热轧带钢温度建模和数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在热连轧生产与控制中,带钢的温度是直接影响产品尺寸精度及组织性能的重要因素之一。高精度的温度控制不仅可以提高轧制稳定性,也可改变成品带钢的晶相组织,细化带钢晶粒,提高产品力学性能、物理性能和加工性能。
     结合某钢厂热轧生产线的热连轧工艺,对带钢轧制过程和层流冷却过程的传热现象和冶金行为进行了建模和实验研究。建立了热轧带钢精轧混合式温度模型,准确预测了带钢温度的厚度分布,用于实际生产中的终轧温度预测;开发了热轧冷却过程中的温度和相变耦合数值模型,充分考虑了带钢冷却过程中的物理冶金变化行为和温度对热物性参数的影响,模型用于新带钢产品的研发。本文的主要研究工作和创新如下:
     1)采用有限差分法计算轧制区的温度变化,替换了传统温度设定系统中计算误差较大的轧制温升和接触热传导模型;采用解析式建立了空冷模型和指数形式水冷模型,并对模型参数进行了钢种和厚度的修正;通过对带钢表面温度和平均温度的换算,建立了差分和解析式并存的混合温度模型,在兼顾效率的同时提高了温度模型的预测精度。生产应用中,采用短时、长时自学习方法对换热系数进行在线修正,进一步提高模型的预测精度和稳定性。
     2)建立以相变潜热为内热源的温度耦合计算模型,并采用变分法对模型中的非稳态热传导方程进行离散化;考虑层流冷却过程中的相变对带钢温度的影响,建立空冷区和水冷区的奥氏体冷却相变动力学模型,并利用迭代法实现温度和相变的非线性耦合计算;耦合模型中考虑了换热系数与带钢运行速度之间的关系,并引入了变热物性参数的计算。对双相高强钢特殊冷却条件下的温度进行模拟计算和试验,结果表明模型精度达到生产工艺要求。
     3)以某钢厂热轧线的三种碳钢为实验样本,采用实验手段测定不同温度下的热物性参数,研究了带钢的热导率、比热、热膨胀系数和密度与带钢温度的关系,并采用最小二乘法建立了热物性参数的分段函数,用于温度场定量计算,消除了传统模型中对热物性参数进行常值处理所带来的计算误差。
     4)建立的热轧带钢精轧混合式温度模型通过某钢厂热轧线的终轧温度设定系统进行验证。仿真和实验结果表明,终轧温度预测误差小于7.5℃,能够满足现场生产应用的需要。
In the production and control of continuous hot slab rolling, temperature is one of the most important parameters controlling the kinetics of metallurgical transformations and the flow stress of the rolled metal. Temperature setting models and cooling control of steels with high accuracy not only improve the rolling stability but change the metallurgical structure of steel products and refine the crystal grain and finally increase the mechanical characteristics and physical property as well as workability, in terms of ductility, drawability and formability.
     Combined with rolling technology of the new built hot slap rolling mill at Baosteel, the heat transfer phenomena and metallurgical behaviors occurring during the rolling and laminar cooling process were experimentally studied and modeled. Hybrid temperature models in the finish stands were built to calculate the thermal profile along the strip thickness direction and precisely predict the finishing and coiling temperatures. Then the on-line temperature models had been evaluated and tested in hot strip production. In addition, considering the thermal influence on variation of steel material properties and metallurgical behaviors, numerical models to describe nonlinearly coupled aspects of temperature and phase transformation had been proposed for research and development of new steel products. The main work and innovation are briefly stated as following.
     1) A differential model was proposed to replace the former thermal model of rolling conduction and an off-line adaption technique based on steel grade and thickness class was adopted to correct the radiation factor of air cooling model. Furthermore, the original water cooling model was replaced by a new exponential model with on-line adjustment. Through the conversion model of surface and average temperature, the enhanced hybrid temperature model presented higher prediction accuracy as well as acceptable response speed. In addition, the short-term and long-term adaption models in exponential form, as well as a neural network adaption system characterized by 'Relay' initialization learning, were put forward to adjusting the heat transfer coefficients of models.
