我国典型海域富营养化特征、评价方法及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究在选取我国典型海域进行富营养化特征分析的基础上,对国际上二代富营养化评价模型及前期长江口水域富营养化评价模型进行进一步改进,构建了基于水质状态和生态响应的富营养化综合评价方法,并将评价方法应用于我国典型近岸海域,以期为近海富营养化调控和管理提供科学依据。在开展多个典型海域富营养化评价的同时,开展多种评价方法的比较研究:将我国目前应用的传统富营养化指数法、“西北太平洋行动计划NOWPAP”综合评价程序分别与构建的基于水质状态和生态响应的富营养化综合评价方法进行比较,以更好地改进评价模型。基于上述研究,得到的结论主要有:
     1)通过对海域富营养化特征的分析得出:从较长的时间序列来看,无论是渤海湾和莱州湾附近海域,还是长江口和杭州湾海域,营养盐浓度呈现逐年上升的趋势,表明这些海域的营养盐加富状况越来越严重。这种营养盐加富状况与这些区域长期以来赤潮发生频次不断上升的发展趋势是保持一致的。尤其在长江口海域,营养盐的浓度变化趋势和赤潮的发生频次的变化趋势更是具有很好的相关性。从富营养化的空间分布特征来看,对于大部分区域而言,营养盐在湾内和近岸海域浓度较高。营养盐高的区域基本也是发生赤潮频次较高的区域。但是也存在部分海域因区域特性的差异导致营养盐高值区与赤潮高发区在空间上并不吻合。与渤海湾和莱州湾赤潮暴发的区域基本是营养盐水平较高的区域不同,长江口和杭州湾海域仅仅在象山湾和象山湾湾外近海营养盐高浓度区域和赤潮高发区域具有一定的重合。而长江口和杭州湾两个典型近海系统,营养盐的分布与赤潮的分布正好呈现相反的趋势,即营养盐加富程度较高的口门内和浑浊带区域是赤潮发生较少的区域,相反营养盐浓度较低的外海区域是赤潮和低氧发生频次较高的区域。这种情形同样发生在一些渤海湾中部远离海岸的区域。因此对区域进行富营养化状况的分析和评价应全面考虑海域的营养盐压力和赤潮、低氧等富营养化症状多个方面。
     2)运用构建的基于水质状态和生态响应的综合富营养化评价模型对渤海西南部、山东半岛典型海域以及长江口和杭州湾海域三个区域的富营养化评价和结果比较来看,长江口和杭州湾海域的富营养化状况属于三个区域中最严重的,富营养化状况达到“Poor,差”到“Bad,劣”等级的海域面积最大。其次是渤海湾北部海域,尤其是海河入海口附近的富营养化程度也很严重。山东半岛东部和南部海域的富营养化程度在三个区域中最轻,没有出现“Bad,劣”的等级。象山湾、莱州湾湾底、胶州湾、丁字湾、四十里湾等封闭性区域的富营养化状况同样较严重。一般而言,海湾内的富营养化程度要比近岸开阔型海域严重。如山东半岛南部近岸海域、渤海湾和莱州湾湾外开阔海域的富营养化等级基本都在“Moderate,中”以下,与这些地方良好的水交换条件及较少的营养盐排放有关。河口区域富营养化状况与河口区域特性也有明显的关系,流量和泥沙量大的河口区域,富营养化症状一般在河口的外海海域表达,富营养化程度较严重,如长江口和杭州湾湾口的外海;而流入海湾内流速缓慢、泥沙量不高的河口区域,营养盐输入以后,一般富营养化症状在湾内河口处便得以表达,表现出严重的富营养化症状,如海河入海口、小清河入海口、胶州湾海泊河入海口等区域。
     3)在不同富营养化评价方法的比较研究中,基于水质状态和生态响应的综合评价和“NOWPAP”综合评价都识别出胶州湾湾内的较高的营养盐加富程度。对初级生态响应指标数据处理方式的不同(基于水质状态和生态响应富营养化评价采用累积频率浓度,“NOWPAP”综合评价采用年平均值)使得两者的初级生态响应指标(如叶绿素-a)评价等级不同,前者为“高”等级,后者为“低”等级。另外指标阈值的不同也造成了前者属于高叶绿素水平,而后者属于低叶绿素水平。对于表征更深一步富营养化程度的次级响应指标,由于二者所使用的数据监测年份的不同,而得到不同的结果,即胶州湾2006年出现较差的次级生态响应,到了2008和2009年则次级生态响应逐渐好转,使得总的富营养化状况也处于较好的水平。两种方法均考虑水质状态和系统产生的生态响应,都准确地反映了胶州湾海域的富营养化状况。基于水质状态和生态响应的富营养化评价与我国目前使用的富营养化指数法的比较中,前者由于考虑了问题出现的浓度、空间覆盖度和周期性等方面,并考虑营养盐加富的生态效应指标,因而更能准确反映富营养化问题。我国目前使用的富营养化指数评价方法评价结果基本呈现出类似营养盐浓度梯度的分布趋势,某些情况下评价结果与海域富营养化症状并不一致。
The analysis of the eutrophication characteristics in some typical Chinese coastalareas were carried out. In these coastal areas, the nutrient enrichment status and thespatial and temporal characteristic of some eutrophication symptoms such as HarmfulAlgal Blooms (HABs) were analyzed. Based on the analysis of the eutrophicationcharacteristics, an integrated model for assessment of eutrophication status, whichwas based on both water quality and ecological response, was described. The―PhaseII‖assessment model structure and previous assessment model for Changjing rivereustuary were referred to in the construction of the integrated model. The integratedmodel was then applied to some typical Chinese coastal areas, hoping to provide someimplications for eutrophication management. Comparison works, such as thecomparison between the integrated method and the nutrient index method, and thecomparison between the integrated method and other multi-parameter assessmentmodel, were also carried out for improvements of current methods. The mainconclusions are as follows:
