ASTM4130钢焊接热影响区组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钻井平台高压水泥和泥浆系统材料ASTM4130钢属于中碳调质合金钢,含碳量高,以及合金元素的加入,焊接性较差。这种钢焊接存在的突出问题是冷裂纹和热影响区脆化。本文采用插销试验对ASTM4130钢的冷裂敏感性进行了评定,采用焊接热模拟技术研究了单次热循环和二次热循环焊后热处理前后热影响区组织和性能的变化规律,同时研究了实际接头热影响区的组织及常规和微剪切性能。
     插销试验表明,不预热、预热100℃和预热200℃三种情况下,粗晶区组织主要为马氏体和贝氏体,随预热温度升高,马氏体含量降低,贝氏体含量增加。不预热和预热100℃时,断口具有典型的氢致延迟裂纹断裂特征。预热200℃时,断口不存在氢致延迟裂纹特征。不预热、预热100℃、预热200℃时的临界断裂应力分别为344.46 MPa、642.55 MPa、806.11 MPa。预热温度为200℃,临界断裂应力远远高于母材的屈服强度,能避免ASTM4130钢产生焊接冷裂纹。
     热模拟试验结果表明,模拟ASTM4130钢单道焊接热影响区,除峰值温度为700℃的回火区外,均发生脆化现象。峰值温度为1200℃和1350℃的粗晶区冲击韧性损失为母材的94.5 %,成为单次热循环的韧性低谷。峰值温度为950℃的细晶区韧性损失为母材的81.37 %,脆化程度仅次于粗晶区。焊接热输入在12 kJ/cm~28 kJ/cm之间变化时,对粗晶区韧性影响不大。模拟再热粗晶区,除峰值温度为700℃的亚临界粗晶区外,粗晶区韧性进一步降低,发生热影响区整体脆化。峰值温度为800℃的临界粗晶区和峰值温度为950℃的过临界粗晶区的韧性损失分别为母材96.6 %和95.7 %,脆化最为严重,且两区存在“组织遗传”现象。
     热模拟试验结果表明,640℃×1.5 h焊后热处理可完全消除ASTM4130钢单道焊接热影响区脆化。除回火区外,热影响区其它区域的冲击韧性显著提高,硬度明显降低,未发现回火脆性现象。焊接热输入在12 kJ/cm~28 kJ/cm之间变化时,粗晶区的性能均能满足要求,为提高焊接效率,可采用稍大的热输入。640℃×1.5 h焊后热处理未能明显改善再热粗晶区性能。除亚临界粗晶区外,热影响区的冲击韧性虽得到一定程度的改善,但均远远低于母材的韧性。临界粗晶区和过临界粗晶区的“组织遗传”现象未能消除,脆化程度仍然严重。
     接头的常规力学性能试验表明,焊后热处理温度为640℃,保温时间为90 min、120 min、135 min和165 min,冲击功和抗拉强度均能满足要求,但只有保温时间165 min,硬度才能满足要求。接头的微型剪切试验表明,焊后热处理温度为640℃,熔合线处剪切强度均明显高于母材,受保温时间的影响不明显,随保温时间的延长,热影响区中的软化区宽度变窄,软化程度有所减弱。保温时间为165 min,焊后热处理温度对软化区宽度和程度影响明显,温度为590℃时,热影响区软化区最宽,失强率最大。从硬度、软化区宽度及程度、韧性三方面综合考虑,640℃×165 min焊后热处理可使接头获得良好的强韧性匹配。
ASTM4130 steel in quenched and tempered (Q&T) condition is used for high-pressure pipelines such as cement and mud systems. However, welding this steel is difficult due to its high carbon content plus additions of chromium and molybdenum. The obvious problems occurred in welding are cold crack and embrittlement problems in the heat affected zone (HAZ). Therefore in this paper, firstly, implant test was used to evaluate the cold crack sensitivity of ASTM4130 steel. Secondly, welding simulation technique is used to replicate HAZ experiencing single and double welding thermal cycles, and effect of postweld heat treatment (PWHT) on HAZ microstructure and properties is further systematically studied. Finally, micro-shear test is used to investigate the HAZ performance of the actual joint.
     Implant test indicate that the the coarse-grained heat-affected zones are primarily composed of martensite and bainite under the conditions of no preheating, preheating 100℃and 200℃, and the content of martensite (bainite) decreases (increases) with increasing the preheat temperature. Without preheating and preheating temperature of 100℃, the fractured surface is the typical hydrogen-induced fracture with a delayed crack fracture. However, no hydrogen-induced delayed fracture crack characteristics is founded when the preheat temperature is 200℃. The critical fracture stress are 344.46 MPa, 642.55 MPa and 806.11 MPa corresponding to without preheat, preheat temperature 100℃and 200℃respectively. It is belived that the critical fracture stress is much higher than the yield strength of the base metal when the preheat temperature is 200℃, then the cold crack in ASTM4130 steel can be avoid.