     2) The thermal and metallurgical behaviors of the strip occurring during the cooling process in hot strip mill were analysed and coupled mathematical models of temperature and phase transformation had been built. The variational method is utilized for the discretization of the governing transient conduction-convection equation, with heat transfer coefficients adaptively determined by the actual mill data. To consider the thermal effect of phase transformation during cooling, a constitutive equation for describing austenite decomposition kinetics of steel in air and water cooling zones is coupled with the heat transfer model by iterative procedure. In addition, numerical simulation was performed in the special cooling condition of dual phase steel, with results confirming that the setup accuracy of temperature prediction system was satisfactory.
     3) It should be noted that temperature models relied heavily on thermo-physical parameters such as specific heat, conductivity and density of the metal being rolled. These properties were very limited in the literature and when available they were often quoted at a single temperature such as room temperature. This immediately compromised the accuracy and relevance of theoretical predictions. Thus, three example carbon steels were chosen for experiments and analyses. Experiments are performed on the electro-thermo-mechanical test system and the method of least squares has been used to statistically model the properties as functions of temperature.
     4) The temperature proposed had been applied in the new built hot strip mill at Baoshan Iron & Steel Co. Ltd. (Baosteel), with results showing that the finishing temperature prediction accuracy of hybrid temperature models in finish stands and the coiling temperature prediction accuracy of finite differential models in laminar cooling zones were 7.5℃and 9.0℃, separately. The comparison among the new temperature models and that of 2050mm and 1580mm hot strip mill at Baosteel as well as other mills in domestic and abroad indicated that the new temperature models had achieved the international advanced level.
引文
[1]孙一康.带钢热连轧的模型与控制.北京:冶金工业出版社.2002
    [2]刘向华,胡贤磊,杜林秀.轧制参数计算模型及其应用.北京:化学工业出版社.2007
    [3]王国栋,刘向华.金属轧制过程人工智能优化.北京:冶金工业出版社.2000
    [4]金兹伯格V B.板带轧制工艺学.北京:冶金工业出版社.1998
    [5]杨世铭,陶文铨.传热学.北京:高等教育出版社.1998:20-28
    [6]张国瑞.有限元法.北京:机械工业出版社.1991:1-5
    [7]李人宪.有限元法基础.北京:国防工业出版社.2002:3-5
    [8]李景勇.有限元法.北京:北京邮电大学出版社.1999:2-6
    [9]孔祥谦.有限单元法在传热学中的应用.北京:科学出版社.1998:40-46
    [10]陈水宣,邹俊,傅新,杨华勇.热连轧精轧温度设定系统及自适应研究.钢铁.2006,41(9):44-48
    [11]彭良贵,于明,王昭东,刘向华.热轧带钢层流冷却数学模型述评.轧钢.2003,20(6):25-29
    [12]张立文.数值模拟技术在金属材料固态加工中的应用[博士论文].大连:大连理工大学.2004
    [13]Akhilendra Singh,Indra Vir Singh.,2006.Numerical solution of temperature dependent thermal conductivity problems using a methless method[J].Numerical Heat Transfer A,50:125-145
    [14]中国金属学会热轧板带学术委员会.中国热轧宽带钢轧机及生产技术.北京:冶金工业出版社.2002:18-27
    [15]Heung Nam Han,Jae Kon Lee,Hong Joon Kim,Young-Sool Jin.A model for deformation,temperature and phase transformation behavior of steels on run-out table in hot strip mill[J].Journal of Materials Processing Technology.2002,128:216-225
    [16]S.Serajzadeh,A.Karimi Taheri,M.Nejati,J.Izadi,M.Fattahi.An investigation on strain inhomogeneity in hot strip rolling process[J].Journal of Materials Processing Technology.2002,128:88-99
    [17]Yu-TuoZhang,Dian-Zhong Li,Yi-Yi Li.Modeling of austenite decomposition in plain carbon steels during hot rolling[J].Journal of Materials Processing Technology. 2006: 175-179
    [18]XIE Hai-bo, LIU Xiang-hua, WANG Guo-dong, ZHANG Zhong-ping. Optimization and model of laminar cooling control system for hot strip mills[J]. Journal Of Iron And Steel Research. 2006,13(1):18-22
    [19]Ken-ichiro Mori, Naohiro Oketani. Prediction of coiling conditions of plate in coilbox by controlled FEM simulation[J]. International Journal of Machine Tools & Manufacture. 1999,39:403-413
    [20]H.B. Xie, Z.Y. Jiang, X.H. Liu, G.D. Wang, A.K. Tieu. Prediction of coiling temperature on run-out table of hot strip mill using data mining[J]. Journal of Materials Processing Technology. 2006,177:121-125
    [21]Siamak Serajzadeh. Prediction of temperature distribution and phase transformation on the run-out table in the process of hot strip rolling[J]. Applied Mathematical Modelling. 2003,27:861-875