     The analysis of the eutrophication characteristics of the typical coastal areasindicated that: for a long-term time series, the trend of nutrient concentrations showedan increasing trend in typical coastal areas which means a nutrient enrichmentconditions. The trend of nutrient concentrations is in accordance with the trend ofoccurrences of HABs. Previous research indicated that the increases in nutrientconcentrations had a good correlation with the frequency of occurrences of HABsevents especially in the Changjiang river estuaries. For spatial characteristic ofeutrophication, nutrients inner the bays and in the nearshore areas were usually high.And the areas with high concentrations of nutrient were almost areas with highfrequency of HABs, just as the case in the southwest Bohai Sea, the Xiangshan Bayand the nearshore areas of Xiangshan Bay. For a small proportion of areas, thedistribution of high nutrient concentrations and HABs were not in consistency. Justlike the case in Changjiang river estuary and the Hangzhou Bay, the area of high nutrient concentrations (inner the estuary and the Hangzhou Bay) was not areas whereoccurrences of HABs were frequent. In the offshore area of the Changjiang riverestuary and outside the Hangzhou Bay where nutrient was relatively low, highfrequency of HABs occurred. This is mainly due to the expressions of eutrophicationsymptoms were influenced by the regional characteristics or system-specific attributes.This had provided good implications that when assessing the trophic status of coastalareas, nutrient enrichment factors, eutrophication symptoms such as HABs, high-levelbiomass and hypoxia, e.g. should all be considered.
     The results of the application of the integrated model to three typical coastalareas indicated that: Among the three typical coastal areas in different geographicallocations (southwest Bohai Sea, coastal areas in Shandong Peninsula and Changjiangriver estuary and Hangzhou Bay), the Changjiang river estuary and Hangzhou Baywere areas with most serious eutrophication problems. The trophic status in a fairlylarge area of Changjiang river estuary and Hangzhou Bay ranged from the―Poor‖category to the―Bad‖category. Following the Changjiang river estuary and HangzhouBay, the eutrophication problem in the north Bohai Bay, especially in the Haihe riverestuary was also very serious. The trophic status in most coastal areas and bays inShandong Peninsula did not follow in the―Bad‖category, indicating the least seriousproblem in the three geographical regions. The trophic status inner the Xiangshan Bay,the Laizhou Bay, the Jiaozhou Bay, the Dingzi Bay and the Sishili Bay was not good.In general, eutrophication problems inner the Bays were more serious than that in theopen sea areas. The trophic status in the coastal areas of Shandong Peninsula, thecentral open sea of Bohai Sea was almost―Moderate‖category or―Moderate Low‖category, which may be attributed to the lower riverine input of nutrients and goodhydrodynamic conditions. There was good relationship between the trophic status andthe characteristics of the estuaries. The trophic status was worse in the offshore areasthan that inner the estuaries if the river discharge was large and carried a large amountof suspended solids, since the eutrophication symptoms were not easily expressedinner the estuaries due to the high turbidities. These areas included the Changjiangriver estuary and the Hangzhou Bay. For low-discharge and low-turbidity rivers, such as the Haiher river in north Bohai Bay, Xiaoqing river in west Laizhou Bay and Haiporiver in the Jiaozhou Bay, eutrophication symptoms were easily expressed near theriver estuary and showed a Bad tophic status as soon as nutrients was delivered to thebays.
