电弧摆动式窄间隙GMAW焊枪设计及研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前窄间隙熔化极气体保护焊(NG-GMAW)普遍存在侧壁熔合不足的问题,针对此问题,本文在充分调研的基础上,经过分析研究认为通过调整焊丝伸出端与侧壁的夹角,以减小电弧与侧壁的距离,可在一定程度上改善侧壁融合问题,从而提出一种电弧摆动式窄间隙GMAW焊接技术。其基本原理是以步进电机直接驱动导电杆做周期性正反转运动,导电杆末端具有一定的弯角,其与导电嘴相连,焊丝从导电嘴送出后在坡口内引弧,由导电杆的周期性摆动带动电弧在坡口内作往复运动。焊接过程中采用热输入调节范围较宽的MAG焊接方法,以达到坡口两侧壁熔透均匀、增加工艺适应性的目的。
     本文首先基于CAE方法指导,设计制造了一种新型的电弧摆动式窄间隙GMAW焊枪。设计过程着重考虑了保护气管路、冷却水回路和焊枪绝缘性能对焊枪设计的要求,提出了四种保护气管路方案,利用ANSYS Fluent分析并确定了保护气管路的设计。在完成焊枪设计制造的基础上,分别采用正交试验和单因素试验方法研究了电弧摆动参数对焊缝成形的影响程度及其影响规律,并在试验过程中通过对焊接电压和电流信号的采集和分析,研究了电弧摆动对焊接稳定性的影响,最后通过多层单道窄间隙焊接试验,验证了电弧摆动式窄间隙焊枪设计思想的可行性。
     试验结果表明:电弧摆动式窄间隙焊枪焊接时气体保护效果良好,冷却水可保证焊枪长时间工作,焊枪绝缘可靠完全避免了侧壁起弧。研究表明:电弧的摆动速度和摆动角度是获得较宽焊缝的两个关键因素,为了获得成形一致的焊缝,电弧的摆动速度与侧壁停留时间必须配合好,否则会出现S形焊缝;焊接电压和电流信号分析表明,电弧摆动式窄间隙焊枪对于熔滴过渡有一定影响,但是仍能够保证焊接过程的稳定性;多层单道焊的试验结果表明,在电弧摆动参数合适、焊丝末端在窄间隙坡口中的空间位置得以精确控制条件下,可获得侧壁熔合良好,表面成形均匀的焊缝,这为该工艺的进一步研究奠定了一定基础。
A problem of penetration at both groove sides is widespread in the application of Narrow Gap Gas Metal Arc Welding (NG-GMAW). After a study and analysis of lots of research achievements on this issue, it`s found that the penetration at groove sides can be improved to some extent by regulating the angle between welding wire tip and groove sides to decrease the distance between arc and groove sides. So a process of NG welding with arc-swing is proposed as a solution, which utilizes one stepper motor to drive a conductive rod. A part bended in an angle connects the conductive rob and contact tube. Welding wire gets though the tube into the groove and ignites. Because of periodic motion of the conductive rob in clockwise and anticlockwise, the arc swings between groove sides. In order to get proper and uniform penetration and high-adaptive process, MAG welding is applied due to its wide range heat input.
     Firstly, based on the CAE results, a new NG-GMAW torch with arc -swing is developed. The shielding gas nozzle, cooling water cycle and insulation of conduct tube are taken into consideration. With the assistance of ANSYS Fluent, a proper shielding gas nozzle solution is chosen. Orthogonal test and signal factor test are carried out to study the influence of swing parameters on appearance of weld. The data of welding current and voltage are acquired to study the influence of swinging arc on welding stability. At last a multi-layer single pass welding test is carried out to verify the feasibility of the process.
     The test results indicate that the shielding gas is sufficient, the cooling system can guarantee the torch for long-time-work, and the insulation is reliable for avoiding arc ignition between torch body and groove side-walls. Swinging velocity and swinging angle are key factors for getting wide weld beam. The swinging velocity and side holding-time should be well-matched in order to get uniform weld, otherwise an S-shape weld will occur. Analysis of welding current and voltage shows that the swinging arc has a little influence on the droplet transfer, but the stability of welding process can be guaranteed. The result of multi-layer with single pass welding test shows that a unified penetration on groove sides can be obtained under condition of accurately controlled wire tip position and proper welding parameters, which lays a certain foundation for further research of the process.