    [22]Hao Yu, Yonglin Kang, Kelu Wang, Jie Fu, Zhongbing Wang, Delu Liu. Study of mechanism on microstructure refinement during compact strip production process[J]. Materials Science and Engineering A. 2003, 363:86-92
    [23]Madakasira Prabhakar Phaniraj, Binod Bihari Behera, Ashok Kumar Lahiri. Thermo-mechanical modeling of two phase rolling and microstructure evolution in the hot strip mill[J]. Journal of Materials Processing Technology. 2005, 170:323-335
    [24] W. Johnson, H. Kudo. The use of upper-bound solution for the determination of temperature distributions in fast hot rolling and axisymmetric extrusion processes[J]. Int. J. Mech. Sci., 1960,1:175-191
    [25] F. Hollander. Model to calculate the complete temperature distribution in steel during hot rolling[J]. Iron and Steel Inst, 1970:46-74
    
    [26] A. Tseng. Numerical heat transfer analysis of strip rolling[J]. Journal of Heat Transfer, Transactions ASME. 1984,106(3):512-517
    [27] B. Devadas, I. V. Samarasekera. Heat transfer during hot rolling of steel strip[J]. Iron Making and Steel Making. 1986,13(6):311-321
    [28]Gierulski Boguslaw, Cierniak Marek. Temperature field on strip cross-section during hot rolling[J]. Steel Research. 1989,60(5):208-214
    [29] C. Zienkiewicz, E. Onate, J. C. Heinrich. General formulation for coupled thermal flow of metals using finite elements [J]. International Journal for Numerical Methods in Engineering, 1981,17(10):1497-1514
    [30]P.R. Dawson, E.G. Thompson. Finite element analysis of steady state elasto-visco-plastic flow by the initial stress-rate method [J]. Int. J. Numer. Meth. Eng. 1978,12:47-57
    [31]G.J. Li, S. Kobayashi. Rigid-plastic finite element analysis of plane strain rolling[J]. J. Eng. Ind. ASME. 1982, 104 (2) :47-57
    [32] K. Mori, K. Osakada, T. Oda. Simulation of plane strain rolling by the rigid-plastic finite element method[J]. Int. J. Mech. Sci. 1982,24 (9):519-527
    [33] K. Mori, K. Osakada. Analysis of the forming process of sintered powder metals by a rigid-plastic finite element method[J]. Int. J. Mech. Sci. 1987, 29 (4):229-238
    [34]Y.J. Huw, J.G. Lenard. A finite element study of flat rolling[J]. J. Eng. Mater. Technol. 1988,110 (1):23-27
    [35]K. Iguchi, I. Yarita, 3D analysis of flat rolling by rigid-plastic finite element method considering sticking and slipping friction boundary [J]. ISIJ Int. 1991, 31(6):559-565
    [36] Y. Mitai, H. Iribe. Analysis of strip rolling by three dimensional rigid-plastic finite element method[J]. Nippon Steel Technol. Rep. 1992, 52 (1):l-5
    [37]S.M. Hwang, M.S. Joun. Analysis of hot-strip rolling by a penalty rigid-viscoplastic finite element method[J]. Int. J. Mech. Sci. 1992, 34 (12):971-984
    [38]U.S. Dixit, P.M. Dixit. Finite element analysis of flat rolling with inclusion of anisotropy[J]. Int. J. Mech. Sci. 1997,39 (11) :1237-1255
    [39] J. Donea, S. Giuliani. Finite element analysis of steady-state nonlinear heat transfer problems[J]. Nucl. Eng. Des. 1974, 30:205-213
    [40]K.J. Bathe, M.R. Khoshgoftaar. Finite element formulation and solution of nonlinear heat transfer[J]. Nucl. Eng. Des. 1979, 51:389-401
    [41] Chung S. Ling, K.S. Surana. p-Version least squares finite element formulation for axisymmetric heat conduction with temperature dependent thermal conductivities[J]. Comput. Struct. 1994, 52:353-364
    [42] H. Yang. A precise algorithm in the time domain to solve the problem of heat transfer[J]. Numer. Heat Transfer: Part B. 1999,35:243-249
    [43]S.J. Liao. Numerically solving non-linear problems by the homotopy analysis method[J]. Comput. Mech. 1997,20:530-540
    [44] P. Talukdar, S.C. Mishra. Transient conduction and radiation heat transfer with variable thermal conductivity [J]. Numer. Heat Transfer: Part A. 2002,41:851-867
    [45]Bondarv. Variational method for solving nonlinear problems of unsteady-state heat conduction[J]. Int. J. Heat Mass Transfer. 1997, 40:3487-3495
    [46] S. Liao. General boundary element method for non-linear heat transfer problems governed by hyperbolic heat conduction equation[J]. Comput. Mech. 1997, 20:397-406
    [47] P. Skerget, A. Alujevic. Boundary element method in nonlinear transient heat transfer of reactor solids with convection and radiation on surfaces[J]. Nucl. Eng. Des. 1983, 76:47-54.
