电磁流变协同效应微磨头加工机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着微机电系统的应用和进一步发展,微尺寸零件的需求迅速增加,硬脆材料微结构的精细加工要求越来越高,微细加工技术是硬脆材料微结构微细加工的关键。作为一种智能材料,电磁流变液综合了电流变液和磁流变液的优点,在电场和磁场同时作用时,能够产生“协同效应”,造成屈服应力高于单独电场和磁场作用下的屈服应力甚至其总和。本文基于电流变抛光和磁流变抛光原理,提出了电磁流变协同效应微磨头加工方法,研制了相应的试验加工装置,采用定点加工方法试验研究了工艺参数的影响,建立了微磨头中固相粒子(包括分散粒子和磨粒)的受力模型和材料去除模型,深入研究了电磁流变协同效应微磨头加工的电磁耦合协同作用机理。
     基于电磁流变协同效应的微磨头加工方法,是将磨料混入电磁流变液形成抛光液,以导电和导磁材料制作锥形工具,在锥形工具和工件之间形成高压电场和磁场,在电磁耦合场作用下锥形工具端部形成电磁流变效应微磨头,利用电磁流变液的“协同效应”来控制电磁流变效应微磨头的性能,实现硬脆材料的高效抛光和微量去除。
     针对绝缘性较差的水基电流变液无法形成稳定电流变效应的问题,深入分析了电流变效应的形成机理,提出了隔离电极的电流变效应加工方法和装置,改进后的电流变效应微磨头加工装置能形成良好的电流变效应,具有较好的加工效果。根据电磁流变协同效应微磨头加工原理,研制了电磁流变协同效应微磨头加工试验装置,可以实现电场与磁场不同方向叠加以及对硬脆材料工件的定点加工和轨迹加工,满足加工试验要求。
     采用电磁流变协同效应微磨头定点加工方式对玻璃材料进行了试验研究。随外场强度增大、加工时间延长、初始间隙减小,电磁流变协同效应微磨头的去除能力增强,工具速度对加工效果的影响取决于微磨头切削速度和离心力的共同作用。电磁流变抛光工作液中混入的磨粒对电磁流变效应微磨头的链串结构有显著影响,磨料种类、粒度和浓度等均影响到电磁流变效应微磨头的性能及材料去除能力。磨粒的添加能显著提高材料去除效率,但磨粒浓度增大到一定程度后,材料去除量的增速趋缓。在材料去除效率方面,磨粒的硬度起着关键因素,磨粒硬度越大,材料去除效率越高,但硬度较小的磨料可以得到粗糙度较小的加工表面,磨料的粒度和密度会影响微磨头链串结构稳定性,最佳的磨料粒度和密度需要根据电、磁场强度和分散粒子的大小来优化。
     基于固相粒子的极化理论,推导了电磁流变液中固相粒子之间的电、磁场作用力计算公式,利用Ansys软件进行了电、磁场分布情况仿真,采用叠加法建立了固相粒子在电磁流变协同效应微磨头中的受力模型,在此基础上,建立了工件表面的抛光压力计算模型和材料去除模型。根据材料去除模型计算出的轮廓与定点加工试验得到的工件加工截面轮廓曲线形状一致,证明了建立的材料去除模型的正确性。通过电磁场耦合状态下的加工试验和微磨头中固相粒子链串间作用力的计算,改进了电磁流变协同效应微磨头中固相粒子在工具旋转时的受力模型,揭示了电磁耦合协同加工作用机理和微磨头的形成机理。在电磁流变协同效应微磨头加工中,微磨头中固相粒子在电磁场耦合场中受电场力、磁场力以及洛伦兹力产生的自旋力偶的共同作用维持链串的动态稳定性,其中电场力和磁场力维持固相粒子链串结构的稳定性,自旋力偶产生的固相粒子的原位振动会影响链串结构的稳定。但固相粒子的原位振动对材料去除具有双重作用,一方面原位振动会对工件表面产生冲击,对材料去除有很大的促进作用,另一方面若链串固相粒子间连接力较弱或自旋力偶较大时,会对链串造成破坏,降低了材料去除能力。当电、磁场力相近并与自旋力偶相匹配时,电磁流变效应微磨头加工有很好的协同作用效果。
     为进一步验证电磁流变协同效应微磨头加工的电磁耦合协同作用机理,进行了工具旋转和工作台旋转两种加工模式的正交试验对比。在工具旋转加工模式下,由于磁场中存在移动的电流变效应偶极子而产生洛伦兹力,在洛伦兹力产生的自旋力偶的作用下固相粒子链串会发生原位振动,促进了材料去除,相比于工作台旋转加工模式材料去除深度明显较大。电磁场耦合方式对电磁流变协同效应微磨头加工的加工效率有决定性影响,在本文试验条件下,高电场电压、低励磁电压条件下具有较好的电磁流变协同效应。
With the development of the micro electro mechanical systems (MEMS) technology, the demand for micro apparatuses made of hard brittle materials, which have miniature size, complex shape and high surface quality, is increasing. Micromachining is the key supporting technology that has to be developed to meet the increasing accuracy requirements of product miniaturization and industrial realization of nanotechnology. As a new type of smart materials, the electro-magneto-rheological (EMR) fluid combines the characteristics of both the electrorheological (ER) fluid and the magnetorheological (MR) fluid, and exhibits not only the ER effect but also the MR effect under the applied fields. In particular, the EMR fluid can produce a synergistic effect under an electro-magnetically coupled field, which exhibits that the shearing stress of the EMR fluid can be increased more than the combination of the shearing stresses under the electric or magnetic field.
