用户名: 密码: 验证码:
液压衬套动力学特性实测与建模计算方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液压衬套是应用在车辆底盘各系统与车身之间的新型隔振元件,是在橡胶衬套结构的基础上封装液体阻尼机构而形成的。其动态力学性能极大程度的满足了车辆的隔振要求,改善了整车的操纵稳定性和舒适性,且体积轻巧便于安装。目前,国内零部件生产厂商并没有从根本上掌握液压衬套开发的机理和技术,深入系统地研究液压衬套的设计理论与技术十分必要。本研究的主要工作为:
     1.实验研究了液压衬套静态、动态力学性能,探讨了实验测试方法和数据处理方法。对比分析了轴向型、径向型液压衬套的轴向及径向方向静刚度与轴向型、径向型橡胶衬套的轴向及径向静刚度的变化趋势;结果表明轴向和径向方向液压衬套的静刚度大于对应橡胶衬套的静刚度;测试研究了激励振幅及激振频率对轴向型、径向型液压衬套在轴向和径向方向的动力学特性的影响情况。
     在橡胶材料实验基础上,获得了不同应变状态下橡胶材料的应力-应变曲线。应用有限元分析中常见的3种超弹性本构模型,以最小二乘法拟合应力-应变曲线,识别得到各模型参数。以拟合误差最小的材料本构模型及其模型参数作为有限元计算的输入依据,为进一步液压衬套力学性能的计算奠定基础。
     2.基于实验测试结果,分别建立了轴向型、径向型单惯性通道式液压衬套动特性分析的集总参数模型,推导了其动刚度、滞后角和滞后角峰值频率的计算公式;利用数值计算法辨识了各集总参数;计算分析了液压衬套的动态特性;定性的分析了轴向型和径向型液压衬套集总参数模型中一些物理参数的变化对液压衬套动特性的影响。建立了双惯性通道式液压衬套的集总参数模型,分析结果表明惯性通道数目是优化液压衬套低频性能的重要参数之一。
     3.提出了一种不依赖实验样件制作的液压衬套集总参数的高效辨识方法。以径向型液压衬套为研究对象,基于其动力学特性分析的集总参数模型,应用ADINA有限元软件平台,采用双向耦合的液-固耦合非线性有限元分析方法辨识了集总参数模型中橡胶主簧的径向刚度、径向阻尼、液室的体积刚度、橡胶等效活塞面积以及惯性通道中液体的惯性系数和流量阻尼系数等关键物理参数。将有限元计算结果与数值拟合的结果进行相对误差对比分析,探讨了低成本前提下精确预测液压衬套集总参数模型的参数及动态特性的可行性。高效精确的参数识别方法不仅为后续液压衬套动力学性能分析奠定理论基础,同时也为液压衬套产品设计、性能优化和结构改进提供了必要依据。
     4·以径(?)型单惯性通道式和双惯性通道式液压衬套为研究对象,采用双向耦合的液-固耦合有限元分析技术计算了典型工况下液压衬套的静、动力学特性。采用液压衬套有限元模型,在低频大振幅激励和高频小振幅激励载荷下,计算分析了液压衬套液室和惯性通道中液体的压力分布情况,以及惯性通道中液体的速度分布特征,以深入了解液压衬套的减振机理,为液压衬套泄流方法的研究奠定了基础。
Hydraulic bushing (HB) is a new kind of vibration isolator for automotive chassis system. It consists of fluid damping mechanism based on the structure of rubber bushing. The dynamic characteristics of hydraulic bushing greatly satisfy the vibration-isolation requirements of vehicle and improve the vehicle's driving stability and riding comfort. Another advantage of hydraulic bushing is light and convenient installation. The domestic equipment manufactures have not mastered the design ability and the application of HB. The systematic research on the design theory and technology of hydraulic bushing is very necessary. For these purposes, the main research work is as follows:
     1. The static and dynamic characteristics of hydraulic bushing are thoroughly tested. The test method and data processing technique for mechanical properties of HB are discussed. The static stiffness of hydraulic bushings is compared with that of rubber bushing. The results show that the axial and radial static stiffness of hydraulic bushing are greater than that of the rubber bushing. The influences of excitation amplitude and frequency on the dynamic performances of hydraulic bushing are investigated.