    [48]S.J. Liao, A.T. Chwang. General boundary element method for unsteady non-linear heat transfer problems[J]. Numer. Heat Transfer: Part B. 1999, 35:225-242
    [49]M.R. Siddique, R.E. Khayat. A low-dimensional approach for linear and nonlinear heat conduction in periodic domains[J]. Numer. Heat Transfer: Part A. 2000, 38:719-738.
    [50] B. Chen, Y. Gu, Z. Guan, H. Zhang. Nonlinear transient heat conduction analysis with precise time integration method[J]. Numer. Heat Transfer: Part B. 2001, 40:325-341.
    [51]A. T. Hsu, R. W. Evans. Finite element analysis on hot rolling of steel[J]. Advanced Technology of Plasticity. 1990,2:587-593
    [52] O. C. Zienkiewicz, E. Onate, J. C. Heinrich. General formulation for coupled thermal flow of metals using finite elements[J]. International Journal for Numerical Methods in Engineering. 1981,17(10):1497-1514
    [53]Yamada Kenji, Ogawa Shigeru, Hamauzu Shuichi. Two-dimensional thermo-mechanical analysis of flat rolling using rigid-plastic finite element method[J]. ISIJ International. 1991,31(6):566-570
    [54]M. Pietrzyk, J. G.Lenard. Study of heat transfer during flat rolling[J]. International Journal for Numerical Methods in Engineering. 1990,30(8):1459-1469
    
    [55] F. Micari. Three-dimensional coupled thermo-mechanical analysis of hot rolling processes[J]. Journal of Materials Processing Technology. 1992, 34(1-4):303-310
    
    [56] S. M. Hwang, M. S. Joun, Y.H. Kang. Finite element analysis of temperatures, metal flow, and roll pressure in hot strip rolling[J]. Journal of Engineering for Industry, Transactions of the ASME. 1993,115(3):290-298
    [57] C. G.Sun, H. D. Park, S. M. Hwang. Prediction of three dimensional strip temperatures through the entire finishing mill in hot strip rolling by finite element method[J]. ISIJ International. 2002,42(6):629-635
    [58] Sasaki Kantaro, Sugitani Yasuo, Kawasaki Morio. heat transfer in spray cooling on hot surface[J]. Tetsu-to-Hagane/Journal of the Iron and Steel Institute of Japan. 1979,65(1):90-96
    [59] L. Henrich, R. Holz, G.Kneppe. Physically based cooling line model to meet growing demands in temperature and flexibility [J]. Ironmaking and Steelmaking. 1996,23(1):79-81
    [60]D.A.Zumbrtmnen.A method and apparatus for measuring heat transfer distributions on moving and stationary plates cooled by a planar liquid jet[J].Experimental Thermal and Fluid Science.1990,3(2):202-213
    [61]程杰锋,唐广波,刘正东.珠江钢厂CSP热连轧层流冷却过程模拟研究.钢铁.2003,38(11):28-31
    [62]W.J.Lawrence,A.F.MacAlister,P.J.Reever.On line modelling and control of strip cooling[J].Ironmaking and Steelmaking.1996,23(1):74-78
    [63]蔡正,王国栋,刘相华.神经网络结合数学模型预测带钢卷取温度.钢铁研究学报.1998,10(3):57-60
    [64]贾春玉,李兴东,宋战.热轧带钢卷取温度高精度预报的人工神经网络方法.钢铁.2003,38(2):30-34
    [65]Yanagi Ken-ichi.Prediction of strip temperature for hot strip mills[J].Transactions of the Iron and Steel Institute of Japan.1976,16(1):11-19
    [66]Choi Jong Wook,Choi Jin Won.Convective heat transfer coefficient for high pressure water jet[J].ISIJ International.2002,42(3):283-289
    [67]W.C.Chen,I.V.Samarasekera,A.Kumar,et al.mathematical modelling of heat flow and deformation during rough rolling[J].Ironmaking and Steelmaking.1993,20(2):113-125
    [68]Y.H.Li,C.M.Sellars.Evaluation of interfacial heat transfer and its effects on hot forming processes[J].Ironmaking and Steelmaking.1996,23(1):58-61
    [69]Torres Martin,Colas Rafael.Model for heat conduction through the oxide layer of steel during hot rolling[J].Journal of Materials Processing Technology.2000,105(3):258-263
