in pacemaker activity in the sinoatrial node. Am J Physiol 1997; 272: H2793-2806.
    [40] Lei M, Goddard C, Liu J, Leoni AL, Royer A, Fung SS et al. Sinus node dysfunction following targeted disruption of the murine cardiac sodium channel gene Scn5a. The Journal of physiology 2005; 567: 387-400.
    [41] Remme CA, Verkerk AO, Nuyens D, van Ginneken AC, van Brunschot S, Belterman CN et al. Overlap syndrome of cardiac sodium channel disease in mice carrying the equivalent mutation of human SCN5A-1795insD. Circulation 2006; 114: 2584-2594.
    [42] Dobrzynski H, Boyett MR, Anderson RH. New insights into pacemaker activity: promoting understanding of sick sinus syndrome. Circulation 2007; 115: 1921-1932.
    [43] Chandler NJ, Greener ID, Tellez JO, Inada S, Musa H, Molenaar P et al. Molecular architecture of the human sinus node: insights into the function of the cardiac pacemaker. Circulation 2009; 119:1562-1575.
    [44] Verkerk AO, van Ginneken AC, Wilders R. Pacemaker activity of the human sinoatrial node: role of the hyperpolarization-activated current, I(f). Int J Cardiol 2009; 132: 318-336.
    [45] Moric E, Herbert E, Trusz-Gluza M, Filipecki A, Mazurek U, Wilczok T. The implications of genetic mutations in the sodium channel gene (SCN5A). Europace 2003; 5: 325-334.
    [46] Balser JR. Inherited sodium channelopathies: models for acquired arrhythmias? Am J Physiol Heart Circ Physiol 2002; 282: H1175-1180.
    [47] Benson DW, Wang DW, Dyment M, Knilans TK, Fish FA, Strieper MJ et al. Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A). J Clin Invest 2003; 112:1019-1028.
    [48] Groenewegen WA, Firouzi M, Bezzina CR, Vliex S, van Langen IM, Sandkuijl L et al. A cardiac sodium channel mutation cosegregates with a rare connexin40 genotype in familial atrial standstill. Circulation research 2003; 92: 14-22.
    [49] Smits JPP, Koopmann TT, Wilders R, Veldkamp MW, Opthof T, Bhuiyan ZA et al. A mutation in the human cardiac sodium channel (E161K) contributes to sick sinus syndrome, conduction disease and Brugada syndrome in two families. Journal of Molecular and Cellular Cardiology 2005; 38: 969-981.
    [50] Lown B. Electrical reversion of cardiac arrhythmias. Br Heart J 1967; 29: 469-489.
    [51] Rodriguez RD, Schocken DD. Update on sick sinus syndrome, a cardiac disorder of aging. Geriatrics 1990; 45: 26-30, 33-26.
    [52] de Marneffe M, Gregoire JM, Waterschoot P, Kestemont MP. The sinus node function: normal and pathological. Eur Heart J 1993; 14: 649-654.
    [53] Smits JP, Koopmann TT, Wilders R, Veldkamp MW, Opthof T, Bhuiyan ZA et al. A mutation in the human cardiac sodium channel (E161K) contributes to sick sinus syndrome, conduction disease and Brugada syndrome in two families. J Mol Cell Cardiol 2005; 38: 969-981.
    [54] Napolitano C, Bloise R, Priori SG Gene-specific therapy for inherited arrhythmogenic diseases. Pharmacol Ther 2006; 110:1-13.
    [55] Veldkamp MW, Wilders R, Baartscheer A, Zegers JG, Bezzina CR, Wilde AA. Contribution of sodium channel mutations to bradycardia and sinus node dysfunction in LQT3 families. Circ Res 2003; 92: 976-983.
    [56] Groenewegen WA, Bezzina CR, van Tintelen JP, Hoorntje TM, Mannens MM, Wilde AA et al. A novel LQT3 mutation implicates the human cardiac sodium channel domain IVS6 in inactivation kinetics. Cardiovasc Res 2003; 57:1072-1078.
    [57] Schulze-Bahr E, Neu A, Friederich P, Kaupp UB, Breithardt G, Pongs O et al. Pacemaker channel dysfunction in a patient with sinus node disease. J Clin Invest 2003; 111: 1537-1545.
