薄板AZ31B镁合金Nd:YAG脉冲激光焊接性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与其他结构材料相比,镁合金具有比刚度、比强度高、易回收等一系列的优点,在汽车、航空、航天和国防军事工业等众多领域都具有极其重要的应用价值。镁以其资源丰富而受到更加的重视。但是由于镁合金本身的焊接冶金性能差,其连接技术依然是制约镁合金进一步应用的技术瓶颈。因此,利用高能量密度的激光对镁合金连接技术的研究具有重要的实际意义。
     本文利用500W脉冲Nd:YAG固体激光器对薄板AZ31B变形镁合金进行焊接性研究。研究镁合金激光自熔焊工艺性能,探索了Nd?YAG脉冲激光焊接镁合金的一般原则;研究了YAG激光焊对接接头的物相、显微组织、力学性能、断口形貌以及电化学腐蚀性能;分析了激光焊接存在的主要缺陷及产生机理,并提出了相关的预防措施和改善方法。
     对2mm厚AZ31B变形镁合金进行自熔焊工艺性研究,发现在相同的平均功率下采用不同的脉冲宽度和脉冲频率对焊缝熔深熔宽的影响有很大差别,峰值功率和脉冲宽度是影响焊缝熔深熔宽的主要参数。为了提高脉冲YAG激光与镁合金的耦合效率,脉冲YAG激光焊接镁合金时应遵循较大脉宽(>3ms)、较低频率(<60Hz)、适当峰值功率的原则。
     基于以上脉冲YAG激光焊接AZ31B镁合金的原则,对1mm AZ31B镁合金进行对接焊接试验,确定最佳工艺参数为:脉冲宽度(tp)=4.5ms,脉冲频率(f)=30Hz,平均功率(P)=253W,峰值功率(pp)=1.87kW,焊接速度(v)=5mm/s,占空比(CT)=16%,保护气体为Ar,侧面保护气体流量为15mL/min,离焦量(△)=+3mm。
     YAG激光焊缝的显微组织主要是由晶粒细小的α-Mg固溶体和呈颗粒状弥散分布在α-Mg固溶体内的β-Mg17Al12相组成。由于激光焊接时产生的较大过冷度使焊缝区晶粒得到了明显的细化,晶粒尺寸从母材的35μm细化到了10μm。焊缝区除了在熔合线附近存在少量的柱状晶外,其它区域均为细小的等轴晶,晶粒尺寸从熔合线到焊缝中心有明显的变化,从柱状晶区到晶粒较大的等轴晶区到晶粒较细小的等轴晶区再到焊缝中心的晶粒较大的等轴晶区,过渡界面清晰可见。焊缝深度方向的晶粒大小变化不大。
     AZ31B镁合金母材的抗拉强度为234.75MPa,激光焊缝的抗拉强度为180.63MPa,达到母材的76.78%。母材的断口形式主要为解理断裂,焊接接头的断口形式为准解理断裂和韧性断裂的混合断裂,母材的脆性断裂倾向比焊接接头的大。母材的硬度大约为55HV0.05左右,焊缝的硬度比母材的提高了12.7%~30.9%,最大硬度值可达72HV0.05,这主要是受细晶强化和沉淀强化共同作用的结果。硬度的最大位置出现在焊缝的次中心区,非中心部位。母材的平均自腐蚀电位为-1471mV,焊缝的平均自腐蚀电位为-1384mV,比母材的提高了87mV,母材的平均自腐蚀电流为1184mA,焊缝的自腐蚀电流为1128mA,焊缝的自腐蚀电流比母材的减小了56mA。抗腐蚀性能得到提高。
     进一步对AZ31B镁合金YAG激光自熔焊和对接焊的缺陷进行了分析研究,发现主要缺陷是焊接裂纹和合金元素的烧损。裂纹主要是结晶裂纹,镁合金有较大的结晶裂纹倾向。少数裂纹在扩展过程中出现多次分叉的现象。将焊后没有出现裂纹的试样在一定拘束应力下静置48小时后,进行表面检查和解剖观察,没有发现任何形式的延迟裂纹
Compared with other structural materials, magnesium alloys have a large of advantages, and they have extremely important value in the automotive, electronics, transportation, aviation, aerospace and defense, military industry and many other field. Magnesium alloys have been paid more attention to because of its rich resources with the traditional metal mineral resources depleted. However, the connection technology is still technology bottleneck which restricts the further application of magnesium alloy due to its magnesium alloy poor welding metallurgy performance. Therefore, study on the connection technology of magnesium alloy has important practical significance using laser which has many advantages.