    [70]J.D.Fletcher,J.H.Beynon.Heat transfer conditions in roll gap in hot strip rolling[J],Ironmaking and Steelmaking.1996,23(1):52-57
    [71]M.Lamvik,B.A.Iden.heat transfer coefficient by water jets impinging on a hot surface[C].7th International Heat Transfer Conference.Munich,FRG.1982:369-375
    [72]Shih-Jiun Chen,Ampere A.Tseng.Spray and jet cooling in steel rolling[J].International Journal of Heat and Fluid Flow.1992,13(4):358-369
    [73]Natsuo Hatta,Jun-ichi Kokado,Hiroshi Nishimura,et al.analysis of slab temperature change and rolling mill line length in quasi continuous hot strip mill equipped with two roughing mills and six finishing mills[J].Transactions of the Iron and Steel Institute of Japan.1981,21(4):270-277
    [74]Udo T.Hadrian.Cooling efficiency of laminar-orthogonal water(low) curtains in hot strip mills[J].MPT Metallurgical Plant and Technology.1984,7(6):44-50
    [75]李伏桃,陈岿译.控制轧制控制冷却—改善材质的轧制技术发展.北京:冶金工业出版社.2002:46-112
    [76]C.M.Sellars,J.A.Whiteman.Recrystallization and grain growth in hot rolling[J].Metal Science.1979,13(3-4):187-194
    [77]C.M.Sellars.Static recrystallization and precipitation during hot rolling of microalloyed steels[J].ASM.1984:245-277
    [78]C.M.Sellars.Computer modelling of hot-working processes[J].Materials Science and Technology.1985,1(4):325-332
    [79]John,H.Beynon,C.Michael Sellars.Modelling microstructure and its effects during multipass hot rolling[J].ISIJ International.1992,32(3):359-367
    [80]Y.Saito,M.Tanaka,T.Sekine,et al.Mechanical properties control in controlled rolling and accelerated cooling of hsla steels[C].Proc.of Int.Conf.on HSLA Steels,Wollongong,Australia.1984:28-32
    [81]T.Senuma,H.Yada.Microstructural evolution of plain carbon steels in multiple hot working[C].Proceedings of the Riso International Symposium on Metallurgy and Materials Science 7~(th).1986:547-552
    [82]Atsuhiko Yoshie,Hirofumi Morikawa,Yasumitsu Onoe,et al.Formulation of static recrystallization of austenite in hot rolling process of steel plate[J].Transactions of the Iron and Steel Institute of Japan.1987,27(6):425-431
    [83]Goro Anan,Satohiro Nakajima,Masayuki Miyahara,et al.Model for recovery and recrystallization of hot deformed austenite considering structural heterogeneity[J].ISIJ International.1992,32(3):261-266
    [84]A.Laasraroui and J.J.Jonas.Prediction of temperature distribution,flow stress and microstructure during the multipass hot rolling of steel plate strip[J].ISIJ Int.1991,31(1):95-105
    [85]Y.H.Lie and C.M.Sellars.Modeling surface temperatures during hot rolling steel[C].Model.Metal Roll.Process Conf.,5,London,UK.1999:178-186
    [86]Vladimir B.Ginzburg.High Quality Steel Rolling.Marcel Dekker Inc.,New York,1993
    [87]K.F.Wang,S.Chandrasekar,H.T.Y.Yang.An efficient 2D finite element procedure for quenching analysis with phase change[J].ASME Journal of Engineering for Industry.1993,115:124-138
    [88]D.Homberg.A numerical simulation of the Jominy end-quench test[J].Acta Materialia.1996,44:4375-4385
    [89]M.V.Li,D.V.Neibuer,L.L.Meekisho,D.G.Attridge.A computational model for the prediction of steel hardenability[J]. Metallurgical and Materials Transactions B. 1998,29:661-672
    [90]P.R. Woodard, S. Chandrasekar, H.T.Y. Yang. Analysis of temperature and microstructure in the quenching of steel cylinders[J]. Metallurgical and Materials Transactions B. 1999,30:815-822