     The simulated HAZ properties of ASTM4130 steel experising single and double thermal cycles were systematically investigated by thermal welding simulation technique. The results show that the embrittlement occurs in HAZ with single thermal cycle except for the peak temperature of 700℃. When the peak temperatures are 1200℃and 1350℃, the coarse-grained heat-affected zone (CGHAZ) has the lowest toughness, which is decreased by 94.5 % of the base metal. It is also found that serious embrittlemen occurs in the fine-grained heat-affected zone (FGHAZ) with its toughness decreased by 81.37 % compared with that of the base metal. When welding heat input is between 12 kJ/cm and 28 kJ/cm, its effect on mechanical properties of CGHAZ is not apparent. After the CGHAZ is rheated by the second thermal cycle, the low temperature impact toughness of CGHAZ is further decreased in addition to the peak temperature of 700℃, which indicates that the embrittlement of the overall reheated CGHAZ occurs. The intercritically reheated CGHAZ (IRCGHAZ) corrsponding to the peak temperature of 800℃becomes the local brittle zone for its toughness loss by 96.6 % compared with the base metal. Meanwhile, the toughness of the supercritically reheated CGHAZ (SCCGHAZ) decreases by 95.7 % of the base metal. This means that serious embrittlement also occurs in SCCGHAZ. Moreover, the phenomenon of“structure heredity”exsits in IRCGHAZ and SCCGHAZ.
     The effect of postweld heat treatment (PWHT) on HAZ microstructure and properties of ASTM4130 steel both single-pass welding and muti-pass welding has also been systematically investigated by means of welding simulation technique. It is found that, for single-pass welding undergoing 640℃/1.5 h PWHT, the toughness of the HAZ is significantly improved, and the hardness of the HAZ is remarkably decreased except the intercritical HAZ (ICHAZ). No temper embrittlement phenomenon is founded. When welding heat input is between 12 kJ/cm and 28 kJ/cm, its effect on mechanical properties of CGHAZ can meet the requirements. Thus, when the welding efficiency is taken into account, the larger welding heat input is preferred. However, 640℃/1.5 h PWHT can not restore the properties of the reheated CGHAZ significantly. In addition to the subcritically reheated CGHAZ (SCGHAZ), the toughness of other HAZ is improved, but the toughness of whole HAZ is far less than the base metal toughness. The“structure heredity”in IRCGHAZ and SCCGHAZ is not eliminated, so the embrittllement is still serious.
     Conventional mechanical properties of the weled joint shows that, when the temperature and soaking time of PWHT are 640℃, and 90 min, 120 min, 135 min and 165min respectively, impact energy and tensile strength can all meet the requirements, but hardness of soaking time of 165min can only meet the requirements. Microshear test shows that when the temperature of PWHT is 640℃, the microshear strength of the fusion line is significantly higher than that of the base metal, and it is not obviously influenced by the soaking time. The width of the softening HAZ and the degree of softening decreases with increasing the soaking time. When the soaking time is 165 min, the effect of PWHT temperature on the width and degree of softening HAZ is apparent. When the PWHT temperature is 590℃, the width and extent of softening HAZ is the highest. When the hardness, the width and degree of softening HAZ, and toughness are taken into account, 640℃×165 min PWHT get a good match of strength and toughness.
引文
[1]刘海霞.深海半潜式钻井平台的发展[J].船舶, 2007(3): 6-10.
    [2]黄悦华,任克忍.我国海洋石油钻井平台现状与技术发展分析[J].石油机械, 2007, 35(9): 157-160.
    [3]廖谟圣.世界超深水钻井平台发展综述[J].中国海洋平台, 2008, 23(1): 1-7.
    [4]栾苏,韩成才,王维旭,等.半潜式海洋钻井平台的发展[J].石油矿场机械, 2008, 37(11): 90-93.
    [5]张用德,袁学强.我国海洋钻井平台发展现状与趋势[J].石油矿场机械, 2008, 37(9): 14-17.
    [6]马延德.大型半潜式钻井平台结构设计关键技术研究[J].中国海洋平台, 2001, 17(1): 11-20
    [7]马网扣,王志青,张海彬.深水半潜式钻井平台节点疲劳寿命谱分析研究[J].海洋工程, 2008, 26(3): 1-8.