    [58] Milanesi R, Baruscotti M, Gnecchi-Ruscone T, DiFrancesco D. Familial sinus bradycardia associated with a mutation in the cardiac pacemaker channel. N Engl J Med 2006; 354:151-157.
    [59] Nof E, Luria D, Brass D, Marek D, Lahat H, Reznik-Wolf H et al. Point mutation in the HCN4 cardiac ion channel pore affecting synthesis, trafficking, and functional expression is associated with familial asymptomatic sinus bradycardia. Circulation 2007; 116: 463-470.
    [60] Lei M, Huang CL, Zhang Y. Genetic Na~+ channelopathies and sinus node dysfunction. Prog Biophys Mol Biol 2008; 98:171-178.
    [61] Lei M, Zhang H, Grace AA, Huang CL. SCN5A and sinoatrial node pacemaker function. Cardiovasc Res 2007; 74: 356-365.
    [62] Bennett PB, Yazawa K, Makita N, George AL, Jr. Molecular mechanism for an inherited cardiac arrhythmia. Nature 1995; 376: 683-685.
    [63] Head CE, Balasubramaniam R, Thomas G, Goddard CA, Lei M, Colledge WH et al. Paced electrogram fractionation analysis of arrhythmogenic tendency in DeltaKPQ Scn5a mice.Journal of cardiovascular electrophysiology 2005; 16: 1329-1340.
    [64] Moss AJ, Zareba W, Benhorin J, Locati EH, Hall WJ, Robinson JL et al. ECG T-wave patterns in genetically distinct forms of the hereditary long QT syndrome. Circulation 1995; 92: 2929-2934.
    [65] Benhorin J, Taub R, Goldmit M, Kerem B, Kass RS, Windman I et al. Effects of flecainide in patients with new SCNSA mutation: mutation-specific therapy for long-QT syndrome? Circulation 2000; 101: 1698-1706.
    [66] Wei J, Wang DW, Alings M, Fish F, Wathen M, Roden DM et al. Congenital long-QT syndrome caused by a novel mutation in a conserved acidic domain of the cardiac Na~+ channel. Circulation 1999; 99: 3165-3171.
    [67] Bezzina C, Veldkamp MW, van Den Berg MP, Postma AV, Rook MB, Viersma JW et al. A single Na(+) channel mutation causing both long-QT and Brugada syndromes. Circulation research 1999; 85: 1206-1213.
    [68] van den Berg MP, Wilde AA, Viersma TJW, Brouwer J, Haaksma J, van der Hout AH et al. Possible bradycardic mode of death and successful pacemaker treatment in a large family with features of long QT syndrome type 3 and Brugada syndrome. J Cardiovasc Electrophysiol 2001; 12: 630-636.
    [69] Grant AO, Carboni MP, Neplioueva V, Starmer CF, Memmi M, Napolitano C et al. Long QT syndrome, Brugada syndrome, and conduction system disease are linked to a single sodium channel mutation. The Journal of clinical investigation 2002; 110: 1201-1209.
    [70] Makiyama T, Akao M, Tsuji K, Doi T, Ohno S, Takenaka K et al. High Risk for Bradyarrhythmic Complications in Patients With Brugada Syndrome Caused by SCN5A Gene Mutations. Journal of the American College of Cardiology 2005; 46: 2100.
    [71] Benson DW, Wang DW, Dyment M, Knilans TK, Fish FA, Strieper MJ et al. Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A). J Clin Invest 2003; 112: 1019-1028.
    [72] Olson TM, Michels W, Ballew JD, Reyna SP, Karst ML, Herron KJ et al. Sodium channel mutations and susceptibility to heart failure and atrial fibrillation. JAMA 2005; 293: 447-454.
    [73] Takehara N, Makita N, Kawabe J, Sato N, Kawamura Y, Kitabatake A et al. A cardiac sodium channel mutation identified in Brugada syndrome associated with atrial standstill.J Intern Med 2004; 255: 137-142.
    [74] Tan HL, Bink Boelkens MT, Bezzina CR, Viswanathan PC, Beaufort Krol GC, van Tintelen PJ et al. A sodium-channel mutation causes isolated cardiac conduction disease. Nature 2001; 409:1043-1047.
    [75] Zhang Y, Wang T, Ma A, Zhou X, Gui J, Wan H et al. Correlations between clinical and physiological consequences of the novel mutation R878C in a highly conserved pore residue in the cardiac Na~+ channel. Acta Physiologica 2008; 9999.