     In this paper, laser welding properties of AZ31B magnesium alloy thin sheet are researched using 500W pulsed Nd:YAG solid state laser, hoping to discover the general principles which can guide pulsed YAG laser welding of magnesium alloy; the phase, microstructure , mechanical properties, fracture morphology and the electrochemical corrosion of the YAG laser butt joints are studied; the mechanism and the major defects of the laser welding process are analysed , and relevant prevention measures and solutions are put forward.
     Firstly, laser self-fusion welding processing properties of 2mm thick AZ31B magnesium alloy are studied, finding different pulse width and pulse frequency have a large influence on weld width and deep penetration under the same average power , the peak power and pulse width are the main parameters which affected weld width and deep penetration. To improve the coupling efficiency between pulsed YAG laser and magnesium alloys, pulsed YAG laser welding of magnesium alloys should be followed by the principle of a larger width(>3ms), low frequency(<60Hz), proper peak power.
     Based on the general principles of pulsed YAG laser welding of magnesium alloys AZ31B, 1mm AZ31B magnesium alloy is welded in the butt-welded form, the optimum process parameters: pulse width(tp)=4.5ms, pulse frequency(f)=30Hz, average power(P)=253W, peak power(pp)=1.87kW, welding speed(v)=5mm/s, duty cycle (CT)=16%, protective gas is Ar, side protection gas flow 15mL/min, defocusing (△)=+3mm.
     The microstructures of YAG laser butt-welded joints mainly consist of fineα-Mg grain andβ-Mg17Al12 phases which dispersed in theα-Mg solid solution. grains in weld area is significantly refined by large undercooling rate during laser welding, grain size is refined from the original 35μm to 10μm. In addition to few columnar crystals near the fusion line, other regions consist of fine equiaxed grains. The grain size has significant change from fusion line to weld center, changing from columnar crystals area to the fine equiaxed grains area to more fine equiaxed grains area, and then to fine equiaxed grains area in weld center, and the transition interface is clearly visible. the grain size along weld depth direction has little change. Tensile strength of butt-welded joint is 180.63 MPa, which is 76.78% of that of the base material. The form of base metal fracture is mainly cleavage fracture, fracture of welded joints form is the mixed fracture of quasi-cleavage fracture and ductile fracture, brittle fracture tendency of the base metal of welded joints than big. compared with the base metal, micro-hardness of butt-welded joint increased by 12.7%~30.9% in the interaction of grain refinement and precipitation strengthening. the maximum value of macrohardness is 72HV0.05, but the location in which microhardness is maximum is not weld center. the average corrosion potential of YAG laser butt-welded joint is -1384mV, compared with substrate materail, increasing by 87mV. The average corrosion current of base metal is 1184mA, and corrosion current of the welded joint is 1128mA, compared with substrate materail, reducing 56mA. improving corrosion resistance.
     Finally, massive experimental results show that major defects in YAG laser butt welding and self-fusible welding of AZ31B magnesium alloy and butt welding are welding cracks and burning of alloying elements. Welding cracks are mainly solidification cracking, and magnesium alloy have greater tendency to solidification cracking. few crack appears the phenomenon of many-times bifurcation, there is no cracks is observed in the sample for 48 hours under certain restraint stress After surface examination and anatomical, finding none form of delayed crack.
引文
[1]陈振华.镁合金[M].北京,化学工业出版社, 2004.7.
    [2]国家发展和改革委员会技术产业司,中国材料研究学会.中国新材料产业发展报告-镁及镁合金(潘复生等编写)[M].北京:化学工业出版社, 2004.9: 115~142.
    [3]吉泽升.日本镁合金研究进展及新技术[J].中国有色金属学报, 2004,14(12): 1977~1984.
    [4]黎文献.镁及镁合金[M].长沙,中南大学出版社, 2005.11.
    [5]冯吉才,王亚荣,张忠典.镁合金焊接技术的研究现状及应用[J].中国有色金属学报, 2005, (15)2 : 165-178.