    [8]李国荣.我国深水石油钻采装备现状及发展建议[J].石油机械, 2009, 37(8): 87-91.
    [9]李宏伟,孙宝江.钻井平台高压管线设计制造技术研究[J].外高桥造船技术, 2007, 2: 23-27.
    [10]周振丰.焊接冶金学(金属焊接性)[M].北京:机械工业出版社, l995: 45-46.
    [11]李亚江,王娟,刘鹏.低合金钢焊接及工程应用[M].北京:化学工业出版社, 2003: 123-124.
    [12]刘炜倩.中碳调质钢34CrNi3MoA焊接性研究[J].邵阳学院学报(自然科学版),2006,3(1): 29-30.
    [13]王庆鹏,李午申.焊接热影响区相变模型分析[J].焊接, 2004(l1): 8-10.
    [14]王勇,王引真,张德勤.材料冶金学与成型工艺[M].东营:石油大学出版社, 2005.
    [15]熊庆人,高惠临,霍春勇,等. X80管线钢焊接热影响区的韧性[J].机械工程材料, 2007, 31(4): 29-33.
    [16] Davis C L, King J E. Cleavage initiation in the intercritically reheated coarse-grained heat-affected zone: part I. fractographic evidence[J]. Metallurgical and Materials Transactions A, 1994, 25(3): 563-573.
    [17] Jang J l, Ju J B, Lee B W, et al. Micromechanism of local brittle zone phenomenon inweld heat-affected zones of advanced 9% Ni steel[J]. Journal of Materials Science Letters, 2001: 2149-2152.
    [18] Jang J l, Ju J B, Lee B W, et al. Experimental analysis of the practical LSZ effects on the brittle fracure performance of cryogenic steel HAZs with respect to crack arrest toughness near fusion line[J]. Engineering Fracture Mechanics, 2003: 1245-1257.
    [19] Jang J l, Ju J B, Lee B W, et al. Determination of microstructural criterion for cryogenic toughness variation in actual HAZs using microstructure-distribution maps. Materials Science and Engineering, 2003: 183-189.
    [20] Qiu H, Mori H, Enoki M, et al. Fracture mechanism and toughness of the welding heat-affected zone in structural steel under static and dynamic loading[J]. Metallurgical and Materials Transactions A, 2000, 31(11): 2785-2791.
    [21] Pont D, Bergheau J M, Rochette M,et al. Identification of a kinetic model for anisothermal metallurgical transformations in steels[C]. Porceedings of the international Symposium on lnverse Problems, 1994: 301-307.
    [22]王宏,郑建军,刘翠荣.高强钢焊接接头组织遗传问题的研究[J].焊接技术, 2000, 29(2): 5-6.
    [23]帅玉峰,闫子安,胡俊川等. PCrNi3Mo炮钢焊接过程中组织遗传现象的研究[J].焊接技术, 1992(2): 11-15.
    [24]张文钺.焊接冶金学.北京:机械工业出版社, 1993.
    [25] Lambert-Perlade A, Gourgues A F, Pineau A. Austenite to bainite phase transformation in the heat-affected zone of a high strength low alloy steel[J]. Acta Materialia, 2004, 52(8): 2337-2348.
    [26]邹增大,李亚江,尹士科.低合金调质高强度钢焊接及工程应用[M].北京,化学工业出版社, 1999: 66.
    [27] Davis C L, King J E. Cleavage initiation in the intercritically reheated coarse-grained heat affected zone: part I1. failure criteria and statistical effects [J]. Metallurgical and Materials Transactions A, 1996, 27(10): 3019-3029.
    [28] Bayraktar E, Kaplan D. Mechanical and metallurgical investigation of martensite-austenite constituents in simulated welding conditions[J]. Journal of Materials Processing Technology, 2004, 153-154(10): 87-92.
    [29] Brozw P, Capurro M, Lenco M G. Microstructure and Cleavage Resistance of Heat Affected Zone in High Strength Microalloyed Steel Welds[J]. Materials Science and Technology, 1998, 14(2): 123-125.
    [30]王学,常建伟,黄关政,等. WB36钢多层焊接头近缝区网状组织研究(Ⅱ) :显微结构及韧性[J].材料热处理学报, 2009, 30(2): 76-80.
    [31] Kim B C, Lee S, Kim N J, et al. Microstructure and local brittle zone phenomena in high-strength low alloy steel welds[J]. Metallurgical Transactions A, Physical metallurgy and materials science, 1991, 22(1): 139-149.
    [32] Matsuda F, Li Z L, Bernasovsky P, et al. Investigation on the behavior of the M-A constituent in simulated HAZ of HSLA steel[J]. Welding in the World, 1991, 29: 307-313.