     The stress-strain curves under different strain state are obtained based on the rubber material experiment. Three kinds of hyperelastic constitutive model used in FEM are analyzed. The least squares are applied to identify the constitutive model parameters. The constitutive model and model parameters with the minimum fitting errors are selected to describe the rubber material in FEA. This is the foundation for the further calculation of dynamic properties of hydraulic bushing.
     2. The lumped parameter (LP) models for axial and radial damping HB with single inertia track are proposed. The dynamic stiffness, loss angle and the peak frequency of hydro-bushing's loss angle are obtained from the LP model. Emphasis is placed on the identification of the system parameters of the LP model for HB with single inertia track. The calculated dynamic performances of HB are compared favorably with the experimental data, which validates the proposed models. The influences of lumped parameters on the dynamic characteristics of HB are analyzed. The lumped parameter models for HB with double inertia tracks are established. With the increase of the number of inertia tracks, the peak frequency is backward moved. The analytical methods and conclusions are instructive for the design and the tuning of performance of the HB.
     3. An efficient identification method for lumped parameters is proposed, and does not depend on the experimental sample. Radial damping HB is the object, which is widely used as vibration isolator in the vehicle chassis system. Two-way fluid-structure interaction (FSI) nonlinear finite element analysis (FEA) technique is used to identify the main parameters of the LP model, such as the radial dynamic stiffness of the rubber spring, the radial damping of the rubber spring, the volumetric stiffness of the chamber, the equivalent piston area, the inertia and the resistance of the fluid in the inertia track. Comparing the calculated results with the numerical prediction results, the feasibility and accuracy of the FEA method was confirmed. The method proposed in this paper can ensure high quality and low cost in hydraulic bushing development.
     4. The two-way coupled FSI and FEA model for simulation of HB is developed, which can be used to simulate the static and dynamic performances of the HB with only stress versus strain relations of the rubber materials, the fluid physical parameters and the HB sizes. The dynamic fluid pressure and the velocity in the chambers and the inertia track of HB are calculated under different excitation conditions in order to deeply understand the damping mechanism.
引文
[1]上官文斌,徐驰.汽车悬架控制臂液压衬套动态特性实测与计算分析[J].振动与冲击,2007,26(9):7-10.
    [2]S. Arzanpour, M. F. Golnaraghi. Development of an Active compliance chamber to enhance the performance of hydraulic bushings [J]. Journal of Vibration and Acoustics, 2010,132:1-7.
    [3]上官文斌.液阻型橡胶隔振器液-固耦合动力学特性仿真技术研究[D].北京:清华大学,2003.
    [4]吕振华,上官文斌.基于液-固耦合有限元仿真的液阻悬置集总参数模型动特性分析[J].机械强度,2004,26(1):29-37.
    [5]上官文斌,吕振华.汽车动力总成液阻悬置液-固耦合非线性动力学仿真[J].机械工程学报,2004,40(8):80-86.
    [6]Gun Kim. Study of passive and adaptive hydraulic engine mounts [D]. U.S.:The Ohio State University,1992.
    [7]贺良勇.空气弹簧式半主动液阻悬置开发及动特性研究[D].广州:华南理工大学,2010.
    [8]Jong-Yun Yoon. Quasi-linear dynamic models of hydraulic engine mount with focus on interfacial force estimation [D]. U.S.:The Ohio State University,2010.
    [9]Min Lu. Study of automotive hydro-mount mechanism [D]. Michigan:Western Michigan University,2001.
    [10]Taeseok Jeong. Analysis of powertrain mounts with focus on torque roll axis decoupling and frequency-dependent properties [D]. U.S.:The Ohio State University, 2000.
    [11]Aaron A. Geisberger. Hydraulic engine mount modeling, parameter identification and experimental validation [D]. Canada:University of Waterloo,2000.
    [12]李锐.基于磁流变液悬置的发动机隔振方法与实验研究[D].重庆:重庆大学,2009.
    [13]庞明伟.轿车动力总成悬置系统动力学仿真分析与优化设计[D].长春:吉林大学,2008.
    [14]王敏.轻卡动力总成悬置系统的隔振性能研究与仿真分析[D].合肥:合肥工业大 学,2007.