    [76] Kyndt F, Probst V, Potet F, Demolombe S, Chevallier JC, Baro I et al. Novel SCN5A mutation leading either to isolated cardiac conduction defect or Brugada syndrome in a large French family. Circulation 2001; 104: 3081-3086.
    [77] Niu D-M, Hwang B, Hwang H-W, Wang NH, Wu J-Y, Lee P-C et al. A common SCN5A polymorphism attenuates a severe cardiac phenotype caused by a nonsense SCN5A mutation in a Chinese family with an inherited cardiac conduction defect. J Med Genet 2006; 43: 817-821.
    [78] Splawski I, Shen J, Timothy KW, Lehmann MH, Priori S, Robinson JL et al. Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation 2000; 102: 1178-1185.
    [79] Makita N, Sasaki K, Groenewegen WA, Yokota T, Yokoshiki H, Murakami T et al. Congenital atrial standstill associated with coinheritance of a novel SCN5A mutation and connexin 40 polymorphisms. Heart Rhythm 2005; 2:1128.
    [80] Grant AO, Carboni MP, Neplioueva V, Starmer CF, Memmi M, Napolitano C et al. Long QT syndrome, Brugada syndrome, and conduction system disease are linked to a single sodium channel mutation. J Clin Invest 2002; 110:1201-1209.
    [81] Wang Q, Shen J, Splawski I, Atkinson D, Li Z, Robinson JL et al. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell 1995; 80: 805-811.
    [82] Chang C-C, Acharfi S, Wu M-H, Chiang F-T, Wang J-K, Sung T-C et al. A novel SCN5A mutation manifests as a malignant form of long QT syndrome with perinatal onset of tachycardia/bradycardia. Cardiovasc Res 2004; 64: 268-278.
    [83] Abriel H, Wehrens XHT, Benhorin J, Kerem B, Kass RS. Molecular Pharmacology of the Sodium Channel Mutation D1790G Linked to the Long-QT Syndrome. Circulation 2000; 102: 921-925.
    [84] Benhorin J, Taub R, Goldmit M, Kerem B, Kass RS, Windman I et al. Effects of Flecainide in Patients With New SCN5A Mutation: Mutation-Specific Therapy for Long-QT Syndrome? Circulation 2000; 101: 1698-1706.
    [85] Bezzina C, Veldkamp MW, van den Berg MP, Postma AV, Rook MB, Viersma J-W et al. A Single Na+ Channel Mutation Causing Both Long-QT and Brugada Syndromes. Circ Res 1999; 85:1206-1213.
    [86] Brugada P, Brugada J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report. J Am Coll Cardiol 1992; 20:1391-1396.
    [87] Shimizu W. The Brugada syndrome-an update. Intern Med 2005; 44:1224-1231.
    [88] Keller DI, Rougier JS, Kucera JP, Benammar N, Fressart V, Guicheney P et al. Brugada syndrome and fever: genetic and molecular characterization of patients carrying SCN5A mutations. Cardiovasc Res 2005; 67: 510-519.
    [89] Paul G, Yusuf S, Sharma S. Unmasking of the Brugada syndrome phenotype during the acute phase of amiodarone infusion. Circulation 2006; 114: e489-491.
    [90] Frustaci A, Priori SG, Pieroni M, Chimenti C, Napolitano C, Rivolta I et al. Cardiac histological substrate in patients with clinical phenotype of Brugada syndrome. Circulation 2005; 112: 3680-3687.
    [91] Lenegre J MP. Le bloc auriculo-ventriculaire chronique: etude anatomique, clinique et histologique. Arch Mal Cur 1963; 56: 867-888.
    [92] Schott JJ, Alshinawi C, Kyndt F, Probst V, Hoorntje TM, Hulsbeek M et al. Cardiac conduction defects associate with mutations in SCN5A. Nat Genet 1999; 23: 20-21.
    [93] Watanabe H, Koopmann TT, Le Scouarnec S, Yang T, Ingram CR, Schott JJ et al. Sodium channel beta1 subunit mutations associated with Brugada syndrome and cardiac conduction disease in humans. J Clin Invest 2008; 118: 2260-2268.