    [33] Davis C L, King J E. Effect of cooling rate on intercritically reheated microstructure and toughness in high strength low alloy steel[J]. Materials Science and Technology, 1993, 9(1): 8-15.
    [34] Ale R M, Rebello J M A, Charlier J. A metallographic technique for detecting martensite–austenite constituents in the weld heat-affected zone of a micro-alloyed steel[J]. Materials Characterization, 1996, 37(2-3): 89-93.
    [35] Liao J S, Ikeuchi K, Matsuda F. Toughness investigation on simulated weld HAZs of SQV-2A pressure vessel steel[J]. Nuclear Engineering and Design, 1998, 183(1-2): 9-20.
    [36] Chen Y T, Guo A M, Wu L X, et al. Microstructure and mechanical property development in the simulated heat affected zone of V-treated HSLA steels[J]. Acta Metall Sinica. 2006, 19(1): 57-67.
    [37]张文钺.焊接物理冶金[M].天津,天津大学出版社, 1991: 30.
    [38] Andreas L, Erdelen-peppler M. A critical view on the significance of HAZ toughness testing[C]. Proceedings of international pipeline conference 2004, Calgary, Alberta, Canada, IPC04-0315.
    [39]高惠临,董玉华,冯耀荣.油、气管线钢的焊接局部脆化及其预防[J].机械工程学报, 2001, 37(3): 14-19.
    [40] Lee S , Kim B C , Kwon D. Fracture toughness analysis of heat-affected zones in high-srength low-alloyed steel welds[J]. Metallurgical Transaction A, 1993, 24(5):1133-1141.
    [41] Minami F, jing H. Stress/strain behavior of material including local hard zone[C]. Material&engineering proceeding of the 11thOMAE, Clagary, New York: ASME, 1992: 73-80.
    [42] Matsuda F, Ikeuchi K, Liao J. Effect of weld thermal cycles on the HAZ toughness of SQV22A pressure vessel steel [C]// Trends in Welding Research, 4th International Conference, Gatlinburg Tennessee, USA, 1996, 541-546.
    [43]荆洪阳,霍立兴,张玉凤,等.马氏体-奥氏体组元形态对高强钢焊接热影响区韧性的影响[J].机械工程学报, 1995, 31(6): 102-108.
    [44]柴锋,杨才福,张永权,等.粒状贝氏体对超低碳含铜时效钢粗晶热影响区冲击韧性的影响[J].钢铁研究学报, 2005, 17 (1): 405-411.
    [45]王学,常建伟,黄关政. WB36钢临界再热粗晶区组织性能[J].焊接学报, 2008, 29(10): 29-33.
    [46] Das C R, Albert S K, Bhaduri A K, et al. Effect of prior microstructure on microstructure and mechanical properties of modified 9Cr-1Mo steel weld joints[J]. Materials Science and Engineering A, 2008, 477(1-2): 185-192.
    [47]李玉衡,包方涵等.低碳低合金调质钢模拟焊接HAZ组织遗传性及其对韧性的影响[J].焊接学报. 1987, 8(4): 181-187.
    [48]钱鸣. Cr-Ni-Mo中碳调质钢模拟焊接HAZ组织与韧性的研究[D].天津大学硕士论文, 1992.
    [49]赵琳,张旭东.800MPa级低合金钢焊接热影响区韧性的研究[J].金属学报,2005,41(4):392~396
    [50]刘自成,张永嘉.焊接热影响区韧性劣化机理及防止的方法[J].世界钢铁, 2004(4): 15-20.
    [51] Bonnevie E, Ferrière G, Ikhlef A, et al. Morphological aspects of martensite-austenite constituents in intercritical and coarse grain heat affected zones of structural steels[J]. Materials Science and Engineering A, 2004, 385(1-2): 352-358.
    [52]陈玉华,王勇,韩彬. X70管线钢在役焊接局部脆化区的组织及精细结构.材料热处理学报, 2007, 28(1): 79-82.
    [53]高惠临.中碳调质钢焊接过热区强韧化研究[J].焊接学报, 1994, 15(2): 107-112.
    [54]高惠临. 35CrMo钢粗晶区的回火处理[J].石油机械, 1995, 23(11): 28-32.
    [55]陈忠孝,杨德新,刘继臣. 30CrMnSiNi2A超高强钢HAZ后热韧化抗裂机理的探讨[J].焊接学报, 1983, 4(3): 14-23,54-55.
    [56]高惠临,董玉华,王荣.管线钢焊接临界粗晶区局部脆化现象的研究[J].材料热处理学报, 2001, 22(2): 60-65.