     Based on the machining principles of ER finishing and MR finishing, an EMR synergistic effect-based tiny-grinding wheel finishing (EMR finishing) method is presented. In the EMR finishing, the EMR fluid dispersed with micron-sized finishing abrasives is used as a polishing fluid to form a flexible EMR tiny-grinding wheel at the end of the cone-shaped tool when an electro-magnetically coupled field is applied, and the machining performance of the EMR tiny-grinding wheel can be controlled effectively by using the EMR synergistic effect. The EMR finishing can employed to polish the surface or machine the microstructure of brittle materials with a high efficiency.
     To solve the problem that the water-based ER fluid with poor insulating property cannot form a stable ER effect, the mechanism of ER effect is investigated thoroughly, and a noval ER polishing method, where the electrode and the ER fluid is separated by insulating materials, is presented. Using the impoved ER polishing device, the water-based ER fluid can form a stable ER effect and a good machining effect can be obtained. Based on the principle of the EMR finishing, the experimental equipment of the EMR finishing is developed to machine the workpiece under the paralled or cross combination of the electric and magnetic fields.
     Experiments of the EMR finishing are conducted to study the influences of some parameters on the polishing effect of the glass workpiece at a fixed-point machining mode. With the increase of the applied field intensity, the extension of the machining time and the decrease of the machining gap, the removal ability of the EMR tiny-grinding wheel will enhance. Influence of the rotational speed of the tool on material removal depends on the combined action of the cutting speed and the centrifugal force of the EMR tiny-grinding wheel. The presence of the abrasives can enhance the efficiency of material removal remarkably, however, too much diamond abrasives have little effect on the increase of the polishing performance of the EMR tiny-grinding wheel. The hardness of the abrasives determines the material removal ability of the EMR tiny-grinding wheel. The greater the abrasive hardness, the higher the material removal efficiency. The grain size and density of the abrasives directly influence the structure of the EMR particle chains and then change the efficiency of material removal. The optimum size and density of the abrasives should be chosen according to the field strength, the centrifugal force of the abrasives and the grain size of the dispersed particles.
     The distribution of the electric and magnetic field is simulated using Ansys software. According to the dipole model of particle energy interaction, the formulae of the field attraction forces between the EMR particles (including the dispersed particles and the abrasives) are derived, and the mechanical model of the EMR particle in the EMR tiny-grinding wheel is put forward. Furthermore, the distribution model of the polishing pressure and the material removal model are established. The real profiles of the machined surface at a fixed-point machining mode confirm the material removal model of the EMR finishing.
     The improved mechanical model of the EMR particle in the rotational EMR tiny-grinding wheel is established on the basis of the experimental results under the different electro-magnetically coupled fields and the calculating results of mutual particle interactions. This model clarifies the synergistic effect mechanism of electro-magnetically coupled field and the formation mechanism of the EMR tiny-grinding wheel. During the EMR finishing, the combined effect of the electric force, the magnetic force and the spin couple generated by the Lorentz force determines the stability of the EMR particle chains, the electric force and the magnetic force sustain the stability of the EMR particle chains, whereas in situ vibration of the EMR particles generated by the spin couple will affect the stability of the chains. In situ vibration of the EMR particles has two effects on the material removal performance of the EMR tiny-grinding wheel. On the one hand, in situ vibration of the EMR particles will impact regularly on the workpiece surface and promote material removal. On the other hand, in situ vibration will break the particle chains and reduce material removal when the interaction force of the particle chains is weak or the spin couple is large. When the electric force and the magnetic force are close in the value and match the spin couple, a good synergistic effect of the EMR finishing can be achieved.
     Results of orthogonal tests of two rotational modes further confirm the synergistic effect mechanism of electro-magnetically coupled field. At the rotational tool mode, the rotational motion of the EMR polarized particles in the magnetic field will generate the Lorentz force and the spin couple, and the EMR particles will vibrate in situ due to the effect of the spin couple, then material removal will increase. The couple mode of electric and magnetic field has a significant influence on the machining efficiency of the EMR finishing, and there is a good synergistic effect of the EMR finishing in the condition of high voltage of electric field and low excitation voltage of magnetic field.
引文
[l]袁巨龙,张飞虎,戴一帆,等.超精密加工领域科学技术发展研究[J].机械工程学报,2010,46(15):161-177.
    [2]袁哲俊.精密和超精密加工技术的新进展[J].工具技术,2006,40(3):3-9.
    [3]卢泽生,王明海.硬脆光学晶体材料超精密切削理论研究综述[J].机械工程学报,2003,39(8):15-21.
    [4]Fahnle OW, van Brug H. Novel approaches to generate aspherical optical surfaces [C]. Proceedings of the 1999'Optical Manufacturing and Testing III, July 20-23,1999, Denver, CO, USA.
    [5]Belloy E, Sayah A, Gijs MAM. Powder blasting for three-dimensional microstructuring of glass[J]. Sensors and Actuators, A:Physical,2000,86(3):231-237.
    [6]Namba Y, Takehara H, Nagano Y, et al. Fracture Strength of Zero-Thermal-Expansion Glass-Ceramics for Ultra-Precision Components[J]. CIRP Annals-Manufacturing Technology,2001,50(1):239-242.
    [7]Yin L, Huang H. Brittle materials in nano-abrasive fabrication of optical mirror-surfaces[J]. Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology,2008,32(4):336-341.
    [8]杨力.先进光学制造技术[M].北京:科学出版社,2001.
    [9]Bielke A, Beckstette K, Kubler C, et al. Fabrication of aspheric optics-Process challenges arising from a wide range of customer demands and diversity of machine technologies [C]. Proceedings of the Optical Fabrication, Testing, and Metrology, September 30-October 3,2003, St. Etienne, France.