    [94] Royer A, van Veen TA, Le Bouter S, Marionneau C, Griol-Charhbili V, Leoni AL et al. Mouse model of SCN5A-linked hereditary Lenegre's disease: age-related conduction slowing and myocardial fibrosis. Circulation 2005; 111: 1738-1746.
    [95] Lupoglazoff JM, Cheav T, Baroudi G, Berthet M, Denjoy I, Cauchemez B et al. Homozygous SCN5A mutation in long-QT syndrome with functional two-to-one atrioventricular block. Circulation research 2001; 89: E16-21.
    [96] Tian XL, Yong SL, Wan X, Wu L, Chung MK, Tchou PJ et al. Mechanisms by which SCN5A mutation N1325S causes cardiac arrhythmias and sudden death in vivo. Cardiovasc Res 2004; 61: 256-267.
    [97] Dumaine R, Kirsch GE. Mechanism of lidocaine block of late current in long Q-T mutant Na~+ channels. The American journal of physiology 1998; 274: H477-487.
    [98] Dumaine R, Wang Q, Keating MT, Hartmann HA, Schwartz PJ, Brown AM et al. Multiple mechanisms of Na~+ channel--linked long-QT syndrome. Circulation research 1996; 78: 916-924.
    [99] Wattanasirichaigoon D, Vesely MR, Duggal P, Levine JC, Blume ED, Wolff GS et al. Sodium channel abnormalities are infrequent in patients with long QT syndrome: identification of two novel SCN5A mutations. American journal of medical genetics 1999; 86: 470-476.
    [100] Tsurugi T, Nagatomo T, Abe H, Oginosawa Y, Takemasa H, Kohno R et al. Differential modulation of late sodium current by protein kinase A in R1623Q mutant of LQT3. Life sciences 2009; 84: 380-387.
    [101] Yamagishi H, Furutani M, Kamisago M, Morikawa Y, Kojima Y, Hino Y et al. A de novo missense mutation (R1623Q) of the SCN5A gene in a Japanese girl with sporadic long QT sydrome. Mutations in brief no. 140. Online. Human mutation 1998; 11: 481.
    [102] Makita N, Shirai N, Nagashima M, Matsuoka R, Yamada Y, Tohse N et al. A de novo missense mutation of human cardiac Na~+ channel exhibiting novel molecular mechanisms of long QT syndrome. FEBS letters 1998; 423: 5-9.
    [103] Kass RS, Davies MP. The roles of ion channels in an inherited heart disease: molecular genetics of the long QT syndrome. Cardiovasc Res 1996; 32: 443-454.
    [104] Undrovinas A, Maltsev VA. Late sodium current is a new therapeutic target to improve contractility and rhythm in failing heart. Cardiovascular & hematological agents in medicinal chemistry 2008; 6: 348-359.
    [105] Vanoye CG, Lossin C, Rhodes TH, George AL, Jr. Single-channel properties of human Na_v1.1 and mechanism of channel dysfunction in SCN1A-associated epilepsy. The Journal of general physiology 2006; 127: 1-14.
    [106] Zaza A, Belardinelli L, Shryock JC. Pathophysiology and pharmacology of the cardiac "late sodium current." Pharmacology & therapeutics 2008; 119: 326-339.
    [107] Song Y, Shryock JC, Belardinelli L. An increase of late sodium current induces delayed afterdepolarizations and sustained triggered activity in atrial myocytes. American journal of physiology 2008; 294: H2031-2039.
    [108] Grant AO. Electrophysiological basis and genetics of Brugada syndrome. J Cardiovasc Electrophysiol 2005; 16 Suppl 1: S3-7.
    [109] Rentschler S, Vaidya DM, Tamaddon H, Degenhardt K, Sassoon D, Morley GE et al. Visualization and functional characterization of the developing murine cardiac conduction system. Development 2001; 128:1785-1792.
    [110] Antzelevitch C, Sicouri S, Litovsky SH, Lukas A, Krishnan SC, Di Diego JM et al. Heterogeneity within the ventricular wall. Electrophysiology and pharmacology of epicardial, endocardial, and M cells. Circulation research 1991; 69:1427-1449.
    [111] Killeen MJ, Gurung IS, Thomas G, Stokoe KS, Grace AA, Huang CL. Separation of early afterdepolarizations from arrhythmogenic substrate in the isolated perfused hypokalaemic murine heart through modifiers of calcium homeostasis. Acta Physiol (Oxf) 2007; 191: 43-58.