    [57]王勇,韩涛,刘敏. X70管线钢焊接热影响区的局部脆化[J].材料工程, 1999, 10: 14-17.
    [58]占焕校,王勇,吕统全. X80钢焊接热影响区的二次热循环组织脆化[J].压力容器, 2008,25(2): 9-12.
    [59]张莉莉,张骁勇,郝瑞辉.回火焊道热处理对X80管线钢热影响区组织性能的影响[J].热加工工艺, 2008, 37(21): 6-8.
    [60]李亚江,邹增大,吴会强,等. HQ130钢热影响区的ICHAZ区组织性能[J].焊接学报, 2001, 22(2): 54-58.
    [61] Shi Y W, Han Z X. Effect of weld thermal cycle on microstructure and fracture toughness of simulated heat-affected zone for a 800Mpa grade high strength low alloy steel[J]. Journal of Materials Processing Technology, 2008, 207(1-3): 30-39.
    [62] P.Karjalainen,许祖泽.新型高强度结构钢(TMCP+Acc)的焊接.焊管,1995,18: 12.
    [63] De Meester B.The weldability of modern structural TMCP steels. ISIJ intemational,1997, 37(6): 537.
    [64] Hrivnak I.Weldability of modern steel materials.ISIJ internationa1.1995, 35(10): ll48-1156.
    [65] Aihara S, Haze T. Influence of high-carbon martensitic island on crack-tip opening displacement value of weld HAZ in HSLA steels, in: Proceedings of TMS Annual Meeting, Phoenix, Arizona, 25-28 January 1988.
    [66]周勇,郝世英,岳志宏,等.多次热循环对9Ni钢热影响粗晶区低温韧性的影响[J].金属热处理, 2009, 34(2): 70-74.
    [67]高惠临,董玉华.超低碳QT钢焊接二次热循环的组织转变与局部脆化[J].金属学报, 2001, 37(1): 34-38.
    [68] Magudeeswaran G, Balasubramaniarr V, Madhusudhan Reddy G, et al. Effect of Welding Processes and Consumables on Tensile and Impact Properties of High StrengthQuenched and Tempered Steel Joints[J]. Journal of Iron and Steel Research, International, 2008, 15(6): 87-94.
    [69] Mohandas T, Madhusudan Reddy G, Satish Kumar B. Heat-affected zone softening in high-strength low-alloy steels [J]. Journal of Materials Processing Technology, 1999, 88(1-3): 284-294.
    [70]李明,雷斌隆,陈辉.用微型剪切试验研究WDL610焊接接头性能[J].电焊机, 2007, 37(2).
    [71] Jonathan W, Badih J, Chris R. Maximizing weld strength in Chrome Moly space frames[C]. Proceedings of the 17th IASTED International Conference on Modelling and Simulation, 2006: 291-295.
    [72] Still J R, Blackwood V. How to ensure fit-for-purpose welds in `muddy' situations[J]. Welding Journal (Miami, Fla), 1998, 77(12): 53-56.
    [73] Still J R. Welding of AISI4130 and 4140 steel for Drilling Systems[J]. Welding Journal, 1997, 76(6): 37-42.
    [74] Fulcer J, Fogle J. Tips for GTA welding 4130 chrome-moly steel tubing[J]. Welding Journal (Miami, Fla), 2007, 86(8): 38-40.
    [75] Swaim W. Gas tungsten arc welding made easy[J]. Welding Journal (Miami, Fla), 1953, 77(9): 51-52.
    [76] Ali E. Study of the effects of welding by two types of fillerwire along with different pre& post heat treatment on weldment mechanical properties of AISI 4130 welded by TIG process[J]. Materials Processing and Manufacturing Division 2007 - Proceedings of Symposium held during the 2007 TMS Annual Meeting, 2007: 87-91.
    [77] Ackerman W W. Flash Welding 4130 Steel[J]. Welding Journal, 1945, 5: 463.
    [78] Della-Vedowa R P. Progress report on the use of flash welding as a means of fabricating aircraft structural parts from X-4130 steel[J]. Welding Journal (supplement), 1942, 421s-426s.
    [79] Sun P H, Young Y S, Yiin C D. Microstructures and mechanical properties of electron beam welded joints in SAE 4130 thin plate steel[J]. Microstructural Science, 1987, 14: 127-136.
    [80] Doong J L, Chi J M, Tan Y H. Fracture toughness behaviour in AISI 4130 steel ofelectron beam welding[J]. Engineering Fracture Mechanics, 1990, 36(6): 999-1006.
    [81] Hwang J R, Chang H H. Study on threshold fatigue crack growth characteristics of electron beam welding in AISI 4130 steel[J]. Engineering Fracture Mechanics, 1993, 45(4): 519-527.