     In the comparisons of different assessment methods, both the integrated methodand the―NOWPAP‖common procedure identified that there was high degree ofnutrient enrichment problem inner the Jiaozhou Bay. For primary ecological responseor symptom (e.g. Chl-a), the integrated method identified the―High‖category whilethe―NOWPAP‖identified―Low‖category, partially due to the way the monitoringdata were processed (90thpercentile-based approach for the indicators of theintegrated method while the average or maximum value for―NOWPAP‖method) andpartially due to the threshold used by different methods. For secondary ecologicalresponse, different time-scale data were used by the two methods according to theavailability of data collected. And HABs events showed a decreasing trend from theyear2004to2009, so the secondary ecological response became better in the―NOWPAP‖method, which resulted in a better final trophic status. For comparisonsof the integrated method and the traditional nutrient index method, the integratedmethod obtained more reasonable results. Inclusion of both causative factors andeffect factors, combination of concentration, spatial coverage and frequency ofindicators, and usage of a multi-season monitoring datasets in the methodology resultin a more accurate and representative assessment. Nutrient-based EI method obtaineddeclining gradient of trophic status as water depth increases simply because the EImethod assumes that eutrophication problems are only reflected as changes innutrients and fail to reflect the changes in the ecological response or impairments ofthe system.
引文
蔡惠文,2007.海岸带网箱养殖环境容量研究—以胶南海域为例[D].青岛,中国海洋大学:1-128.
    柴超,俞志明,宋秀贤等.长江口水域富营养化特征的探索性数据分析[J].环境科学,2007,28(1):53-58
    陈斌,王金坑,汤军建等.福建湄洲湾海域营养状态趋势预测[J].台湾海峡,2002,21(3):322-328
    陈鸣渊,俞志明,宋秀贤等.利用模糊综合方法评价长江口海水富营养化水平[J].海洋科学,2007,31(11):47-54
    陈于望.厦门附近海域富营养化状况分析[J].海洋环境科学,1987,6(3):14-19.
    傅明珠,蒲新明,王宗灵,刘新杰.桑沟湾养殖生态系统健康综合评价[J].生态学报,2013,33(1):238-248
    冈市友利.浅海的污染与赤潮的发生,内湾赤潮的发生机制[J].日本水产资源保护协会,58-76
    国家海洋局.国家海洋环境质量公报,2003-2008.
    国家海洋局.海洋监测规范,GB17378.4—1998.
    国家海洋局.海洋调查规范,GB/T12763.4—1991.
    国家海洋局.海洋赤潮调查监测规范,HY/T069-2005.
    海热提,谢涛、齐凤霞等.天津海域底质重金属分布特征与矿物特征研究[J].环境科学与技术,2006,29(6):6-8
    河北省海洋与渔业厅.河北省海洋环境质量公报[R],2007-2008.
    环境保护部.国家海水水质标准(GB3097-1997),1997.
    蒋红,崔毅,陈碧娟等.渤海近20年来营养盐变化趋势研究[J].海洋水产研究,2005,26(6):61-67
    江文胜,苏键,杨华,等.渤海悬浮物浓度分布和水动力特征的关系[J].海洋学报,2002,24(增刊):212~217.
    阚文静,张秋丰,石海明等.近年来渤海湾营养盐变化趋势研究[J].海洋环境科学,2010,29(2):238-241
    孔凡洲,于仁成,张清春等,对桑沟湾海域一次藻华事件原因种的初步分析[J].海洋环境科学,2012,31(6):824-829
    李斌,白艳艳,邢红艳等.四十里湾营养状况与浮游植物生态特征[J].生态学报,2013,33(1):260-266
    李伟才,栾刚,李立等.中国沿海部分海区贝毒毒素的调查[J].海洋科学,2000,24(9):19-22
    梁玉波等.中国赤潮灾害调查与评价(1933-2009)[M].北京,海洋出版社,
    2012.p:12-19.