    [10]魏宸官.电流变技术-机理·材料·工程应用[M].北京:北京理工大学出版社,2000.
    [11]Kim WB, Lee SJ, Kim YJ, et al. The electromechanical principle of electrorheological fluid-assisted polishing[J]. International Journal of Machine Tools and Manufacture, 2003,43(1):81-88.
    [12]Kordonski W, Golini D. Progress update in magnetorheological finishing[J]. International Journal of Modern Physics B,1999,13(14-16):2205-2212.
    [13]Kordonski W, Golini D. Multiple application of magnetorheological effect in high precision finishing[J]. Journal of Intelligent Material Systems and Structures,2002, 13(7-8):401-404.
    [14]Shafrir SN, Lambropoulos JC, Jacobs SD. A magnetorheological polishing-based approach for studying precision microground surfaces of tungsten carbides[J]. Precision Engineering,2007,31(2):83-93.
    [15]彭小强.确定性磁流变抛光的关键技术研究[D].长沙:国防科学技术大学,2004.
    [16]张峰.磁流变抛光技术的研究[D].长春:中国科学院长春光学精密机械与物理研究所,2000.
    [17]王慧军.超声波磁流变复合抛光关键技术研究[D].哈尔滨:哈尔滨工业大学,2007.
    [18]贺新升.电流变抛光设备开发与关键技术研究[D].长春:吉林大学,2009.
    [19]毕非凡.电流变液辅助精细加工机理研究[D].广州:广东工业大学,2005.
    [20]Kordonski WI, Golini D. Fundamentals of magnetorheological fluid utilization in high precision finishing[J]. Journal of Intelligent Material Systems and Structures,2000,10(9): 683-689.
    [21]http://qedmrf.com/polishing/products [EB/OL].
    [22]Messner W, Hall C, Dumas P, et al. Manufacturing meter-scale aspheric optics[C]. Proceedings of the Optical Manufacturing and Testing VII, August 28-29,2007, San Diego, CA, USA.
    [23]Tricard M, Dumas PR, Golini D, et al. SOI wafer polishing with magnetorheological finishing (MRF) [C]. Proceedings of the IEEE International SOI Conference, September 29-October 02,2003, Newport Beach, CA, USA.
    [24]Koyama K, Minagawa K, Watanabe T, et al. Electro-magneto-rheological effects in parallel-field and crossed-field systems[J]. Journal of Non-Newtonian Fluid Mechanics, 1995,58(2-3):195-206.
    [25]Sheng P, Wen WJ, Wang N, et al. Field-induced structural transition in mesocrystallites[J]. PhysicaB,2000,279(1-3):168-170.
    [26]Bi FF, Yan QS, Wu NQ. On electrorheological effect instantaneous tiny grinding wheel for fine machining[J]. Key Engineering Materials,2006,304-305:181-185.
    [27]Lu JB, Yan QS, Tian H, et al. Polishing properties of tiny grinding wheel based on Fe3O4 electrorheological fluid[J]. Journal of Materials Processing Technology,2009, 209(11):4954-4957.
    [28]Lu JB, Yan QS, Yu J, et al. Parametric study of micro machining with instantaneous tiny-grinding wheel based on the magnetorheological effect of abrasive slurry[J]. International Journal of Materials & Product Technology,2008,31(1):113-124.
    [29]Lu JB, Yu J, Yan QS, et al. A novel superfine machining technology based on the magnetorheological effect of abrasive slurry[J]. Materials Science Forum,2006,532-533: 145-148.
    [30]Yu J, Yan QS, Lu JB, et al. Research on material removal of a new micro machining technology based on the magnetorheological effect of abrasive slurry[J]. Key Engineering Materials,2008,364-366 11:914-919.
    [31]阎秋生,冯建华,路家斌,等.工具电极耐磨性和液体组分对电流变加工的影响[J].中国机械工程,2007,18(21):2528-2531.
    [32]袁巨龙,王志伟,文东辉,等.超精密加工现状综述[J].机械工程学报,2007,43(1):35-48.
    [33]Marinescu I, Uhlmann E, Doi T. Handbook of lapping and polishing[M]. CRC Press Inc., 2006.
    [34]Marinescu I, Rowe W, Dimitrov B, et al. Tribology of abrasive machining processes[M]. New York:William Andrew Inc.,2004.
    [35]Rowe WB, Yan L, Inasaki I, et al. Applications of Artificial Intelligence in Grinding[J]. CIRP Annals-Manufacturing Technology,1994,43(2):521-531.
    [36]Lamikiz A, Sanchez JA, de Lacalle LNL, et al. Laser polishing of parts built up by selective laser sintering[J]. International Journal of Machine Tools & Manufacture,2007, 47(12-13):2040-2050.
    [37]Zhou L, Dai YF, Xie XH, et al. Optimum removal in ion-beam figuring[J]. Precision Engineering,2010,34(3):474-479.
    [38]Parikh PJ, Lam SS. Parameter estimation for abrasive water jet machining process using neural networks[J]. International Journal of Advanced Manufacturing Technology,2009, 40(5-6):497-502.
    [39]Fan JM, Wang CY, Wang J. Modelling the erosion rate in micro abrasive air jet machining of glasses[J]. Wear,2009,266(9-10):968-974.
    [40]郑书友,冯平法,徐西鹏.旋转超声加工技术研究进展[J].清华大学学报(自然科学版),2009,(11):1799-1804.