    [82] Huang C C, Pan Y C, Chuang T H. Effects of post-weld heat treatments on the residual stress and mechanical properties of electron beam welded SAE 4130 steel plates[J]. Journal of Materials Engineering and Performance, 1997, 6(1): 61-68.
    [83] Hwang J R, Chang H H. Study on threshold fatigue crack growth characteristics of electron beam welding in AISI 4130 steel[J]. Engineering Fracture Mechanics, 1993, 45(4): 519-527.
    [84] Doong J L, Chi J M, Hwang J R. Effect of electron beam welding on fatigue crack growth rate in AISI 4130 steel[J]. Fatigue and Fracture of Engineering Materials and Structures, 1990, 13(3): 253-261.
    [85] Wang C C, Chang Y. Effect of postweld treatment on the fatigue crack growth rate of electron-beam-welded AISI 4130 steel[J]. Metallurgical and Materials Transactions A, 1996, 27(10): 3162-3169.
    [86] Tsay L W, Li Y M, Chen C, et al. Mechanical properties and fatigue crack growth rate of laser-welded 4130 steel[J]. International Journal of Fatigue, 1992, 14(4): 239-247.
    [87] Huang C C, Chuang T H. Effects of post-weld heat treatments on the residual stress and mechanical properties of laser beam welded SAE 4130 steel plates[J]. Materials and Manufacturing Processes, 1997, 12(5): 779-797.
    [88] Irving B. Challenge of welding heat-treatable alloy steels[J]. Welding Journal (Miami, Fla), 1995, 74(2): 43-48
    [89] ASM handbook volume 4 heat treating[M]. 1991.
    [90]韩德伟,张建新.金相试样制备与显示技术[M].长沙,中南大学出版社, 2005.
    [91] AléR M, Rebello J M A, Charlier J. A Metallographic technique for detecting martensite-austenite constituents in the weld heat-affected zone of a micro-alloyed steel. Materials Characterization, 1996, 37(2-3): 89-93.
    [92] Sindo K. Welding Metallurgy[M]. Hoboken, New Jersey: John Wiley & Sons, Inc, 2003.
    [92]巩建鸣,蒋文春,唐建群等. 16MnR钢焊接接头氢扩散三维有限元模拟[J].机械工程学报, 2007, 43(9): 113-118.
    [93]谭长瑛,张显辉,陈佩寅.焊接氢致裂纹的模拟与预测.焊接学报, 2002, 23(5): 1-4.
    [94] Yokobori A T, Kushida T, Ohmi T. The stress induced hydrogen diffusion behavior and the sensitivity of hydrogen embrittlement at the affected zone of weld part based on analytical solution[J].Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2006, 70(6): 489-494.
    [95]牛靖,董俊明,何源. 30CrMnSiNi2A钢冷裂纹敏感性研究[J].材料开发与应用, 2006, 21(4): 1-3.
    [96]王学,袁小健,钱昌黔.插销试验在火电厂管材焊接性评定中的应用[J].焊接, 2004(6): 38-41.
    [98] Li Y J, Wang J, Shen X Q. Finite element modeling of hydrogen diffusion in zone of HQ130 high strength steel. Journal of Materials Processing Technology, 2005, 161(3): 423-429.
    [99]潘勇琨,王振家.钢焊接最低预热温度的确定[J].焊接技术, 2001, 30(3): 6-8.
    [100]曹继明.用碳当量CEN确定高强钢焊接预热温度.焊接, 1995(1): 17-20,24.
    [101]张幼德,柳晓民,汤晓英. Cr-Mo钢的焊接性和回火脆性分析[J].化工设备与管道, 2002, 39(4): 55-58.
    [102] [美]美国金属学会.金属手册,第九版,第六卷. 2002.
    [103] Fals H C, Trevisan R E. Implant test and acoustic emission technique used to investigate hydrogen assisted cracking in the melted zone of a welded HSLA-80 steel[J]. Revista de Metalurgia, 1999, 35(4): 233-241.
    [104] Uwer D, Hohne H, et al. Determination of suitable minimum preheating temperature for the cold-crack-free welding of steels[J]. Schweissen and Schneiden, 1991, 43(5): 108-111.
    [105] Hamada M. Control of strength and toughness at heat affected zone[J]. Welding in the World, 2004, XLX(5): 1-6.
    [106] Sudarsanam Suresh B. The mechanism of acicular ferrite in weld deposits[J]. Current Opinion in Solid State and Materials Science, 2004, 8(3-4): 267-278.