    林凤翱,卢兴旺,洛昊等.渤海赤潮的历史、现状及其特点[J].海洋环境科学,2008,27(2):1-5
    林辉,张元标,陈金民等.厦门海域水体富营养程度评价[J].台湾海峡,2002,21(2):154-161
    林荣根.海水富营养化水平评价方法浅析[J].海洋环境科学,1996,15(2):28-31
    林小苹,黄长江,林福荣等.海水富营养化评价的主成分-聚类分析方法[J].数学的实践与认识,2004,34(12):69-74
    刘哲.胶州湾水体交换与营养盐收支过程数值模型研究[D].青岛,中国海洋大学.2004, p30.
    栾青杉.长江口及其邻接水域浮游植物群集生态学研究[D].青岛,中国海洋大学,2007.1-72.
    马绍赛,周诗赉,1997.丁字湾大潮汛期营养状况及其变化分析[J].中国水产科学,4(3):44-47.
    马绍赛,辛福言,崔毅等.黄河和小清河主要污染物入海通量的估算[J].海洋水产研究,2004,25(5):47-51
    钱宏林,梁松,齐雨藻等.南海北部沿海夜光藻赤潮的生态模式研究[J].生态科学,1994,1:39-46
    秦铭俐,蔡燕红,王晓波等.杭州湾水体富营养化评价及分析[J].海洋环境科学,2009,28(1):53-56
    全为民,沈新强,韩金娣,等.长江口及邻近水域富营养化现状及变化趋势的评价与分析[J].海洋环境科学,2005,24(3):13-16
    冉祥滨,姚庆祯,巩瑶等.蓄水前后三峡水库营养盐收支计算[J].水生态学杂志,2009,2(2):1~3
    山东省海洋与渔业厅.山东省海洋环境质量公报[R],2005-2008.
    上海市海洋与渔业局.上海市海洋环境质量公报[R],2009.
    邵秘华,李炎,王正方等.长江口海域悬浮物的分布时空变化特征[J].海洋环境科学,1996,15(3):36-40
    苏畅,沈志良,姚云等.长江口及其邻近海域富营养化水平评价[J].水科学进展,2008,19(1):99-105
    孙连成.塘沽围海造陆工程对周边泥沙环境影响的研究[J].水运工程,2003,(3):1-5
    孙松,孙晓霞等.中国生态系统定位观测与研究数据集湖泊湿地海湾生态系统卷—山东胶州网站[M].北京,中国农业出版社,2010,80-135.
    孙松,孙晓霞等.胶州湾生态系统长期变化图集[M].北京,海洋出版社,
    2011,60-179.
    孙晓霞,孙松,赵增霞等.胶州湾营养盐浓度与结构的长期变化[J].海洋与湖沼,2011,42(5):662-669
    孙英兰,张越美,2003.丁字湾物质输运及水交换能力研究[J].中国海洋大学学报,33(1):001-006.
    唐洪杰.长江口及邻近海域富营养化近30年变化趋势及其与赤潮发生的关系和控制策略研究[D].青岛,中国海洋大学,2009, p59-68.
    王刚.胶州湾入海点源、海水养殖污染通量研究[D].青岛,中国海洋大学,2009.
    王法辉.基于GIS的数量方法与应用.北京,上午印书馆,2009.
    王繁,周斌,徐建明等.基于实测光谱的杭州湾悬浮物浓度遥感反演模式[J].环
    境科学,2008,29(11):3022-3026
    王江涛,曹婧.长江口海域近50年来营养盐的变化及其对浮游植物群落岩体的影响[J].海洋环境科学,2012,31(3):310-315
    吴玉霖,孙松,张永山,2005.环境长期变化对胶州湾浮游植物群落结构的影响[J].海洋与湖沼,36(6):487-499.
    夏斌,张龙军,桂祖胜,江春波.海河流域的富营养化状况及污染物入海通量[J].中国海洋大学学报(自然科学版),2006,36(2)33-38.
    许翠娅,黄美珍,杜琦.福建沿岸海域主要赤潮生物的生态学特征[J].台湾海峡,2010,29(6):434-441
    许全喜,童辉.近50年来长江水沙变化规律研究[J].水文,2012,32(5):38-47
    杨红,李曰嵩.长江口水质人工神经网络模型的建立及现状评价[J].上海水产大学学报,2002,1:31-36
    姚云,沈志良.胶州湾海水富营养化水平评价[J].海洋科学,2004,28(6):14-22
    喻龙,郝彦菊,蔡悦荫,2009.四十里湾赤潮高发期营养盐与叶绿素a的年际变化[J].海洋环境科学,5(28):558-561.