    [112] London B, Baker LC, Petkova-Kirova P, Nerbonne JM, Choi BR, Salama G Dispersion of repolarization and refractoriness are determinants of arrhythmia phenotype in transgenic mice with long QT. The Journal of physiology 2007; 578: 115-129.
    [113] Knollmann BC, Blatt SA, Horton R, de Freitas F, Miller T, Bell M et al Inotropic stimulation induces cardiac dysfunction in transgenic mice expressing a troponin T (I79N) mutation linked to familial hypertrophic cardiomyopathy. The Journal of biological chemistry 2001; 276:10039-10048.
    [114] Fabritz L, Kirchhof P, Franz MR, Eckardt L, Monnig G, Milberg P et al. Prolonged action potential durations, increased dispersion of repolarization, and polymorphic ventricular tachycardia in a mouse model of proarrhythmia. Basic Res Cardiol 2003; 98: 25-32.
    [115] Kuo HC, Cheng CF, Clark RB, Lin JJ, Lin JL, Hoshijima M et al. A defect in the Kv channel-interacting protein 2 (KChIP2) gene leads to a complete loss of I(to) and confers susceptibility to ventricular tachycardia. Cell 2001; 107: 801-813.
    [116] Stokoe KS, Balasubramaniam R, Goddard CA, Colledge WH, Grace AA, Huang CL. Effects of flecainide and quinidine on arrhythmogenic properties of Scn5a+/- murine hearts modelling the Brugada syndrome. The Journal of physiology 2007; 581:255-275.
    [117] Stokoe KS, Thomas G, Goddard CA, Colledge WH, Grace AA, Huang CL. Effects of flecainide and quinidine on arrhythmogenic properties of Scn5a+/Delta murine hearts modelling long QT syndrome 3. The Journal of physiology 2007; 578: 69-84.
    [118] Thomas G, Gurung IS, Killeen MJ, Hakim P, Goddard CA, Mahaut-Smith MP et al. Effects of L-type Ca~(2+) channel antagonism on ventricular arrhythmogenesis in murine hearts containing a modification in the Scn5a gene modelling human long QT syndrome 3. The Journal of physiology 2007; 578: 85-97.
    [119] London B. Cardiac arrhythmias: from (transgenic) mice to men. J Cardiovasc Electrophysiol 2001; 12:1089-1091.
    [120] Baker LC, London B, Choi BR, Koren G, Salama G. Enhanced dispersion of repolarization and refractoriness in transgenic mouse hearts promotes reentrant ventricular tachycardia. Circulation research 2000; 86: 396-407.
    [121] Liu G, Iden JB, Kovithavongs K, Gulamhusein R, Duff HJ, Kavanagh KM. In vivo temporal and spatial distribution of depolarization and repolarization and the illusive murine T wave. The Journal of physiology 2004; 555: 267-279.
    [122] Maguire CT, Wakimoto H, Patel W, Hammer PE, Gauvreau K, Berul CI. Implications of ventricular arrhythmia vulnerability during murine electrophysiology studies. Physiological genomics 2003; 15: 84-91.
    [123] Rogers JC, Qu Y, Tanada TN, Scheuer T, Catterall WA. Molecular determinants of high affinity binding of alpha-scorpion toxin and sea anemone toxin in the S3-S4 extracellular loop in domain Ⅳ of the Na~+ channel alpha subunit. The Journal of biological chemistry 1996; 271:15950-15962.
    [124] Romey G, Abita JP, Schweitz H, Wunderer G, Lazdunski. Sea anemone toxin:a tool to study molecular mechanisms of nerve conduction and excitation-secretion coupling.Proc Natl Acad Sci USA 1976; 73: 4055-4059.
    [125] Oliveira JS, Redaelli E, Zaharenko AJ, Cassulini RR, Konno K, Pimenta DC et al. Binding specificity of sea anemone toxins to Na_v 1.1-1.6 sodium channels: unexpected contributions from differences in the Ⅳ/S3-S4 outer loop. The Journal of biological chemistry 2004; 279: 33323-33335.
    [126] Hartung K, Rathmayer W. Anemonia sulcata toxins modify activation and inactivation of Na~+ currents in a crayfish neurone. Pflugers Arch 1985; 404: 119-125.