引文
[1]国家发展和改革委员会.核电中长期发展规划(2005~2020年)[R]. 2007年10月
    [2] D. H. Mortvedt. Evaluation of The Usability and Benefits of Twist Wire GMAW and FCAW Narrow Gap Welding[J]. Journal of Ship Production,1986,2(1):23-33
    [3]佐藤昭三,下山仁一,松本长,等.屈曲ワイヤ式狭开先GMA溶接法の研究(第1报)[C].溶接学会全国大会講演概要,1981-09-23(29):286-287
    [4] V. Y. State-of-the-art of narrow gap welding [J]. Welding Journal,1983, 62 (4):43-48
    [5]日本焊接学会.窄间隙焊接[M].尹士科,王振家译.北京:机械工业出版社,1988
    [6]张富巨,罗传红.窄间隙焊及其新进展[J].焊接技术,2000,29 (6):33-36
    [7]胡存银,张富巨.窄间隙焊接的技术与经济特性分析[J].焊接技术2001, 30 (2):47-48
    [8]张富巨,罗传红.窄间隙焊接技术中焊接方法特性的遗传[J].焊接技术200208, 31 (4):8-10
    [9] P. J. MODENESI. Statistical Modelling of the Narrow Gap Gas Metal Arc Welding Process [D].England, Cranfield Institute of Technology. 1990
    [10]赵博.窄间隙MAG焊电弧行为研究[D].黑龙江:哈尔滨工业大学.2009年,23-28
    [11]胡存银,刘桂雄,肖炎,等.电弧作用位置对厚板侧壁连续熔合的影响[J].华东理工大学学报. 2002年02月,30(2):91~93
    [12]赵博,范成磊,杨春利,等.窄间隙GMAW的研究进展[J].焊接. 2008年第2期:11-15
    [13] V.Y. Malin. Monograph on narrow-gap welding technology[C]. WRC Bulletin. 1987:323
    [14] Sawda, K. Hori, M. Kawahara. Application of Narrow-Gap Process [J]. Welding Journal. 1979, 58(9):17-25
    [15]中村照美,平岡和雄.GMA溶接におけるワイヤ突出し部の非定常熱伝導解析—超狭開先GMA溶接プロセスの開発 (第2報)[J].溶解学会论文集. 2002第20卷第1号:53-62
    [16]中村照美,平岡和雄,高橋誠,等.シルドガス組成制御によるGMA溶接プロセスの開発 :超狭開先GMA溶接プロセスの開発(第3報)[J].溶解学会论文集. 2002第20卷第2号:237-245
    [17]中村照美,平岡和雄.位相制御型GMA溶接プロセスによる開先内でのア-ク入熱分布制御,超狭開先GMA溶接プロセスの開発(第4报)[J].溶接学会論文集,2002,20(2):246
    [18]张贵锋,张建勋.日本关于超细晶粒钢制备与焊接新工艺的研究进展[J]. 2005年9月,1(99):94-96
    [19] KANG Y. H., NA S. J. Characteristics of Welding and Arc Signal in Narrow Groove Gas Metal Arc Welding Using Electromagnetic Arc Oscillation [J]. Welding Journal, May 2003,82(5):93S-99S
    [20]叶野元己,富田孚,横田久昭,等.CSP TIGを用いるアルミニウム合金厚板横向溶接のギャップに対する検討[C].溶接学会全国大会講演概要(19), 1976-10-04:320-321
    [21] Cicero M.D. Starling, Paulo V. Marques, Paulo J. Modenesi. Statistical modelling of narrow-gap GTA welding with magnetic arc oscillation[J],Journal of Materials Processing Technology,Volume 51, Issues 1-4, April 1995:37-49
    [22] Hirokazu Nomura, Yuji Sugitani, Masatoshi Murayama. Development of Automatic Fillet Welding Process with High Speed Rotating Arc [J]. Transactions of the Japan Welding Society,1986.08,4(3):18-23
    [23]王加友,国宏斌,杨峰.新型高速摆动电弧窄间隙MAG焊接[J].焊接学报,2005,26(10): 65-67
    [24]王加友,杨峰,国宏斌.空心轴电机驱动的旋转电弧窄间隙焊炬:中国,ZL200520070050.3[P],2006年5月3日