    于志刚,米铁柱,谢宝栋等.二十年来渤海生态环境参数的演化和相互关系[J].海洋环境科学,2000,19(1):15-20
    俞志明,沈志良等.长江口水域富营养化[M].北京,科学出版社.2011,211-238.
    于子江等,我国近海海洋调查与评价专项成果—山东近岸重点海域和排污口环境质量[R].山东省海洋与渔业厅.2010.
    章飞燕.长江口及邻近海域浮游植物群落变化的历史对比及其环境因子研究[D].上海,华东师范大学,2009:1-75.
    张拂坤.胶州湾入海污染物容量研究[D].青岛,中国海洋大学,2007.
    张继红,蒋增杰,王巍等.桑沟湾营养盐时空分布及营养盐限制分析[J].渔业科学进展,2010,31(4):16-25
    张继红,王巍,韩婷婷等.桑沟湾春季营养盐分布特征及赤潮暴发诱因[J].水产学报,2012,36(1):132-139
    张龙军,夏斌,桂祖胜等.2005年夏季环渤海16条主要入海河流的污染状况[J].环境科学,2007,28(11):612-620
    张万磊,张永丰,张建乐等.北戴河赤潮监控区环境质量状况分析[J].环境与资源,2012,7:13-16
    张璇.长江口及邻近海域营养盐的历史演变及其在赤潮中的作用研究[D].青岛,中国海洋大学,2012, p18.
    张学庆,孙英兰.胶州湾入海污染物总量控制研究[J].海洋环境科学,2007,26(4):347-351
    张莹莹,张经,吴莹等,2007.长江口溶解氧的分布特征及影响因素研究[J].环境科学,28(8):1649-1654.
    张志峰,贺欣,张哲等.渤海富营养化现状、机制及其与赤潮的时空耦合性[J].海洋环境科学,2012,31(4):465-468
    赵冬至.中国典型海域赤潮灾害发生规律[M].北京,海洋出版社,2010.
    浙江省海洋与渔业厅.浙江省海洋环境质量公报[R],2009.
    郑建平,陈敏建,徐志侠等.海河流域河道最小生态流量研究[J].水利水电科技进展,2005,25(5):12-16
    钟硕良,许翠娅,杨妙峰等.福建海洋渔业生态环境研究现状及发展趋势[J].福建水产,2011,33(3):52-60
    左丽君,徐进勇,张增祥等.渤海海岸带地区土地利用时空演变及景观格局响应[J].遥感学报,2011,15(3):612-620
    邹定辉,夏建荣.大型海藻的营养盐代谢及其与近岸海域富营养化的关系[J].生态学杂志,2011,30(3):589-595.
    邹景忠,董丽萍,秦保平.渤海湾富营养化和赤潮问题的初步探讨[J].海洋环境科学,1983,2(2):41-54.
    Anderson, D.M.,1997. Turning back the harmful red tide–Commentary. Nat.388,513-514.
    Anderson D M, Kaoru Y, White A W.2000. Estimated annual economic impacts fromharmful algal blooms (HABs) in the United States. Woods Hole OceanographicInstitute Technical Report., WHOI-2000-11.
    Berthouex, P.M., Box, G.E.,1996. Time series models for forecasting wastewatertreatment plant performance. Water. Res.30,1865-1875.
    Boynton W R, Kemp W M, Keefe C W.1982. A comparative analysis of nutrients andother factors infuencing estuarine phytoplankton production. In: Kennedy V S ed.Estuarine Comparisons. Academic Press, New York. p.69-90.
    Boesch DF (1999) The role of science in ocean governance. Ecol Econ31(2):189-198
    Box, G.E., Jenkins, G.M., Macrego, J.F.,1974. Some recent advances in forecastingand control.2. J. R. Stat. Soc.23,158-179.
    Bricker S B, Clement C G, Pirhalla D E et al.1999. National Estuarine EutrophicationAssessment. Effects of Nutrient Enrichment in the Nation’s Estuaries. NOAA,National Ocean Service, Special Projects Office and National Centers for CoastalOcean Science, Silver Spring, Maryland.