    [107] Granjon H. Survey of cracking tests[J]. Welding in the World, 1979, 17(3/4): 81S-90s.
    [108] Lee S, Kim B C, Kwon D. Correlation of microstructure and fracture properties in weldheat-affected zones of thermomechanically controlled processed steels[J]. Metallurgical Transactions A, 1992, 23(10): 2803-2816.
    [109]史耀武,张相权,樊培利.插销试验时15MnVN钢焊接延迟裂纹的断口分析[J].焊接, 1980, (3): l-7.
    [110]许玉环,张文钺,杜则裕,等.焊接冷裂纹断口形貌的分析[J].焊接学报, 1985, 6(4): 163-170.
    [111] Albert S K, Ramasubbu V, Parvathavarthini N. Influence of alloying on hydrogen-assisted cracking and diffusible hydrogen content in Cr-Mo steel welds[J]. Sādhanā, 2003, 28, Parts 3&4: 383–393.
    [112] Park G T, Koh S U, Jung H G, et al. Effect of microstructure on the hydrogen trapping efficiency and hydrogen induced cracking of linepipe steel[J]. Corrosion Science, 2008, 50(7): 1865-1871.
    [113] Magudeeswaran G, Balasubramanian V, Madhusudhan Reddy G. Hydrogen induced cold cracking studies on armour grade high strength, quenched and tempered steel weldments[J]. International Journal of Hydrogen Energy, 2008, 33(7): 1897-1908.
    [114] Eliaz N, Shachar A, Tal B, et al. Characteristics of hydrogen embrittlement, stress corrosion cracking and tempered martensite embrittlement in high-strength steels[J]. Engineering Failure Analysis, 2002, 9(2): 167-184.
    [115]田燕.焊接区断口金相分析[M].北京:机械工业出版社, l99l.
    [116]钟群鹏,赵子华.断口学[M].北京:高等教育出版社, 2005.
    [117] Troiano A R. Trans, ASM, 52: 54, 1960.
    [118] Petch H J. Nature, 169: 842, 1952.
    [119] Beachem C D. Metal. Trans., 3: 437, 1972.
    [120]王学,施雨湘,任遥遥.用插销法研究CO2气保焊条件下SA106C铸件的冷裂纹敏感性[J].焊接学报, 2004, 25(4): 77-81.
    [121]周振丰,张文钺合编.焊接冶金与金属焊接性[M].北京:机械工业出版社,1993.
    [122] Zhang L P, Davis C L, Strangwood M. Effect of TiN particles and microstructure on fracture toughness in simulated heat-affected zones of a structural steel. Metallurgical and Materials Transactions A, 1999, 30(8): 2089-2096.
    [123] Chai F, Yang C F, Su H, et al. Effect of Magnesium on Inclusion Formation in Ti-KilledSteels and Microstructural Evolution in Welding Induced Coarse-Grained Heat Affected Zone[J]. Journal of Iron and Steel Research, International, 2009, 16(1): 69-74.
    [124]孙俊生,陈哗,等. JG590钢模拟热影响区粗晶区的组织和性能[J].机械工程材料,2007, 31(6): 76-78.
    [125]陈楚,张月嫦.焊接热模拟技术.北京:机械工业出版社, 1985.
    [126] Albert S K, Matsuil M, Hongo H, et al. Creep rupture properties of HAZs of a high Cr ferritic steel simulated by a weld simulator. Intemational Journal of Pressure Vessels and Piping, 2004, 81(3): 221-234.
    [127] Zia-ebrahimi F, Krauss G. The evaluation of tempered martensite embrittlement in 4130 steel by instrumented charpy V-notch testing[J]. Metallurgical and Materials Transactions A, 1983, 14(6): 1109-1119.
    [128]杨政,郭万林,董慧茹,等. X70管线钢冲击韧性实验研究.金属学报, 2003, 39(2): 159-163.
    [129]徐学利,辛希贤,智彦利. X80管线钢及其接头的低温韧性和显微组织[J].焊接技术, 2005, 34(3): 11-14.
    [130]周曼娜,王静宜,石崇哲,等.用示波冲击法测定42CrMo钢的冲击韧性.理化检验-物理分册, 1994, 30(1): 18-21.
    [131]史巨元.钢的动态力学性能及其应用.北京:冶金工业出版社, 1993.
    [132] GB/T 19748-2005钢材夏比V型缺口摆锤冲击试验仪器化试验方法.
    [133] Sangho K, Suk Y K, Sei J OH, et al. Correlation of the microstructure and fracture toughness of the heat-affected zones of an SA 508 steel[J]. Metallurgical and Materials Transactions A, 2000, 31(4): 1107-1119.