    [41]Wang YG, Zhang LC. A review on the CMP of SiC and sapphire wafers[C]. Proceedings of the 13th International Symposium on Advances in Abrasive Technology (ISAAT2010), September 19-22,2010, Taipei, Taiwan.
    [42]IKeno J, Tani Y, Sato H. Development of highly homogeneous pellets applying electrophoretic deposition of ultrafine abrasives for nanometer grinding[J]. CIRP Annals-Manufacturing Technology,1994,43(1):319-322.
    [43]Ramasawmy H, Blunt L. Investigation of the effect of electrochemical polishing on EDM surfaces[J]. International Journal of Advanced Manufacturing Technology,2007, 31(11-12):1135-1147.
    [44]尹韶辉,曾宪良,范玉峰,等.ELID镜面磨削加工技术研究进展[J].中国机械工程,2010,21(06):750-755.
    [45]Kanaoka M, Liu CL, Nomura K, et al. Processing efficiency of elastic emission machining for low-thermal-expansion material[J]. Surface and Interface Analysis,2008, 40(6-7):1002-1006.
    [46]Shimada K, Wu Y, Matsuo Y, et al. Float polishing technique using new tool consisting of micro magnetic clusters[J]. Journal of Materials Processing Technology,2005, 162-163:690-695.
    [47]Domblesky J, Evans R, Cariapa V. Material removal model for vibratory finishing[J]. International Journal of Production Research,2004,42(5):1029-1041.
    [48]Leistner AJ. Precision optical finishing using flat pitch and teflon laps at CSIRO TIP:A review[C]. Proceedings of the International Symposium on Advances in Abrasive Technology (ISAAT 1997), July 08-10,1997, Sydney, Australia.
    [49]袁巨龙,王志伟,钱苗,等.半固着磨具“陷阱”效应的颗粒流模拟[J].中国机械工程,2009,20(06):714-718.
    [50]Kuriyagawa T, Saeki M, Syoji K. Electrorheological fluid-assisted ultra-precision polishing for small three-dimensional parts[J]. Precision Engineering,2002,26(4): 370-380.
    [51]Kordonski W, Jacobs S. Model of magnetorheological finishing[J]. Journal of Intelligent Material Systems and Structures,1996,7(2):131-137.
    [52]Yin SH, Shinmura T. A comparative study:polishing characteristics and its mechanisms of three vibration modes in vibration-assisted magnetic abrasive polishing[J]. International Journal of Machine Tools & Manufacture,2004,44(4):383-390.
    [53]Yao YX, Yu SZ, Xie DG. Research on kinematic analysis and post processing arithmetic for NC machine tool for bonnet tool polishing[J]. Key Engineering Materials, 2008,364-366 II:707-712.
    [54]Akagami Y, Umehara N. Development of electrically controlled polishing with dispersion type ER fluid under AC electric field[C]. Proceedings of the 2nd International Conference on Tribology in Manufacturing Processes (ICTMP2004), June 15-18,2004, Nyborg, Denmark.
    [55]赵云伟.电流变抛光硬质合金模具理论与实验研究[D].长春:吉林大学,2007.
    [56]Kim WB, Min BK, Lee SJ. Development of a padless ultraprecision polishing method using electrorheological fluid[J]. Journal of Materials Processing Technology,2004,155: 1293-1299.
    [57]Kaku T, Kuriyagawa T, Yoshihara N. Electrorheological fluid-assisted polishing of WC micro aspherical glass moulding dies[J]. International Journal of Manufacturing Technology and Management,2006,9(1-2):109-119.
    [58]Zhang L, Zhao YW, He XS, et al. An investigation of effective area in electrorheological fluid-assisted polishing of tungsten carbide[J]. International Journal of Machine Tools & Manufacture,2008,48(3-4):295-306.
    [59]Zhang L, Kuriyagawa T, Kaku T, et al. Investigation into electrorheological fluid-assisted polishing[J]. International Journal of Machine Tools and Manufacture, 2005,45(12-13):1461-1467.
    [60]Yan QS, Bi FF, Wu NQ. Performance evaluation of electro-rheological fluid and its applications to micro-parts fine-machining[C]. Proceedings of the 8th Conference on Machining and Advanced Manufacturing Technology in China, November 15-17,2005, Hangzhou, China.
    [61]Kim WB, Park SJ, Min BK, et al. Surface finishing technique for small parts using dielectrophoretic effects of abrasive particles[J]. Journal of Materials Processing Technology,2004,147(3):377-384.
    [62]Tanaka T. A study of basic characteristics of polishing using particle-type electro-rheological fluid[J]. Key Engineering Materials,2007,329:201-206.
    [63]Kaku T, Yoshihara N, Yan J, et al. Development of a resin-coated micro polishing tool by plasma CVD method-electrorheological fluid-assisted polishing of tungsten carbide micro aspherical molding dies[J]. Key Engineering Materials,2007,329:213-218.
    [64]Zhang L, He XS, Yang HR, et al. An integrated tool for five-axis electrorheological fluid-assisted polishing[J]. International Journal of Machine Tools & Manufacture,2010, 50(8):737-740.
    [65]Tateishi T, Yoshihara N, Yan J, et al. Study on electrorheological fluid-assisted microultrasonic machining[J]. International Journal of Abrasive Technology,2009,2(1): 70-82.
    [66]Tsai YY, Tseng CH, Chang CK. Development of a combined machining method using electrorheological fluids for EDM[J]. Journal of Materials Processing Technology, 2008,201(1-3):565-569.
    [67]Kordonsky WI, Prokhorov IV, Gorodkin SR, et al. Magnetorheological polishing devices and methods[P]. US Patent:5449313,1995.9.12.