    [25] Wang Jiayou, Guo Hongbin, Yang Feng. Development of a new rotation arc system for narrow gap MAG welding[C]. Proc.of ICMEM 2005, 2005:1220-1222
    [26]王加友,杨峰,国宏斌.一种旋转电孤窄间隙焊接用气体保护装置:中国,200610038184.6[P],2006年7月26日
    [27]王加友,杨峰,国宏斌.空心轴电机驱动的旋转电弧窄间隙焊接方法及装置:中国,200510038527.4[P],2005年8月24日
    [28] Wang J.Y., Ren Y. S., Yang F, et al. Novel rotation arc system for narrow gap MAG welding.[J] Science and Technology of Welding and Joining 2007, 12 (6):505-507
    [29]郭宁,林三宝,范成磊,等.横向GMAW熔池控制研究进展[J].焊接2009,第9期:21-25.
    [30]杨学谦,横焊摆动轨迹的研究[J].焊接学报1980年11月, 1 (4):197-204
    [31] Guo N., Lin S. B., Zhang L., et al, Metal transfer characteristics of rotating arc narrow gap horizontal GMAW [J]. Science and Technology of Welding and Joining 2009, 14 (8):760-764
    [32] YANG C. L., GUO N., LIN S. B., FAN C. L., et al. Application of rotating arc system to horizontal narrow gap welding [J]. Science and Technology of Welding and Joining,2009, 14(2):172-177
    [33]孙松年.潜艇壳体的窄间隙气体保护焊[J].造船技术,1991年08期:36-38
    [34]路浩,刘雪松,杨建国,等.低碳钢双丝焊平板横向残余应力超声波法测量[J]. 2008年5月,29(5):30-32
    [35]范成磊,孙清洁,赵博,等,双丝窄间隙熔化极气体保护焊的焊接稳定性[J].机械工程学报,2009年7月,45(7):265-269
    [36]赵博,范成磊,杨春利,等,双丝共熔池窄间隙MAG焊方法的工艺研究[J].焊接,2008第1:34-37
    [37]赵博,范成磊,杨春利,等,双丝窄间隙焊接工艺参数对焊缝成形的影响[J].焊接学报,2008年6月,29(6):81-84
    [38]卢本,黄河. ESAB(瑞典)窄间隙焊接工作站技术分析[J].电焊机,1999,29(8):29~32
    [39]姜轶.伊萨公司——HNG系列窄间隙埋弧焊接系统[J].电焊机.1997年第1期:41~44
    [40]林尚扬,杨书田,曹伯华,等.双丝窄间隙埋弧焊工艺及设备的研究[J].焊接. 1986年第3期:14~19
    [41]王天先.双丝窄间隙埋弧焊的推广及应用[J].现代焊接. 2008年第11期:32~33
    [42]任世宏,余勇,王天先,等.双丝窄间隙埋弧焊技术在厚壁加氢反应器中的应用[J].现代焊接. 2009年第1期总第73期:40~44
    [43] M. Hamadou,R. Fabbro,F. Coste, et al. Experimental study of CO2 laser welding inside a groove—Application to high thickness laser welding [J]. Journal Of Laser Applications, 2005.08,17(3):178-182
    [44]李俐群,陶汪,朱先亮.厚板高强度钢激光填丝多层焊工艺[J].中国激光,2009年5月,36(5):1251~1255
    [45]肖荣诗,康黎,杨武雄,等.高强铝合金厚板窄间隙激光焊接新工艺[J].新技术新工艺,2006年第5期:63~65
    [46] SHIN Minhyo,NAKATA Kazuhiro. Single pass full penetration welding of high-tensile steel thick-plate using 4 KW fiber laser and MAG arc hybrid welding process [J].熔接学会論文集, 2009年,第27卷第2号:80S~84S
    [47]西门子公司.借助摆动电极的窄间隙埋弧焊接方法:中国,200680029220.0 [P]. 2008年11月19日
    [48]张良锋,杨公升,许威,等.窄间隙热丝TIG焊技术经济特性分析与发展现状[J].石油工程建设[J],2011年4月,37(2):42-44
    [49]徐祥久,李宜男.窄间隙热丝TIG焊接工艺研究及缺陷分析[J].电焊机.2010年2月,4(02):27-29
    [50]刘自军,潘乾刚.窄间隙脉冲热丝TIG焊在集箱环峰焊接中的应用[J].东方电气评论. 2007年3月,21(1):35-40