    [134] Spanos G, Fonda R W, Vandermeer R A, et al. Microstructural changes in HSLA-100 steel thermally cycled to simulate the heat-affected zone during welding[J]. Metallurgical and Materials Transactions A, 1995, 26(12): 3277-3293.
    [135]赵洪壮, LEE Young-kook,刘相华,等.奥氏体晶粒度对AISI4340钢贝氏体相变动力学的影响[J].材料热处理学报, 2006, 27(2): 59-63.
    [136]康煜平.金属固态相变及应用[M].北京,化学工业出版社: 2007.
    [137] Parker E R, Zackay V F. Microstructural features affecting fracture toughness of high strength steels[J]. Engineering Fracture Mechanics, 1975, 7(3): 371-374.
    [138]于少飞,钱百年. X70管线钢的局部脆化[J].材料研究学报, 2004, 18(4): 405-409.
    [139]胡丽华,张雷,许立宁,等. Cr含量对低合金耐蚀管线钢焊接接头组织和性能的影响[J].材料热处理学报, 2010, 31(3): 92-96.
    [140]付瑞东,逯允海,杨永强,等. 2.25Cr-1Mo-0.25V耐热钢焊接热影响区热模拟试验研究[J].材料热处理学报, 2007, 28(1): 66-70, 74.
    [141] Shome M. Effect of heat-input on austenite grain size in the heat-affected zone of HSLA-100 steel[J]. Materials Science and Engineering A, 2007, 445-446: 454-460.
    [142] Pimenta G, Bastian F. Effect of long-time postweld heat treatments on the mechanical properties of a carbon-manganese pressure vessel steel[J]. Journal of Materials Engineering and Performance, 2001, 10(2): 192-202.
    [143] Zia-ebrahimi F, Krauss G. The evaluation of tempered martensite embrittlement in 4130 steel by instrumented Charpy V-notch testing[J]. Metallurgical Transactions A, 1983, 14(6): 1109-1119.
    [144]刘志林,李志林,刘伟东.界面电子结构与界面性能[M]. 2002.
    [145] Shibata K, Asakura K. Transformation behavior and microstructure in ultra-low carbon steels[J]. ISIJ International, 1995, 35(8): 982-991.
    [146]陈林恒,康永林,黎先浩,等.回火温度对600MPa级低碳贝氏体钢组织和力学性能的影响[J].北京科技大学学报, 2009, 31(8): 983-987.
    [147]白世武,李午申,邸新杰,等. 07MnNiCrMoVDR钢焊接粗晶热影响区的韧化机理[J].焊接学报, 2008, 29(3): 25-28.
    [148] Sterjovski Z, Carr D G, Dunne D P, et al. Effect of PWHT cycles on fatigue crack growth and toughness of quenched and tempered pressure vessel steels[J]. Materials Science and Engineering A, 2005, 391(1-2): 256-263.
    [149]刘文西,邹美运,马福本. 30CrMnSi钢的贝氏体形态.金属学报, 1981, 17(2): 35.
    [150]方鸿生,王家军,杨志刚,等.贝氏体相变.北京:科学出版社, 1999.
    [151]魏成富,栾道成.贝氏体中脊形貌特征研究.材料热处理学报, 2001, 22(3): 14-18.
    [152]尹士科,郭怀力,王移山.焊接热循环对10Ni5CrMoV钢性的影响[J] .焊接学报, 1994, 15(3): 147-153.
    [153]彭冀湘,张田宏.二次焊接热循环对超高强度钢过热区冲击性能的影响[J].材料开发与应用, 2006, 21(3): 23-25.
    [154]于庆波;段贵生;孙莹,等.粒状贝氏体组织对低碳钢力学性能的影响[J].钢铁, 2008, 43(7): 68-71.
    [155] Tiffin Wm T.. Metallic arc welding of X4130 steel tubing[J]. welding journal (supplement), 1946: 614s-615s.
    [156]权思勇.焊接接头微型剪切试验与常规机械性能试验关系的研究[D].西南交通大学, 2002.
    [157]雷斌隆,王元良.微型剪切试验法及其在焊接技术中的应用[J].西南交通大学学报, 1990, (1): 14-20.
    [158]李一民,陈继忠,牛晓君.焊接接头的性能梯度曲线[J].焊接, 1994, (11): 4-8.
    [159]雷斌隆,陈辉,权思勇.焊接接头微型剪切试验与机械性能试验之间的关系[J].电焊机,2006, 36(8): 40-42.
    [160]张新平,史耀武,常保华.微型剪切试验法评定管线钢及其焊接接头性能的研究[J].焊管, 1996, 19(3): 7-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700