    [6] Kazuhiro N. Weldability ofmagnesium alloy[J]. Journal of L ightMetalWelding & Construction, 2001, 39 ( 12) : 26 35.
    [7] X. Cao, M. Jahazi, J.P. Immarigeon, et.al. A review of laser welding techniques for magnesium alloys[J]. Journal of Materials Processing Technology 171 (2006) 188–204.
    [8] K.G. Watkins, in: H.I. Kaplan (Ed.), Laser Welding of Magnesium Alloys[J]. Magnesium Technology 2003, TMS Annual Meeting and Exhibition, San Diego, CA, 2–6 March 2003, pp. 153–156.
    [9]王红英,梁雪峰.镁合金激光焊接技术的研究现状与应用[J].焊接, 2005,(11) : 9-13.
    [10]张津,章宗和.镁合金及应用.北京:化学工业出版社, 2004.
    [11]宋刚,刘黎明.变形镁合金AZ31B的激光焊接工艺研究[J].应用激光, 2003, 23(6) : 327-329.
    [12]王继锋,刘黎明.激光焊接AZ31B镁合金接头微观组织特征[J].焊接学报, 2004, 25(3) : 15-18.
    [13] Lung Kwang Pana, Che Chung Wang. Optimization of Nd:YAG laser welding onto magnesium alloy via Taguchi analysis[J]. Optics & Laser Technology, 2004, 37 : 33– 42.
    [14] Jinhong Zhu , Lin Li. CO2 and diode laser welding of AZ31 magnesium alloy[J]. Applied Surface Science, 2005, 247 : 300–306.
    [15]王红英. AZ31镁合金薄板的CO2激光焊接接头性能[J].焊接, 2006, 2 : 47-50.
    [16]王红英. AZ61镁合金激光焊接接头的组织与性能[J].中国有色金属学报, 2006, 16(8) : 1388-1393.
    [17] H.Y. Wang, and Z.J. Li. Investigation of Laser Beam Welding Process of AZ61 Magnesium-based Alloy. Acta metallurgica sinica, 2006, 19(4) : 287-294.
    [18]王红英,李志军.焊接工艺参数对镁合金CO2激光焊焊缝表面成形的影响[J].焊接学报, 2006, 27(2) : 64-68.
    [19]全亚杰,陈振华. AM60变形镁合金薄板激光焊接接头的组织与性能[J].中国有色金属学报, 2008, 17(4) : 525-529.
    [20] Yajie Quan, Zhenhua Chen. CO2 laser beam welding of dissimilar magnesium-based alloys[J]. Materials Science and Engineering A, 2008, 496 : 45-51.
    [21] R.S. Coelho , A. Kostka. Microstructure and mechanical properties of magnesium alloy AZ31B laser beam welds[J]. Materials Science and Engineering A 2008, 485, 20–30.
    [22]单际国,雷祥. AZ31B变形镁合金CO2激光焊接模式及焊缝成形特点[J].焊接学报, 2008, 29(4) : 9-12.
    [23] Y.J. Quan, Z.H. Chen. Effects of heat input on microstructure and tensile properties of laser welded magnesium alloy AZ31[J]. Material Scharacterization, 2008,59 : 1491– 1497.
    [24]包海涛,刘金合.真空激光焊接工艺参数对AZ31镁合金熔深的影响及缺陷分析[J].应用激光, 2008, 28(5) : 366-370.
    [25] H. Al-Kazzaz , M. Medraj , X. Caob, et.al. Nd:YAG laser welding of aerospace grade ZE41A magnesium alloy: Modeling and experimental investigations [J]. Materials Chemistry and Physics, 2008, 109 : 61–76.
    [26] Pawel Kolodziejczak, Wojciech Kalita. Properties of CO2 laser-welded butt joints of dissimilar magnesium alloys[J]. journal of materials processing technology 2009, 209 : 1122–1128.
    [27] Eboo M, Steen W, Clarke J . Arc Augmented daser Welding[A] . Proc. 4th Int . Conf . on‘Advances in welding processes’[C]. Abington , The Welding Institute. 1978 : 257~265.
    [28]宋刚,刘黎明.激光-TIG复合焊接镁合金AZ31B焊接工[J].焊接学报, 2004, 25(3) : 31-34.