    [68]Jacobs SD, Yang F, Fess EM, et al. Magnetorheological finishing of IR materials[C]. Proceedings of the Optical Manufacturing and Testing II, July 27,1997, San Diego, CA, USA.
    [69]张峰,张学军.磁流变抛光数学模型的建立[J].光学技术,2000,26(2):190-192.
    [70]孙希威,张飞虎,董申,等.磁流变抛光去除模型及驻留时间算法研究[J].新技术新工艺,2006,(02):73-75.
    [71]彭小强,戴一帆,李圣怡.磁流变抛光的材料去除数学模型[J].机械工程学报,2004,40(4):67-70.
    [72]王贵林.SiC光学材料超精密研抛关键技术研究[D].长沙:国防科学技术大学,2002.
    [73]王贵林,张飞虎,袁哲俊.磁流变抛光的确定量加工模型与影响因素[J].机械工程师,2004,(5):3-6.
    [74]孙希威.磁流变抛光机床数控系统关键技术研究[D].哈尔滨:哈尔滨工业大学,2006.
    [75]程灏波,冯之敬,王英伟.磁流变抛光超光滑光学表面[J].哈尔滨工业大学学报,2005,37(4):433-436.
    [76]Furst EM, Gast AP. Micromechanics of magnetorheological suspensions[J]. Physical Review E,2000,61(6):6732-6739.
    [77]Furst EM, Gast AP. Dynamics and lateral interactions of dipolar chains[J]. Physical Review E,2000,62(5):6916-6925.
    [78]张云,冯之敬,赵广木.磁流变抛光工具及其去除函数[J].清华大学学报:自然科学版,2004,44(2):190-193.
    [79]Zhang F, Zhang XJ, Yu JC. Mathematics model of magnetorheological finishing[J]. Advanced Optical Manufacturing and Testing Technology,2000,4231:490-497.
    [80]Kang GW, Zhang FH. Research on material removal of magnetorheological finishing[J]. Key Engineering Materials,2007,329:285-290.
    [81]Jha S, Jain VK. Design and development of the magnetorheological abrasive flow finishing (MRAFF) process[J]. International Journal of Machine Tools & Manufacture, 2004,44(10):1019-1029.
    [82]张峰,张斌智.磁流体辅助抛光工件表面粗糙度研究[J].光学精密工程,2005,13(1):34-39.
    [83]Lu J, Yan Q, Yu J, et al. A study of micro machining with instantaneous tiny-grinding wheel based on the Fe3O4 magnetorheological fluid[J]. Key Engineering Materials,2008, 359-360:389-393.
    [84]姜健.使用磁体抛光体(Magnetic Compound Fluid Polishing Tool)抛光的新方法[D].大连:大连理工大学,2005.
    [85]余娟.磁流变效应微砂轮超精密研抛加工机理研究[D].广州:广东工业大学,2007.
    [86]戴一帆,张学成,李圣怡,等.确定性磁射流抛光技术[J].机械工程学报,2009,45(05):171-176.
    [87]张学成.磁射流抛光技术研究[D].长沙:国防科学技术大学,2007.
    [88]Tricard M, Kordonski WI, Shorey AB, et al. Magnetorheological Jet Finishing of Conformal, Freeform and Steep Concave Optics[J]. CIRP Annals-Manufacturing Technology,2006,55(1):309-312.
    [89]Jain VK. Magnetic field assisted abrasive based micro-/nano-finishing[J]. Journal of Materials Processing Technology,2009,209(20):6022-6038.
    [90]Carlson JD, Catanzarite DM, Clair KAS. Commercial Magnetorheological Fluid Devices Technology[J]. International Journal of Modern Physics B,1996,10:2857-2857.
    [91]Shafrir SN, Lambropoulos JC, Jacobs SD. Subsurface damage and microstructure development in precision microground hard ceramics using magnetorheological finishing spots[J]. Applied Optics,2007,46(22):5500-5515.
    [92]石峰,戴一帆,彭小强,等.磁流变抛光消除磨削亚表面损伤层新工艺[J].光学精密工程,2010,18(01):162-168.
    [93]王卓.光学材料加工亚表面损伤检测及控制关键技术研究[D].长沙:国防科学技术大学,2008.
    [94]Shinmura T, Takazawa K, Hatano E, et al. Study on Magnetic Abrasive Finishing[J]. CIRP Annals-Manufacturing Technology,1990,39(1):325-328.
    [95]Yamaguchi H, Shinmura T. Internal finishing process for alumina ceramic components by a magnetic field assisted finishing process[J]. Precision Engineering,2004,28(2): 135-142.
    [96]Fox M, Agrawal K, Shinmura T, et al. Magnetic abrasive finishing of rollers[J]. CIRP Annals,1994,43(1):181-184.
    [97]Kim JD. Polishing of ultra-clean inner surfaces using magnetic force[J]. International Journal of Advanced Manufacturing Technology,2003,21(2):91-97.
    [98]Yamaguchi H, Shinmura T, Sekine M. Factors affecting the finishing characteristics of an internal magnetic abrasive finishing process for high purity fittings[C]. Proceedings of the 2004 ASME International Mechanical Engineering Congress and Exposition (IMECE 2004), November 13-19,2004, Anaheim, CA, USA.
    [99]Yin SH, Shinmura T. Study of magnetic abrasive finishing process using pulsed finishing pressure and its processing characteristics[J]. Initiatives of Precision Engineering at the Beginning of a Millennium,2001:506-510.
    [100]Yamaguchi H, Shinmura T. Study of the surface modification resulting from an internal magnetic abrasive finishing process[J]. Wear,1999,225-229:246-255.