    [127] Isenberg G, Ravens U. The effects of the Anemonia sulcata toxin (ATX Ⅱ) on membrane currents of isolated mammalian myocytes. The Journal of physiology 1984; 357:127-149.
    [128] Hale SL, Shryock JC, Belardinelli L, Sweeney M, Kloner RA. Late sodium current inhibition as a new cardioprotective approach. Journal of molecular and cellular cardiology 2008; 44: 954-967.
    [129] Chaitman BR, Skettino SL, Parker JO, Hanley P, Meluzin J, Kuch J et al. Anti-ischemic effects and long-term survival during ranolazine monotherapy in patients with chronic severe angina. Journal of the American College of Cardiology 2004; 43:1375-1382.
    [130] Chaitman BR, Pepine CJ, Parker JO, Skopal J, Chumakova G, Kuch J et al. Effects of ranolazine with atenolol, amlodipine, or diltiazem on exercise tolerance and angina frequency in patients with severe chronic angina: a randomized controlled trial. Jama 2004; 291: 309-316.
    [131] McCormack JG, Stanley WC, Wolff AA. Ranolazine: a novel metabolic modulator for the treatment of angina. Gen Pharmacol 1998; 30: 639-645.
    [132] Antzelevitch C, Belardinelli L, Zygmunt AC, Burashnikov A, Di Diego JM, Fish JM et al. Electrophysiological effects of ranolazine, a novel antianginal agent with antiarrhythmic properties. Circulation 2004; 110: 904-910.
    [133] Fredj S, Sampson KJ, Liu H, Kass RS. Molecular basis of ranolazine block of LQT-3 mutant sodium channels: evidence for site of action. Br J Pharmacol 2006; 148:16-24.
    [134] Ragsdale DS, McPhee JC, Scheuer T, Catterall WA. Molecular determinants of state-dependent block of Na~+ channels by local anesthetics. Science 1994; 265: 1724-1728.
    [135] Song Y, Shryock JC, Wu L, Belardinelli L. Antagonism by ranolazine of the pro-arrhythmic effects of increasing late INa in guinea pig ventricular myocytes. Journal of cardiovascular pharmacology 2004; 44: 192-199.
    [136] Nagatomo T, January CT, Makielski JC. Preferential block of late sodium current in the LQT3 DeltaKPQ mutant by the class I(C) antiarrhythmic flecainide. Mol Pharmacol 2000; 57:101-107.
    [137] Belardinelli L, Antzelevitch C, Vos MA. Assessing predictors of drug-induced torsade de pointes. Trends Pharmacol Sci 2003; 24: 619-625.
    [138] Pepine CJ, Wolff AA. A controlled trial with a novel anti-ischemic agent, ranolazine, in chronic stable angina pectoris that is responsive to conventional antianginal agents. Ranolazine Study Group.Am J Cardiol 1999; 84:46-50.
    [139] Louis AA, Manousos IR, Coletta AP, Clark AL, Cleland JG Clinical trials update: The Heart Protection Study, IONA, CARISA, ENRICHD, ACUTE, ALIVE, MADIT II and REMATCH. Impact Of Nicorandil on Angina. Combination Assessment of Ranolazine In Stable Angina. ENhancing Recovery In Coronary Heart Disease patients. Assessment of Cardioversion Using Transoesophageal Echocardiography. AzimiLide post-Infarct survival Evaluation. Randomised Evaluation of Mechanical Assistance for Treatment of Chronic Heart failure. Eur J Heart Fail 2002; 4:111-116.
    [140] Gralinski MR, Black SC, Kilgore KS, Chou AY, McCormack JG, Lucchesi BR. Cardioprotective effects of ranolazine (RS-43285) in the isolated perfused rabbit heart. Cardiovascular research 1994; 28: 1231-1237.
    [141] Wu L, Shryock JC, Song Y, Li Y, Antzelevitch C, Belardinelli L. Antiarrhythmic effects of ranolazine in a guinea pig in vitro model of long-QT syndrome. The Journal of pharmacology and experimental therapeutics 2004; 310: 599-605.
    [142] Noble D, Noble PJ. Late sodium current in the pathophysiology of cardiovascular disease: consequences of sodium-calcium overload. Heart (British Cardiac Society) 2006; 92 Suppl 4: iv1-iv5.