    [29] Liu Liming, Wang Jifeng. Hybrid laser–TIG welding, laser beam welding and gas tungsten arc welding of AZ31B magnesium alloy[J]. Materials Science and Engineering A, 2004, 381 :1 29–133.
    [30]王红阳,迟明声,刘黎明.激光—氩弧复合热源焊接镁合金残余应力分析[J].焊接学报, 2006, 27(11) : 33-36.
    [31]郝新锋,刘黎明.镁合金激光氩弧复合热源冷填丝焊接工艺[J].焊接学报, 2007, 28(5) : 78-80.
    [32]谭兵,高明. AZ31B变形镁合金激光2MIG复合焊焊接组织和性能分析[J].航空材料学报, 2008, 28(6) : 36-40.
    [33]冯杰才,陈高东. AZ31激光-MIG复合热源焊接参数对焊缝形貌的影响[J].兵器材料科学与工程, 2009, 32(2) : 100-103.
    [34]高明,曾晓雁. MB8镁合金激光- MIG复合焊接分析[J].焊接学报, 2009, 30(2) :71-74.
    [35]高明,谭兵,冯杰才.工艺参数对AZ31镁合金激光?MIG复合焊缝成形的影响[J].中国有色金属学报, 2009, 19(2) : 222-227.
    [36]周惦武,庄厚龙. Mg合金系中形成的中间相-金属间化合物的作用机理[J].材料导报, 2005,19(1) : 56~59.
    [37] M.-X.Zhang, P.M.Kelly. Crystallography of Mg17Al12 precipitates in AZ91D alloy[J]. Scripta Materialia, 2003, 48 : 647~652.
    [38] S.M. Fatemi-Varzaneh, A.Zarei-Hanzaki, H.Beladi. Dynamic recrystallization in AZ31 magnesium alloy[J]. Materials Science and Engineering A 456(2007): 52~57.
    [39] Tianping Zhu, Wei Gao. Incipient melting in partially melted zone during arc welding of AZ91D magnesium alloy[J]. Materials Science and Engineering A, 2006, 416 : 246~252.
    [40] Ju Yeon Lee, Do Hyung Kin, et.al. Effects of Zn/Y ratio on microstructure and mechanical properties of Mg-Zn-Y alloys[J]. Materials Letters 2005, 59 : 3801~3805.
    [41]王业双,王渠东. Zn和RE对Mg-9Al合金热裂倾向性的影响[J].中国有色金属学报, 2003,13(1): 40~45.
    [42]黄正华,郭学锋. Si对AZ91D镁合金显微组织与力学性能的影响[J].材料导报, 2004, (6) : 28~32.
    [43]艾延龄,罗承萍.含Ca及Si镁合金的显微组织及力学性能[J].中国有色金属学报, 2004, 14(11) : 1844~1849.
    [44]艾延龄,罗承萍.含Ca,Si镁合金的铸态组织及其形成机制[J].金属学报, 2005, 41(11) : 49~54.
    [45]王迎新,关绍康,王建强,等RE对Mg-8Zn-4Al-0.3Mn合金组织的影响[J].中国有色金属学报, 2003,13(3): 616~621.
    [46]王立世,段汉桥.混合稀土对AZ91镁合金组织和性能的影响[J].特种铸造及有色合金, 2002(3): 12~14.
    [47]刘斌,刘顺华,金文中,等稀土在镁合金中的作用和影响[J].上海有色金属, 2003,24(1): 27~31.
    [48]李金锋,耿浩然.钇对AZ91镁合金组织和力学性能的影响[J].铸造, 2005,54(1): 53~56.
    [49] Honghui Zou, Xiaoqin Zeng, et.al. The effects of yttrium element on microstructure and mechanical properties of Mg-5wt.%Zn-2wt.%Al alloy[J].Materials Science and Engineering A 402(2005): 142~148.
    [50] Kaikun Wang, Yonglin Kang, Kui Zhang. Effects of rare earth elements on the microstructure and properties of magnesium alloy AZ91D[J]. Journal of University of Scienceand Technology Beijing, 2002,9(5): 363~366.
    [51] ZHOU Hai-tao, ZENG Xiao-qin, et.al. Effect of La and Nd on microstructures and mechanical properties of AZ61 wrought magnesium alloy[J]. Trans. Nonferrous Met. Soc. China, 2004,14(1): 67~70.