    [51] Hori K, Takuwa T, Nagashima T, et al. Development of oscillation TIG hot-wire equipment for narrow gap welding--study of hot wire welding process(report 11)[J]. Japan Weld Soc. 1995,57(10):115-116
    [52] G. A. Fedorenko, G. M. Andreev. Efficiency of gas shielding in welding joints with deep and narrow gaps[J]. Welding International, July 2010,Vol. 24, No. 7:533-539
    [53] G. A. Fedorenko, I. V. Ivanova and K. A. Sinyakov. Improving the efficiency of welding in shielding gases in windy conditions [J]. Welding International, June 2001, Vol.25, No. 6:484-490
    [54] G. A. Fedorenko, O. V Trofimenko. Effect of thr toroidal vortex on the efficiency of gas shielding of the welding zone [J]. Welding International. October 2008,Vol.22, No.10:735~740
    [55] D. A. Johnson, P. Orakwe and E. Weckman. Experimental examination of welding nozzle jet flow at cold flow conditions [J]. Science and Technology of Welding and Joining. November 2006, Vol.11 No. 6:681~687
    [56] Markus Raffel, Christian E. Willert, Steve T. Wereley, Jürgen Kompenhans. Particle Image Velocimetry: A Practical Guide [M]. 2007, New York, Springer
    [57] M. Dreher, U. Füssel, M. Schnick. Numerical Optimization of Gas Metal Arc Welding Torches Using ANSYS CFX[C]. 63rd Annual Assembly & International Conference of the International Institute of Welding, 11-17 July 2010, Istanbul, Turkey
    [58] B. J Corleet, J. Lucas and J. S. Smith. Sensors for narrow-gap welding [J]. IEE Proceedings-A, July 1991,Vol.138,No.4: 213~222
    [59] SERIZAWA Hisashi. Theoretical Prediction of Welding Hot Cracking and Its Control [J]. Transaction of Japan Weld Society, 2003, 32(1):65-70
    [60] Shibahara, M., Finite Element Simulation of Pear-shaped Bead Cracking in Narrow Gap Welding[C]. Proceedings of The Thirteenth (2003) International Offshore and Polar Engineering Conference 2003, 6
    [61] WU Yanming, SIBAHARA Masakazu, NAKAMURA Terumi, et al. Influence of Heat Input Distribution Parameters on Formation of Pear-shaped Bead Cracking in Narrow Gap Welding[C]. Proceedings of the 14th ISOPE, May 2004:105-108
    [62] ONO Hidehiko, TERAMOTO Tomihiko, OBAT RenA, Average Heat Quantity of Molten Droplets in Narrow-gap MAG Welding [J]. Transaction of Japan Weld Society Apr.1983, 14 (1):3-8