    [101]Yamaguchi H, Shinmura T. Internal finishing process for nonferromagnetic workpieces applying magnetic abrasive finishing by use of pole rotation system[J]. Abrasives,1998:14-15.
    [102]Singh DK, Jain VK, Raghuram V. Parametric study of magnetic abrasive finishing process[J]. Journal of Materials Processing Technology,2004,149(1-3):22-29.
    [103]Jain VK, Kumar P, Behera PK, et al. Effect of working gap and circumferential speed on the performance of magnetic abrasive finishing process[J]. Wear,2001,250: 384-390.
    [104]邱腾雄,阎秋生,高伟强.磁力研磨加工塑料模具钢的表面粗糙度特性研究[J].制造技术与机床,2008,(4):121-125.
    [105]邱腾雄,阎秋生,高伟强,等.磁力研磨加工表面粗糙度特性研究[J].机电工程技术,2007,36(12):25-27,92.
    [106]Jayswal SC, Jain VK, Dixit PM. Modeling and simulation of magnetic abrasive finishing process[J]. International Journal of Advanced Manufacturing Technology, 2005,26(5):477-490.
    [107]Jayswal SC, Jain VK, Dixit PM. Analysis of magnetic abrasive finishing with slotted magnetic pole[J]. Materials Processing and Design:Modeling, Simulation and Applications,2004,712:1435-1440.
    [108]Wani AM, Yadava V, Khatri A. Simulation for the prediction of surface roughness in magnetic abrasive flow finishing (MAFF)[J]. Journal of Materials Processing Technology,2007,190(1-3):282-290.
    [109]Jain VK, Jayswal SC, Dixit PM. Modeling and simulation of surface roughness in magnetic abrasive finishing using non-uniform surface profiles[J]. Materials and Manufacturing Processes,2007,22(2):256-270.
    [110]Kim JD, Choi MS. Simulation for the prediction of surface-accuracy in magnetic abrasive machining[J]. Journal of Materials Processing Technology,1995,53(3-4): 630-642.
    [111]Kwak JS, Shin CM. Parameter optimization and development of prediction model for second generation magnetic abrasive polishing of AZ31B plate[C]. Proceedings of the International MultiConference of Engineers and Computer Scientists 2011 (IMECS 2011), March 16-18,2011, Kowloon, Hong Kong.
    [112]Madhab GB, Jain VK, Dixit PM. On simulation of magnetic abrasive finishing process for plane surfaces using FEM[J]. International Journal of Machining and Machinability of Materials,2006,1(2):133-165.
    [113]Mori T, Hirota K, Kawashima Y. Clarification of magnetic abrasive finishing mechanism[J]. Journal of Materials Processing Technology,2003,143-144(1):682-686.
    [114]Anzai M, Sudo T, Endo H, et al. Preparation of magnetic abrasives by mechanical alloying and its finishing properties[J]. Journal of the Japan Society of Powder and Powder Metallurgy,1991,38(1):55-58.
    [115]Anzai M, Masaki K, Nakagawa T. Fabrication of magnetic abrasives using plasma powder melting method (the effect of Fe matrix)[J]. Journal of the Japan Society of Powder and Powder Metallurgy,1991,38(4):472-476.
    [116]Wang DB, Shinmura T, Yamaguchi H. Study of magnetic field assisted mechanochemical polishing process for inner surface of Si3N4 ceramic components Finishing characteristics under wet finishing using distilled water[J]. International Journal of Machine Tools & Manufacture,2004,44(14):1547-1553.
    [117]Chang GW, Yan BH, Hsu RT. Study on cylindrical magnetic abrasive finishing using unbonded magnetic abrasives[J]. International Journal of Machine Tools and Manufacture,2002,42(5):575-583.
    [118]Kim JD, Kang YH, Bae YH, et al. Development of a magnetic abrasive jet machining system for precision internal polishing of circular tubes[J]. Journal of Materials Processing Technology,1997,71(3):384-393.
    [119]Singh S, Shan HS. Development of magneto abrasive flow machining process[J]. International Journal of Machine Tools and Manufacture,2002,42(8):953-959.
    [120]Lin YC, Lee HS. Machining characteristics of magnetic force-assisted EDM[J]. International Journal of Machine Tools and Manufacture,2008,48(11):1179-1186.
    [121]方建成,金洙吉,徐文骥,等.磁场电化学磁粒复合光整加工实验研究[J].中国机械工程,2001,12(9):1033-1036.
    [122]Yan BH, Chang GW, Cheng TJ, et al. Electrolytic magnetic abrasive finishing[J]. International Journal of Machine Tools & Manufacture,2003,43(13):1355-1366.
    [123]Bingham RG, Walker DD, Kim DH, et al. A novel automated process for aspheric surfaces [C]. Proceedings of the SPIE-Conference on Current Developments in Lens Design and Optical Systems Engineering, August 02-04,2000, San Diego, CA, USA.
    [124]计时鸣,张利,金明生,等.气囊抛光技术及其研究现状[J].机电工程,2010,27(05):1-12.
    [125]Walker DD, Freeman R, Morton R, et al. Use of the 'Precessions' process for prepolishing and correcting 2D 21/2D form[J]. Optics Express,2006,14:11787-11795.
    [126]Walker DD, Beaucamp ATH, Brooks D, et al. Novel CNC polishing process for control of form and texture on aspheric surfaces[C]. Proceedings of the SPIE Conference on Current Developments in Lens Design and Optical Engineering Ⅲ, July 08-09,2002, Seattle, Wa.