    [52] HUANG Zheng-hua, GUO Xue-feng, et.al. Effects of Ce on damping capacity of AZ91D magnesium alloy[J]. Trans. Nonferrous Met. Soc. China, 2004,14(2): 311~315.
    [53] X. Cao, W. Wallace, C. Poon, J.P. Immarigeon, Research and progress in laser welding of wrought aluminum alloys.[J]. Laser welding processes, Mater. Manufact. Process. 18 (1) (2003) 1–22.
    [54] [46] X. Cao, W. Wallace, J.P. Immarigeon, C. et.al. Research and progress in laser welding of wrought aluminum alloys[J]. Metallurgical microstructures, defects and mechanical properties, Mater. Manufact. Process. 18(1) (2003) 23–49.
    [55] E. Aghion, B. Bronfin. Magnesium alloys development towards the 21st century[J]. Mater. Sci. Forum 350–351 (2000) 19–28.
    [56] M. Pastor, H. Zhao, T. DebRoy. Continuous wave-Nd:yttrium–aluminium–garnet laser welding of AM60B magnesium alloys[J]. Laser Appl. 12 (3) (2000) 91–100.
    [57] M. Marya, G.R. Edwards. The laser welding of magnesium alloy AZ91[J]. Weld World 44 (2) (2000) 31–37. 58] X. Cao, M. Xiao, M. Jahazi, et.al. Continuous wave Nd:YAG laser welding of sand-cast ZE41A-T5 magnesium alloys[M]. Mater. Manufact. Process., in press.
    [59] H. Zhao, T. DebRoy. Pore formation during laser beam welding of diecast magnesium alloy AM60B– mechanism and remedy[J]. Weld. J. 80(8) (2001) 204S–210S.
    [60]张文钺.焊接冶金学(基本原理)[M].北京,机械工业出版社, 2005.4.
    [61] B.S. You, M.H. Kim, W.W. Park, et.al.Change in oxide film characteristics of magnesium alloy by the addition of calcium and minor element[J]. in: Proceedings of the International Conference on Light Materials for Transportation System (LIMAT-2001), Pusan, Korea, 6–10 May, 2001, pp. 943–948, Vol. 2.
    [62] H. Alves, U. Koster, E. Aghion, et.al.Environmental behavior of magnesium and magnesium alloys[J]. Mat. Tech. Adv. Perf. Mat. 16 (2) (2001) 110–126.
    [63] Z. Sun, D. Pan, J. Wei. Comparative evaluation of tungsten inert gas and laser welding of AZ31 magnesium alloy[J]. Sci. Technol. Weld. Join.7 (6) (2002) 343–351.
    [64] Yih-fong, Tzeng. Parametric analysis of the pulsed Nd:YAG laser seam-welding process[J], Journal of Materials Processing Technology 102 (2000) 40-47.
    [65]高亚丽,王存山,刘红宾,等.激光功率对AZ91HP镁合金熔凝层组织和性能影响[J].大连理工大学学报, 2007,47(4): 469~472.
    [66] G. Song, A. Atrens, M. Dargusch. Influence of microstructure on the corrosion of die cast AZ91D[J]. Corrosion Science 41 (1999) 249–273.
    [67] Y.J. Ko, C.D. Yim, J.D. Lim, et.al. Effect of Mg17Al12 precipitate on corrosion behavior of AZ91D magnesium alloy[J]. Material Science Forum 419–422 (2003) 851–856.
    [68] D. Eliezer, P. Uzan, E. Aghion. Effect of second phases on the corrosion behavior of magnesium alloys[J]. Material Science Forum 419–422 (2003) 857–866.
    [69] Naing Naing Aung, Wei Zhou.?Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy[J]. Corrosion Science, 52(2010) 589–594.
    [70]?G. Abbas, Z. Liu, P. Skeldon. Corrosion behaviour of laser-melted magnesium alloys[J]. Applied Surface Science, (2005) 347–353.
    [71] Tao Zhang, Ying Li, Fuhui Wang. Roles ofβphase in the corrosion process of AZ91D magnesium alloy[J]. Corrosion Science, 48(2006) 1249–1264.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700