    [15]张云侠.液阻悬置动态特性仿真与试验研究[D].上海:上海交通大学,2007.
    [16]李堑.汽车发动机液阻悬置动态特性与参数识别研究[D].上海:上海交通大学,2010.
    [17]陈志勇.轻型车驾驶室液压悬置性能匹配研究[D].长春:吉林大学,2011.
    [18]Arzanpour S., Schubert B., Golnaraghi M.F. Dynamic stiffness control in hydraulic bushing for vehicle engine with cylinder deactivation system [J]. Journal of Vibration Control,2006,16:59-67.
    [19]Sauer W., Guy Y. Hydro bushings-innovative NVH solutions in chassis technology [R]. SAE 2003-01-1475,2003.
    [20]Gil-Negrete N. Predicting the dynamic behaviour of hydrobushings [J]. Shock and Vibration,2002,12:91-107.
    [21]潘孝勇.橡胶隔振器动态特性计算与建模方法的研究[D].杭州:浙江工业大学,2009.
    [22]Brian Mahnken, Matt Borgerson. Application of NVH countermeasures for cabin boom isolation using hydraulic bushing and silicone tuned mass absorber [R]. SAE 2006-01-1681,2006.
    [23]Lu M, Ari-Gur J. Study of dynamic properties of automotive hydrobushing[J]. Advanced Vehicle Technologies, ASME Proc, DE,2000,106:135-140.
    [24]Lu M, Ari-Gur J, Garety J. Predication of automotive hydro-bushing resonant frequency [J]. Noise Control and Acoustics Division, ASME Proc, NCA,1999,26:157-159.
    [25]Siamak Arzanpour. Active and semi-active bushing design for variable displacement engine [D]. Canada:University of Waterloo,2006.
    [26]Brad B. Schubert. Development of a MR hydraulic bushing for automotive applications [D]. Canada:University of Waterloo,2005.
    [27]张士星.发动机液阻悬置动特性分析研究[D].重庆:重庆大学,2009.
    [28]鲍宁.动力总成液压悬置的参数化设计[D].长春:吉林大学,2007.
    [29]张艳国.轻型车驾驶室液压悬置的流固耦合有限元分析[D].长春:吉林大学,2011.
    [30]Svensson M. Hydrobushing model for multibody simulations [D]. Sweden:Lund University,2004.
    [31]Karlsson F. Modelling Non-Linear Dynamics of Rubber Bushings Parameter Identification and Validation [D]. Sweden:Lund University,2003.
    [32]Jennifer Ann Kadlowec. Radial and torsional coupling in elastomeric bushings [D]. Michigan:The University of Michigan,1999.
    [33]M. J. Garcia Tarrago, L. Kari, J. Vinolas, N. Gil-Negrete. Frequency and amplitude dependence of the axial and radial stiffness of carbon-black filled rubber bushings [J]. Polymer Testing,2007,26:629-638.
    [34]Rodrigo T.A., Lucas C. Bushing migration in mechanical assemblies [R]. SAE, 2011-36-0154,2011.
    [35]Yuan Qu, Shen W, Min Sun. Selection of constitutive models in rubber bushing simulation [R]. SAE,2012-01-0761,2012.
    [36]Miller L R, Ahmadian M, Nobles C M and Swanson D A. Modeling and performance of an experimental active vibration isolator[J]. Transactions of the ASME, Journal of Vibration and Acoustics,1995,117:272-278.
    [37]Kim G, Singh R. A study of passive and adaptive hydraulic engine mounts systems with emphasis on non-linear characteristics [J]. Journal of Sound and Vibration,1995,179(3): 427-453.
    [38]Yun-qing Zhang, Wen-Bin Shangguan. A novel approach for lower frequency performance design of hydraulic engine mounts [J]. Computers and Structures,2006,84: 572-584.
    [39]S.He, R. Singh. Estimation of amplitude and frequency dependent parameters of hydraulic engine mount given limited dynamic stiffness measurements [J]. Noise Control Engineering Journal,2005,53(6):271-285.
    [40]S.He, R. Singh. Discontinuous compliance nonlinearities in the hydraulic engine mount [J]. Journal of Sound and Vibration,2007,307:545-563.