    [127]Walker DD, Brooks D, King A, et al. The 'Precessions' tooling for polishing and figuring flat, spherical and aspheric surfaces[J]. Optics Express,2003,11(8):958-964.
    [128]Walker DD, Beaucamp ATH, Bingham RG, et al. The precessions process for efficient production of aspheric optics for large telescopes and their instrumentation [C]. Proceedings of the Conference on Specialized Optical Developments in Astronomy, August 25-26,2002, Waikoloa, HI, USA
    [129]宋剑锋,姚英学,谢大纲,et al.超精密气囊工具抛光方法的研究[J].华中科技大学学报(自然科学版),2007,279(S1):104-107.
    [130]张伟,李洪玉,金海.气囊抛光去除函数的数值仿真与试验研究[J].机械工程学报,2009,45(02):308-312.
    [131]高波,姚英学,谢大纲,等.气囊抛光进动机构的运动建模与仿真[J].机械工程学报,2006,42(2):101-104.
    [132]李研彪,计时鸣,都明宇,等.一种新型气囊抛光设备及其位置分析[J].机械设计,2010,27(06):31-34.
    [133]计时鸣,金明生,张宪,等.应用于模具自由曲面的新型气囊抛光技术[J].机械工程学报,2007,43(8):2-6.
    [134]Ji SM, Zhang X, Zhang L, et al. Form and texture control of free-form surface polishing[J]. Key Engineering Materials,2006,304-305:113-117.
    [135]Winslow WM. Method and means for translating electrical impulses into mechanical force[P].US Patent:2417850,1947.325.
    [136]Winslow WM. Induced fibration of suspensions[J]. Journal of Applied Physics,1949, 20(12):1137-1140.
    [137]张敏梁.电流变液力学性能研究[D].北京:清华大学,2009.
    [138]Wen WJ, Huang XX, Yang SH, et al. The giant electrorheological effect in suspensions of nanoparticles[J]. Nature Materials,2003,2(11):727-730.
    [139]路阳,王学昭,王凤平,等.电流变液研究新进展[J].材料导报,2009,23(03):6-10.
    [140]高子伟.β-环糊精聚合物超分子配合物电流变液的制备及性能研究[D].西安:西北工业大学,2003.
    [141]Zhang YL, Ma Y, Lan YC, et al. The electrorheological behavior of complex strontium titanate suspensions[J]. Applied Physics Letters,1998,73(10):1326-1328.
    [142]Zhao XP, Yin JB. Preparation and electrorheological characteristics of rare-earth-doped TiO2 suspensions[J]. Chemistry of Materials,2002,14(5):2258-2263.
    [143]赵晓鹏,尹剑波,向礼琴.包覆表面活性剂的Ti02电流变液[J].材料研究学报,2001,15(3):308-312.
    [144]赵晓鹏,郭红霞.电磁响应性复合颗粒研究进展[J].自然科学进展,2004,14(6):624-627.
    [145]向礼琴,赵晓鹏.蒙脱土/二氧化钛复合颗粒电流变液材料的制备及其性能[J].化学学报,2003,61(11):1867-1871.
    [146]Rabinow J. The magnetic fluid clutch[J]. AIEE Transactions,1948,67(2):1308-1315.
    [147]Carlson JD. MR fluids and devices in the real world[C]. Proceedings of the 9th International Conference on Electorheological (ER) Fluids and Magnetorheological (MR), August 29-September 03,2004, Beijing, China.
    [148]Ashour ON, Kinder D, Giurgiutiu V, et al. Manufacturing and characterization of magnetorheological fluids[C]. Proceedings of the Smart Structures and Materials 1997: Smart Materials Technologies, March 3-4,1997, San Diego, CA, USA.
    [149]Carlson JD, Jolly MR. MR fluid, foam and elastomer devices[J]. Mechatronics,2000, 10(4-5):555-569.
    [150]Yang YB, Li L, Chen G, et al. Synthesis and characterization of iron-based alloy nanoparticles for magnetorheological fluids[J]. Journal of Magnetism and Magnetic Materials,2008,320(15):2030-2038.
    [151]Shafrir SN, Romanofsky HJ, Skarlinski M, et al. Zirconia-coated carbonyl-iron-particle-based magnetorheological fluid for polishing optical glasses and ceramics[J]. Applied Optics,2009,48:6797-6810.
    [152]Cao L, Hyunseo P, Dodbiba G, et al. Synthesis of an ionic liquid-based magnetorheological fluid dispersing Fe/sub 84/Nb/sub 3/V/sub 4/B/sub 9/ nanocrystalline powders[J]. International Journal of Modern Physics B,2010: 1227-1234.
    [153]Jacobs SD, Kordonski WI, Pollicove HM. Precision control of aqueous magnetorheological fluids for finishing of optics[J]. Proceedings of the 6th International Conference on Electro-Rheological Fluids, Magneto-Rheological Suspensions and their Applications, July 22-25,1997, Yonezawa, Japan.
    [154]Ginder J, Davis L. Shear stresses in magnetorheological fluids:Role of magnetic saturation[J]. Applied Physics Letters,1994,65(26):3410-3412.
    [155]Phule PP, Ginder JM. Synthesis and properties of novel magnetorheological fluids having improved stability and redispersibility[C]. Proceedings of the 6th International Conference on Electro-Rheological Fluids, Magneto-Rheological Suspensions and Their Applications (ERMR 1997), July 22-25,1997, Yonezawa, Japan.
    [156]Bossis G, Cebers A. Effects of the magnetodipolar interactions in the alternating magnetic fields [C]. Proceedings of the 8th International Conference on Magnetic Fluids (ICMF), June 29-July 03,1998, Timisoara, Romania.