    Bricker S B, Ferreira J G, Simas T.2003. An integrated methodology for assessmentof estuarine trophic status. Ecol. Model.,169(1):39-60.
    Burkholder J M, Noga E J, Hobbs C H, et al.1992. New phantom dinoflagellate is thecausative agent of major estuarine fish kills. Nature,360(6406):768-768.
    Carlson R E,1977. A Trophic state index for lakes. Limnology and Oceanography,22(1):361-369
    Chai C, Yu Z M, Song X X et al,2006. The status and characteristics ofeutrophication in the Yangtze River (Changjiang) estuary and the adjacent EastChina Sea, China. Hydrobiologia.563:313-328
    Chiu S T,1991. Bandwidth selection for kernel density estimation. Ann. Stat.19,1883-1905.
    Clarke, P.J., Evans, F.C.,1954. Distance to nearest neighbor as a measure of sp atialrelationships in population. Ecol.35,45–53.
    Cloern J E.2001. Our evolving conceptual model of the coastal eutrophicationproblem. Mar Ecol-Prog Ser.,210:223-253.
    Council of European Communities (CEC),2000. Council Directive2000/60/EC of theEuropean Parliament and of the Council of23October2000establishing aframework for community action in the feld of water policy. Off J Eur CommunL327:1-73
    Devlin M, Bricker S, Painting S,2011. Comparison of five methods for assessingimpacts of nutrient enrichment using estuarine case studies. Biogeochemistry,106(2):177-205.
    Ferreira J G, Bricker S B, Simas T C.2007. Application and sensitivity testing of aeutrophication assessment method on coastal systems in the United States andEuropean Union. J. Environ. Manage.,82(4):433-445.
    Garmendia M, Bricker S B, Revilla M, et al.2012. Eutrophication Assessment inBasque Estuaries: Comparing a North American and a European Method.Estuaries. Coasts,35(1):991-1006.
    Getis, A.,1964. Temporal land-use pattern analysis with the use of nearest neighborand quadrant methods. Ann. Assoc. Am. Geogr.54,391–399.
    Giovanardi F, Vollenweider RA (2004) Trophic conditions of marine coastal waters:experience in applying the Trophic Index TRIX to two areas of the Adriatic andTyrrhenian seas. J Limnol63(2):199–218
    Hallegraeff G M.1993. A review of harmful algal blooms and their apparent globalincrease. Phycologia,32(2):79-99.
    Hao Y J, Tang D L, Yu L et al. Nutrient and chlorophyll a anomaly in red-tide periodsof2003—2008in Sishili Bay, China. Chinese Journal of Oceanology andLimnology,2011,29(3):664-673
    Helsinki Commission Development of tools for assessment of eutrophication in theBaltic Sea. Baltic Sea Environment Proceedings: No.104.2006.
    Li And D. Daler.2004. Ocean pollution from land-based sources: East China Sea,China. Ambio33:107–112.
    Li, Zhang J, Huang D, et al.,2002. Oxygen depletion off the Changjiang (YangtzeRiver) Estuary. Science in China45:1137–1146.
    Liu X C, Shen H T. Estimation of dissolved inorganicnutrient fluxes from theChangjiang River into estuary [J]. Sciencein China (Ser. B),2001,44(Suppl.):135-141.
    May CL, Koseff JR, Lucas LV, Cloern JE, Schoellhamer DH (2003) Effects of spatialand temporal variability of turbidity on phytoplankton blooms. Mar Ecol-ProgSer254:111-128
    Morand P, Merceron M,2004. Coastal eutrophication and excessive growth ofmacroalgae. Recent Research of Developmental Environment Biology.1(2):395-449
    National Oceanic and Atmospheric Administration (NOAA),1985. National estuarineinventory: Data atlas, vol.1: Physical and hydrologic characteristics. Rockville,MD: Strategic Assessment Branch, Ocean Assessments Division.103pp.
    Nixon S W.1995. Coastal marine eutrophication—A definition, social causes, andfuture concerns. Ophelia,41:199-219.
    NOWPAP CEARAC Report: Procedures for the assessment of eutrophication statusincluding evaluation of land-based sources of nutrients for the NOWPAP region.2009.