    [41]A. Gunduz, A. Inoue, R. Singh. Estimation of interfacial forces in time domain for linear system [J]. Journal of Sound and Vibration,2010,329:2616-2634.
    [42]T.Q. Truong, K. K. Ahn, A new type of semi-active hydraulic engine mount using controllable area of inertia track [J]. Journal of Sound and Vibration,2010,329: 247-260.
    [43]J. H. Lee, R. Singh. Existence of super-harmonics in quarter-vehicle system response with nonlinear inertia hydraulic track mount given sinusoidal force excitation [J]. Journal of Sound and Vibration,2008,313:367-374.
    [44]R.A. Ibrahim. Recent advances in nonlinear passive vibration isolator [J]. Journal of Sound and Vibration,2008,314:371-452.
    [45]J.Y. Park, R. Singh. Effect of non-proportional damping on the torque roll axis decoupling of an engine mounting system [J]. Journal of Sound and Vibration,2008, 313:841-857.
    [46]R. Fan, Z. Lu. Fixed points on the nonlinear dynamic properties of hydraulic engine mounts and parameter identification method:Experiment and theory [J]. Journal of Sound and Vibration,2007,305:703-727.
    [47]Ahn Y K, Song J D, Yang B S. Optimal design of engine mounts using an artificial life algorithm [J]. Journal of Sound and Vibration,2003,261:309-328.
    [48]M. Tiwari, H. Adiguna, R. Singh. Experimental characterization of a nonlinear hydraulic engine mounts [J]. Noise Control Engineering Journal,2003,51(1):36-49.
    [49]H. Adiguna, M. Tiwari, R. Singh. Transient response of a hydraulic engine mounts [J]. Journal of Sound and Vibration,2003,268:217-248.
    [50]J. Christopherson, G. Nakhaie Jazar. Dynamic behavior comparison of passive hydraulic engine mounts. Part 1:Mathematical analysis [J]. Journal of Sound and Vibration,2006,290:1040-1070.
    [51]J. Christopherson, G. Nakhaie Jazar. Dynamic behavior comparison of passive hydraulic engine mounts. Part 2:Finite element analysis [J]. Journal of Sound and Vibration,2006,290:1071-1090.
    [52]Colgate J.E., Chang C.T.. Modeling of a hydraulic engine mount focusing on response to sinusoidal and composite excitations [J]. Journal of Sound and Vibration,1995,184: 503-528.
    [53]Jong-Yun Yoon, Rajendra Singh. Indirect measurement of dynamic force transmitted by a nonlinear hydraulic mount under sinusoidal excitation with focus on super-harmonics [J]. Journal of Sound and Vibration,2010,329:5249-5272.
    [54]L. R. Wang, Z. H. Lu, I. Hagiwara. Integration of experiment and hydrostatic fluid-structure finite element ananlysis into dynamic characteristic prediction of a hydraulically damped rubber mount [J]. International Journal of Automotive Technology, 2010,11(2):245-255.
    [55]Foumani MS Khajepour A, Durali M. Application of shape memory alloys to a new adaptive hydraulic mount [R]. SAE 2002-01-2163,2002.
    [56]Muller M Eckel HG. Reduction of noise and vibration in vehicle by an appropriate engine mount system and active absorbers [R]. SAE 960185.
    [57]Wen-Bin Shangguan, Zhen-Hua Lu. Experimental study and simulation of a hydraulic engine mount with fully coupled fluid-structure interaction finite element analysis model [J]. Computers and Structures,2004,82:1751-1771.
    [58]上官文斌.液阻悬置惯性通道阻尼特性的实验与计算分析[J].振动工程学报,2006,19(3):376-381.
    [59]Wen-Bin Shangguan, Zhen-Hua Lu. Modelling of a hydraulic engine mount with fluid-structure interaction finite element analysis [J]. Journal of Sound and Vibration, 2004,275:193-221.
    [60]Hillis A.J., Harrison A.J.L. A comparison of two adaptive algorithms for the control of active engine mounts [J]. Journal of Sound and Vibration,2005,286(2):37-54.