    [63] Jun MATUMOTO, R. O., Tomihiko TERAMOTO, Hidehiko ONO, Some Characteristics of theElectrode Melting Phenomena in Narrow Gap Arc Welding(Rept.-II): Effect of Shielding Gas Composition [J]. Transaction of Japan Weld Society, 1981, 12 (2):3-7
    [64] UEDA Yukio, TAKAHASHI Eiji, FUKUDA Keiji, et al. Multipass Welding Stresses in Very Thick Plates and Their Reduction from Stress Relief Annealing [J]. Transaction of JWRI, 1976, 5 (2):179-189
    [65] UEDA Yukio, TAKAHASHI Eiji, FUKUDA Keiji, et al. Application of Plastic Node Method to Thermal Elastic-Plastic and Dynamic Problems (Welding Mechanics, Strength & Design) [J]. Transactions of JWRI,1984, 13(2):311-322
    [66] UEDA Yukio, MURAKAWA Hidekazu. Applications of Computer and Numerical Analysis Techniques in Welding Research [J]. 1984, 13 (2):337-346
    [67]王建,延迟裂纹的危害及原因分析[J].金属加工,2008第12期:80-82
    [68] R. Ito, K. Hiraoka, C Shiga. Softening characteristics in ultra-narrow gap GMA welded joints of ultra-fine grained steel [J]. Science and Technology of Welding and Joining, July 2005, 10 (4):468-474
    [69]刘勇谋. CAE软件发展的新动向[J]. CAD/CAE与制造业信息化,2001第2期:83-86
    [70]于思远.工程陶瓷材料的加工技术及其应用[M].北京:机械工业出版社,2008.3
    [71]傅政编著.橡胶材料性能与设计应用[M]. 2003年10月,北京:化学工业出版社
    [72]朱余荣,钱聚瑛,王震澄.结构新颖的窄间隙MIG焊枪-椭圆形敞开喷嘴焊枪[J].焊接技术. 1992年第5期:26-27
    [73] Gerald Garfield, Cecil H. Rout. Deep Narrow Gap Welding Torch. USA, 3826888[P] July 30,1974
    [74] GB/T8110-2008气体保护电弧焊用碳钢、低合金钢焊丝产品质量[S]
    [75]陈启武.引起焊丝翘距的残余应力分析[J].金属制品,2006年10月,第32卷第5期:29-29
    [76]张富巨,章少华,张国栋.一种超窄间隙熔化极气体保护自动焊焊炬及其制造方法:中国,200110060991.9[P]. 2005.03.30
    [77]邓元望,袁茂强,刘长青.传热学[M].北京:中国水利水电出版社,2010.4
    [78]杨乾铭.水下焊接电弧温度的光谱诊断研究[D].广东:华南理工大学.1996
    [79]刘宝廷,程树康等编著.步进电动机及其驱动控制系统[M].哈尔滨:哈尔滨工业大学出版社,1997
    [80]王彦军,李增生.基于PLC的步进电机控制.[J]科学技术与工程,2011年2月第11卷第5期:1077-1079
    [81]安滕宏平,长谷川光雄.焊接电弧现象[M].施雨湘译,北京:机械工业出版社,1985
    [82]黄石生.弧焊电源及其数字化控制[M].北京:机械工业出版社,2006.10
    [83]尹士科.焊接材料及接头组织性能[M].北京:化学工业出版社,2011年5月:79-80
    [84]万文,熊震宇.基于LabVIEW的焊接过程分析系统软件设计[J].电焊机,第40卷第3期,2010年3月:43-45
    [85]白岩,高洪明,路浩,等.基于LabVIEW的熔化极等离子弧焊接电弧信号分析[J].焊接学报,第27卷第8期,2006年8月:59-62
    [86]许先果,叶延洪,周开庆,等.弧焊过程智能检测分析系统的建立与应用[J].中国机械工程,第15卷第15期,2004年8月:1362-1364
    [87]李如雄.基于点焊过程的电信号分析系统的研究[J].机械设计与制造,2010年9月第9期:92-94
    [88]陈树学,刘萱. LabVIEW宝典[M]. 2011.03,北京:电子工业出版社
    [89]谢文和.传感器及其应用[M].北京:高等教育出版社,2003:57-58
    [90]王会霞,王军,胡云岩,等.基于LabVIEW的短路过渡过程的检测与分析[J].焊接技术,2009年5月,38(5):32-36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700