    [91]S.J. Biswas, S.J. Chen, A. Satyanarayana. Optimal temperature tracking for accelerated cooling processes in hot rolling of steel[J]. Dynamics and Control. 1997, 7:327-340
    [92] S. Serajzadeh, A. Karimi Taheri, F. Mucciardi. Prediction of temperature distribution in the hot rolling of slabs[J]. Modelling and Simulation in Materials Science and Engineering. 2002,10:185-203
    [93] S. Serajzadeh, A. Karimi Taheri, F. Mucciardi. Prediction of temperature distribution in the hot rolling of slabs[J]. Modelling and Simulation in Materials Science and Engineering. 2002,10:185-203
    [94]D.A. Porter, K.E. Sterling. Phase Transformation in Metals and Alloys. Van Nostrand Reinhold, Wokingham, UK: 1981
    [95]M. Lusk, H.J. Jou. On the rule of additivity in phase transformation kinetics[J]. Metallurgical and Materials Transactions A. 1997, 28:287-291
    [96]E.B. Hawbolt, B. Chau, J.K. Brimacombe. Kinetics of austenite-ferrite and austenite-pearlite transformation in a 1025 steel[J]. Metallurgical and Materials Transactions A. 1985,16:565-578
    [97]Z. Liu, G.Wang, S. Han, Q. Zhang, D. Ma, G. Wu. The development of the two-dimensional temperature microstructure evaluation coupling computer model for hot strip rolling process[J]. Journal of Materials Processing Technology. 1992, 34:503-508
    [98]J.B. Beynon, C.M. Sellars. Modelling microstructure and its effects during multipass hot rolling[J]. ISIJ International. 1992,32:359-367
    [99] S. Serajzadeh, A. Karimi Taheri. An investigation on the effect of carbon and silicon on flow behavior of steel[J]. Materials & Design. 2002,23:271-276
    [100]L.S. Darken, R.W. Gurry, Physical Chemistry of Metals. McGraw-Hill, New York. 1953:415
    [101]Ken-ichiro Mori, Naohiro Oketani. Prediction of coiling conditions of plate in coilbox by controlled FEM simulation[J]. International Journal of Machine Tools & Manufacture. 1999, 39:403-413
    [102]C.G. Sun, H.N. Han. A finite element model for the prediction of thermal and metallurgical behavior of strip on run-out table in hot rolling[J]. ISIJ Int. 2002, 42:392-400
    [103] Ananya Mukhopadhyay, Sudipta Sikdar. Implementation of on-line run-out table model in a hot strip mill[J]. Journal of Materials Processing Technology. 2005, 169:164-172
    [104]Siamak Serajzadeh. Prediction of temperature distribution and phase transformation on the run-out table in the process of hot strip rolling[J]. Applied Mathematical Modelling. 2003,27:861-875
    [105]M.M. Prieto, L.S Ruiz. Thermal performance of numerical model of hot strip mill runout table[J]. Ironmaking and Steelmaking. 2002,28:474-480
    [106]Siamak Serajzadeh. Prediction of temperature variations and kinetics of austenite phase change on the run-out table[J]. Materials Science Engineering A. 2006, 421:260-267
    [107]Saeed Moaveni. Finite Element Analysis. Pearson Education, Inc., New York. 2005: 322-323 (in Chinese)
    [108] Y.T. Zhang, D.Z. Li, Y.Y. Li. Modeling of austenite decomposition in plain carbon steels during hot rolling[J]. Journal of Materials Processing Technology. 2006,171:175-179
    [109]H.N. Han, J.K. Lee, H.J Kim. A model for deformation, temperature and phase transformation behavior of steels on run-out table in hot strip mill[J]. Journal of Materials Processing Technology. 2002,128:216-225
    [110]X. Tan, P.P. Conway. Thermo-mechanical properties and regression models of alloys: AISI 305, CK 60, CuBe2 and Laiton MS 63[J]. Materials Processing Technology. 2005,168:152-163

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700