    [61]Geisberger A., Khajepour A., Golnaraghi F. Non-linear modeling of hydraulic mounts: Theory and Experiment [J]. Journal of Sound and Vibration,2002,249(2):371-397.
    [62]Golnaraghi M.F., Jazar, N.G Development and analysis of a simplified nonlinear model of a hydraulic engine mount [J]. Journal of Sound and Vibration,2001,7(4):495-526.
    [63]Z. K. Peng, Z. Q. Lang. The effects of nonlinearity on the output frequency response of a passive engine mount [J]. Journal of Sound and Vibration,2008,318:313-328.
    [64]张云清.发动机悬置系统动力学建模及优化研究[D].武汉:华中科技大学,2011.
    [65]Wen-Bin Shangguan, J Wu. Modelling of dynamic performance for hydraulic engine mounts using fractional derivative and optimization of powertrain mounting systems [J]. International Journal of Vehicle Design,2008,47:215-233.
    [66]Lewitzke C., Lee P. Application of Elastomeric Components for Noise and Vibration Isolation in the Automotive Industry [R]. SAE,2001-01-1447,2001.
    [67]Vilas Bijwe, Manoj R. NVH refinement of passenger vehicle for in-cab boom noise using experimental operational deflection shape and full vehicle acoustic sensitivity simulations [R]. SAE,2011-26-0063,2011.
    [68]Zhi-yong Chen, Guang-ming Wu. Finite element analysis of light vehicle cab's hydraulic mount based on fluid-structure interaction method [R]. SAE,2011-01-1604, 2011.
    [69]Bong Soo Kim. Optimal rear suspension design for the improvement of ride comfort and suspension noise [R]. SAE,2012-01-0975,2012.
    [70]Reo Koide, Yoshihiro Kawabe. Development of a new multi-link rear suspension [R]. SAE,2012-01-0978,2013.
    [71]Francisco Ganzarolli. Front suspension LCA bushing optimization [R]. SAE, 2010-36-0248,2010.
    [72]Yuan Qu, Linbo Zhang. Parameters identification of constitutive models of rubber bushing [R]. SAE,2011-01-0795,2011.
    [73]Arash Keshavarz, Mohsen Bayani. Improving vehicle NVH behavior via tuning the engine mount stiffness using DOE method [R]. SAE,2011-01-1510,2011.
    [74]Walter Anderson, Shuo Wang. Comparison of a hydraulic engine mount to a magnetorheological engine mount [R]. SAE,2010-01-1910,2010.
    [75]Shangguan Wen-Bin. Engine mounts and powertrain mounting systems:a review [J]. International Journal of Vehicle Design,2009,49(4):22.
    [76]Chiharu Togashi, Mitsuo Nakano. A study on active hydraulic engine mount to reduce interior car noise and vibration over wide frequency band [R]. SAE,2011-01-1636, 2011.
    [77]王文涛.橡胶隔振器单轴疲劳特性试验与预测方法的研究[D].广州:华南理工大学,2012.
    [78]何小静.橡胶隔振器静态特性计算与建模方法的研究[D].广州:华南理工大学,2012.
    [79]Mooney M. A theory olarge elastic deformation [J]. Journal of Applied Physics,1940, 11:582-592.
    [80]Ogden R W. Recent advances in the phenomenological theory of rubber elasticity [J]. Rubber Chemistry and Technology,1986,59:361-383.
    [81]Ogden R W. Large deformation isotropic elasticity:on the correlation of theory and experiment for incompressible rubberlike solids [J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences,1972,328:567-583.
    [82]Ogden R W. Nearly isotropic elastic deformations:application to rubberlike solids [J]. Journal of the Mechanics and Physics of Solids,1978,26 (1):37-57.
    [83]Arruda E M, Boyce M C.A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials [J]. Journal of the Mechanics and Physics of Solids, 1993,41(2):389-412.
    [84]Yuan Zhang. Modelling dynamic stiffness of rubber isolators. [R]. SAE,2011-01-0492. 2011.
    [85]Degrange J. M., Thomine M., Kapsa Ph, et al. Influence of viscoelasticity on the tribological behaviour of carbon black filled nitrile rubber (NBR) for lip seal application [J]. Wear,2005,259(1-6):684-692.