    Nobre A M, Ferreira J G et al,2005. Management of coastal eutrophication:Integration of field data, ecosystem-scale simulations and screening models.Journal of Marine Systems.56(3-4):375-390
    Nobre A M, Bricker S B, Ferreira J G et al,2011. Integrated Environmental Modelingand Assessment of Coastal Ecosystems: Application for AquacultureManagement. Coastal management,39:536-555.
    Nunes JP, Ferreira JG, Gazeau F, Lencart-Silva J, Zhang XL, Zhu MY, Fang JG (2003)A model for sustainable management of shellfish polyculture in coastal bays.Aquaculture219(1-4):257-277
    OSPAR Commission (2003a) The OSPAR Integrated Report2003on theEutrophication Status of the OSPAR Mari-time Area based upon the firstapplication of the com-prehensive procedure. OSPAR Publication2003,ISBN:1-904426-25-5
    Pang S J, Liu F, Shan T F, et al.,2010. Tracking the algal origion of the Ulva bloom inthe Yellow Sea by a combination of molecular, morphological and physiologicalanalysis. Marine Environmental Research.69(4):207-215
    Qiao, L.L., Wang, Y.Z., Li, G.X., Deng, S.G., Liu, Y., Mu, L.,2011. Distribution ofsuspended particulate matter in the northern Bohai Bay in summer and itsrelation with thermocline. Estuar. Coast. Shelf. Sci.93,212-219.
    Sheather S J, Jones M C,1991. A reliable data-based bandwidth selection method forkernel density estimation. J. R. Stat. Soc.53,683-690.
    Shirota A. Red tide problem and countermeasures. J. Aquac. Fish. Technol,1989,1,25-38.
    Spencer J, Angeles G,2007. Kernel density estimation as a technique for assessingavailability of health services in Nicaragua. Health. Serv. Outcomes. Res.Method.7,145–157.
    Tett P, Gilpin L, Svendsen H et al.2003. Eutrophication and some European waters ofrestricted exchange. Cont Shelf Res.,23(17-19):1635-1671.
    USEPA,2001. United States Environmental Protection Agency [R]. Nutrient CriteriaTechnical Guidance Manual, Estuarine and Coastal Marine Waters,EPA-822-B-01-003
    Vollenweider RA,1976. Advances in defining critical loading levels of phosphorus inlake eutrophication. Memorie dell’ Istituto Italiano di Idrobiologia,33:53-83
    Vollenweider RA, Giovanardi F, Montanari G, Rinaldi A (1998) Characterization ofthe trophic conditions of marine coastal waters with special reference to the NWAdriatic Sea: proposal for a trophic scale, turbidity andgeneralized water qualityindex. Environmetrics9:329–357.
    Wang, J., Wu, J.,2009. Occurrence and potential risks of harmful algal blooms in theEast China Sea. Sci. Total. Environ.407,4012-4021.
    Wang X L, Cui Z et al.2009. Distribution of nutrients and eutrophication assessmentin the Bohai Sea of China. Chin. J. Ocean. Limnol.,27(1):177-183.
    Weber C A,1907. Aufbau und vegetation der moore norddeutschlands. Beiblatt zuden Botanischen Jahrbuchern,90:19-34.(in Germnen)
    Xiao Y J, Ferrerira J G, Bricker S B et al.2007. Trophic assessment in Chinese coastalsystems: review of methods and application to the Changjiang (Yangtze) estuaryand Jiaozhou Bay. Estuaries Coasts,30(6):901-918.
    Xie, L., Chen, J., Taniguchi, M., Liu, Q.,2010. Comparison of Nutrients Transport tothe Sea from the Yellow River and the Pearl River. Proceedings of the4thInternational Yellow River Forum on Ecological Civilization and River Ethics2,173-185.
    Yu, Z.M., Zou, J.Z., Ma, X.N.,1994. Application of clays to removal of red tideorganisms. Chin. J. Oceanol. Limnol.12,193-200.
    Zaldivar J M, Cardoso A C, Viaroli P, et al.2008. Eutrophication in transitionalwaters: an overview. Transnatl. Waters. Monogr.1:1–78.
    Zhou M J, Shen Z L, Yu R C. Responses of a coastal phytoplankton community toincreased nutrient input from the Changjiang (Yangtze) River. Continental ShelfResearch,2008,28:1483~1489
    Zhou Y, Yang H, Hu H et al. Bioremediation potential of the macroalga Gracilarialemaneiformis (Rhodophyta) integrated into fed fish culture in coastal waters ofnorth China. Aquaculture,2006,252:264–276.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700