    [143] Nuyens D, Stengl M, Dugarmaa S, Rossenbacker T, Compernolle V, Rudy Y et al. Abrupt rate accelerations or premature beats cause life-threatening arrhythmias in mice with long-QT3 syndrome. Nat Med 2001; 7: 1021-1027.
    [144]Sicouri S,Glass A,Belardinelli L,Antzelevitch C.Antiarrhythmic effects of ranolazine in canine pulmonary vein sleeve preparations。 Heart Rhythm 2008;5:1019-1026.
    [145]Wang WQ,Robertson C,Dhalla AK,Belardinelli L.Antitorsadogenic effects of
    ({+/-})-N-(2,6-dimethyl-phenyl)-(4[2-hydroxy-3-(2-methoxyphenoxy)propyl]-1-piperazine(ranolazine) in anesthetized rabbits.The Journal of pharmacology and experimental therapeutics 2008;325:875-881.
    [146]Zhang Y,Wang T,Ma A,Zhou X,Gui J,Wan H et al.Correlations between clinical and physiological consequences of the novel mutation R878C in a highly conserved pore residue in the cardiac Na+ channel.Acta physiologica(Oxford,England) 2008;194:311-323.
    [147]Antzelevitch C,Belardinelli L.The role of sodium channel current in modulating transmural dispersion of repolarization and arrhythmogenesis.J Cardiovasc Electrophysiol 2006;17 Suppl 1:S79-S85.
    [148]Groenewegen WA,Firouzi M,Bezzina CR,Vliex S,van Langen IM,Sandkuijl L et al.A Cardiac Sodium Channel Mutation Cosegregates With a Rare Connexin40 Genotype in Familial Atrial Standstill.Circ Res 2003;92:14-22.
    [149]Lei M,Zhang H,Huang C,Grace AA.SCN5A and sinoatrial node pacemaker function.Cardiovascular Research 2007;74:356-365.
    [150]Papadatos GA,Wallerstein PMR,Head CEG,Ratcliff R,Brady PA,Benndorf K et al.Slowed conduction and ventricular tachycardia after targeted disruption of the cardiac sodium channel gene Scn5a.Proc NatlAcad Sci USA 2002;99:6210-6215.
    [151]Wang Q,Chen Q,Li H,Towbin JA.Molecular genetics of long QT syndrome from genes to patients.[Review][61 refs].Current Opinion in Cardiology 1997;12:310-320.
    [152]Head C,Balasubramaniam R,Thomas G,Goddard C,Lei M,Colledge Wet al.Paced electrogram fractionation analysis of arrhythmogenic tendency in KPQ Scn5a(Long QT 3) mice.J Cardiol Electrophysiology 2005:1-12.
    [153]Ackerman MJ,Khositseth A,Tester DJ,Hejlik JB,Shen WK,Porter CB.Epinephrine-induced QT interval prolongation:a gene-specific paradoxical response in congenital long QT syndrome. Mayo Clin Proc 2002; 77: 413-421.
    [154] Beaufort-Krol GC, van den Berg MP, Wilde AA, van Tintelen JP, Viersma JW, Bezzina CR et al. Developmental aspects of long QT syndrome type 3 and Brugada syndrome on the basis of a single SCN5A mutation in childhood. Journal of the American College of Cardiology 2005; 46: 331-337.
    [155] Zicha S, Fernandez-Velasco M, Lonardo G, L'Heureux N, Nattel S. Sinus node dysfunction and HCN channel subunit remodeling in a canine heart failure model. Cardiovascular Research 2005; 66: 472.
    [156] Hart CY, Burnett JC, Jr., Redfield MM. Effects of avertin versus xylazine-ketamine anesthesia on cardiac function in normal mice. Am J Physiol Heart Circ Physiol 2001; 281: H1938-1945.
    [157] Wang Q, Chen Q, Li H, Towbin JA. Molecular genetics of long QT syndrome from genes to patients. Curr Opin Cardiol 1997; 12: 310-320.
    [158] Thomas G, Killeen MJ, Grace AA, Huang CL. Pharmacological separation of early afterdepolarizations from arrhythmogenic substrate in DeltaKPQ Scn5a murine hearts modelling human long QT 3 syndrome. Acta Physiol (Oxf) 2008; 192: 505-517.
    [159] Schwartz PJ, Priori SG, Spazzolini C, Moss AJ, Vincent GM, Napolitano C et al. Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation 2001; 103: 89-95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700