    [86]J. Charlton D., J. Yang. A review of methods to characterize rubber elastic behaviour for use in finite element analysis [J]. Rubber chemistry and technology,1994,67(481-503).
    [87]Saintier N., Cailletaud G, Piques R. Cyclic loadings and crystallization of natural rubber:An explanation of fatigue crack propagation reinforcement under a positive loading ratio [J]. Materials Science and Engineering:2011,528(3):1078-1086.
    [88]Merckel Yannick, Diani Julie, Brieu Mathias, et al. Experimental characterization and modelling of the cyclic softening of carbon-black filled rubbers [J]. Materials Science and Engineering:2011,528(29-30):8651-8659.
    [89]Verron Erwan, Le Cam Jean-Benoit, Gornet Laurent. A multiaxial criterion for crack nucleation in rubber [J]. Mechanics Research Communications,2005,33(4):493-498.
    [90]Kazakeviciute-Makovska Rasa. Experimentally determined properties of softening functions in pseudo-elastic models of the Mullins effect [J]. International Journal of Solids and Structures,2007,44(11-12):4145-4157.
    [91]Jankovich E., Leblanc F., Durand M., et al. A finite element method for the analysis of rubber parts, experimental and analytical assessment[J]. Computers & amp; Structures, 1981,14(5-6):385-391.
    [92]Harbour Ryan J., Fatemi Ali, Mars Will V. Constitutive Behavior and Temperature Effects in NR and SBR Under Variable Amplitude and Multiaxial Loading Conditions[J]. Journal of Engineering Materials and Technology,2008,130(1): 011005-011011.
    [93]李军强,刘宏昭,王忠民.线性粘弹性本构方程及其动力学应用研究综述[J].振动与冲击,2005,24(2):116-121.
    [94]Rivlin R S. Large elastic deformation of isotropic material Ⅳ. Further developments of the gener al theory [J]. Philosophical Transactions of the Royal Society of London,1948, A241:379-39.
    [95]Rivlin R S. Large elastic deformation of isotropic material I:Fundamental concepts [J]. Philosophical Transactions of the Royal Society of London,1948, A240:459-490.
    [96]Shangguan W B, Lu Z H, Shi J J. Finite element analysis of static elastic characteristics of the rubber isolators in automotive dynamic systems [R]. SAE,2003-01-0240,2003.
    [97]Olsson A K. Finite element procedures in modelling the dynamic properties of rubber [D]. Sweden:Lund University,2007.
    [98]Tan R. Y, Huang M. C. System identification of a bridge with lead-rubber bearing [J]. Computers and Structures,2000,74:267-280.
    [99]Hoefer P, Lion A. Modelling of frequency and amplitude dependent material properties of filler-reinforced rubber [J]. Journal of the Mechanics and Physics of Solids,2009,57: 500-520.
    [100]Hong W. K, Kim H. C. Performance of a multi-story structure with a resilient-friction base isolation system [J]. Computers and Structures,2004,82:2271-2283.
    [101]N. Gil-Negrete, J. Vinolas, L. Kari. A nonlinear rubber material model combining fractional order viscoelasticity and amplitude dependent effects [J]. Journal of Applied Mechanics,2009,76:1-9.
    [102]潘孝勇,谢新星,上官文斌.变振幅激励下的液阻橡胶隔振器动态特性分析[J].振动与冲击,2012,31(1):144-149.
    [103]上官文斌等.多惯性通道型液阻悬置动态特性的实测与分析[J].振动工程学报,2005,18(3):318-323.
    [104]潘文全.工程流体力学[M].北京:清华大学出版社,1988.
    [105]ADINA Inc.流体流固耦合分析手册[M].北京:ADINA中国代表处,2007.
    [106]杨挺青.粘弹性力学[M].武汉:华中理工大学出版社,1990.
    [107]ADINA R & D Inc. ADINA Theory and Modeling Guide-ADINA-A and -F,2010.
    [108]ADINA R & D Inc. ADINA User Interface Primer, Report ARD 01-6, June 2010.
    [109]ADINA R & D Inc. ADINA User Interface Users Guide, Report ARD 01-1, June 2010.
    [110]ADINA R & D Inc. ADINA Verification Manual, Report ARD 01-10, June 2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700