    [157]Bossis G, Khuzir P, Lacis S, et al. Yield behavior of magnetorheological suspensions[C]. Proceedings of the 2nd Moscow International Symposium on Magnetism (MISM 2001), June 20-24,2001, Moscow, Russia.
    [158]王鸿云,郑惠强,李泳鲜.磁流变液的研究与应用[J].机械设计,2008,25(5):1-4,8.
    [159]姚金光,晏华.高性能磁流变液研究的进展[J].材料开发与应用,2009,24(02):62-67.
    [160]张朝平,邓伟,胡宗超,等.微乳液法制备超细包裹型铁粉[J].应用化学,2000,17(03):248-251.
    [161]杨仕清,彭斌,蒋洪川,等.复合智能磁流变液的制备及流变性质研究[J].材料工程,2000,(9):21-24.
    [162]Wang ZW, Fang HP, Lin ZF, et al. Dynamic simulation studies of structural formation and transition in electro-magneto-rheological fluids[J]. International Journal of Modern Physics B,2001,15(6-7):842-850.
    [163]Minagawa K, Watanabe T, Munakata M, et al. Novel apparatus for rheological measurements of electro-magneto-rheological fluids[J]. Journal of Non-Newtonian Fluid Mechanics,1994,52(1):59-67.
    [164]Shibayama A, Miyazaki T, Yamaguchi K, et al. Electro-magnetorheological fluids dispersing zeolite particles containing iron[C]. Proceedings of the 8th International Conference on Electrorheological Fluids and Magnetorheological Suspensions, July 09-13,2001, Nice, France.
    [165]Balan C, Broboana D, Gheorghiu E, et al. Rheological characterization of complex fluids in electro-magnetic fields[J]. Journal of Non-Newtonian Fluid Mechanics, 2008,154(1):22-30.
    [166]Zhurauski M, Draga ius E, Korobko E, et al. Mechanical properties of smart fluids under combined electrical and magnetic fields[J]. Mechanika,2008,74(6):21-24.
    [167]Takeda H, Matsushita K, Masubuchi Y, et al. Mechanism of the synergistic effect in EMR fluids studied by direct observation[C]. Proceedings of the 6th International Conference on Electro-Rheological Fluids, Magneto-Rheological Suspensions and their Applications, July 22-25,1997, Yonezawa, Japan.
    [168]谭锁奎,宋晓平,郭红燕,等.Ni/TiO2基电磁流变液的微粒质量分数对其性能、形貌的影响[J].兵器材料科学与工程,2011,34(04).
    [169]黄俊,金德江.酞菁钴-Fe3O4钠米复合粒子的表征及其电磁流变液的研究[J].功能材料,1999,30(5):476-478.
    [170]Tian H, Yan QS, Lu JB, et al. Foundational study on micro machining with instantaneous tiny-grinding wheel based on electro-magneto-rheological effect[C]. Proceedings of the 3rd International Symposium on Advanced Optical Manufacturing and Testing Technologies, July 08-12,2007, Chengdu, China.
    [171]路家斌,阎秋生,田虹,等.电磁流变效应微磨头抛光加工电磁协同作用机理[J].摩擦学学报,2010,30(2):190-196.
    [172]Medvedeva EV. The influence of ferromagnetic particles coating on rheological properties of magnetoelectrorheological fluids (MERFS)[C]. Proceedings of the 9th International Conference on Electorheological (ER) Fluids and Magnetorheological (MR), August 29-September 03,2004, Beijing, China.
    [173]黄俊,官建国.电磁流变液及其研究进展[J].国外建材科技,1998,19(2):52-54,
    [174]Zhao XP, Luo CR, Zhang ZD. Optical characteristics of electrorheological and electromagnetorheological fluids[J]. Optical Engineering,1998,37(5):1589-1592.
    [175]郭红霞.微米纳米复合颗粒的制备方法及电磁响应性行为研究[D].西安:西北工业大学,2003.
    [176]谭锁奎,宋晓平,郭红燕,等.Ni/TiO2/SDBS电流变液的电磁流变行为[J].四川兵工学报,2010,31(07):52-56.
    [177]Minagawa K, Watanabe T, Koyama K, et al. Significant synergistic effect of superimposed electric and magnetic fields on the rheology of iron suspension[J]. Langmuir,1994,10(11):3926-3928.
    [178]邱海喆,晏华,张平,等.羰基铁磁流变液的摩擦性能研究[J].摩擦学学报,2009,29(01):61-67.
    [179]Shulman ZP, Kordonsky VI, Zaltsgendler EA, et al. Structure, physical properties and dynamics of magnetorheological suspensions[J]. International Journal of Multiphase Flow,1986,12(6):935-955.
    [180]Shkel YM, Klingenberg DJ. Magnetorheology and magnetostriction of isolated chains of nonlinear magnetizable spheres [J]. Journal of Rheology,2001,45(2):351-368.
    [181]Bossis G, Cebers A. Effects of the magnetodipolar interactions in the alternating magnetic fields[J]. Journal of Magnetism and Magnetic Materials,1999,201:218-221.
    [182]Rosensweig RE. On magnetorheology and electrorheology as states of unsymmetric stress[J]. Journal of Rheology,1995,39(1):179-192.
    [183]Jolly MR, Carlson JD, Munoz BC. A model of the behaviour of magnetorheological materials[J]. Smart Materials and Structures,1996,5(5):607-614.
    [184]Jolly MR. Properties and applications of magnetorheological fluids[J]. Materials Research Society Symposium-Proceedings,2000,604:167-176.
    [185]Davis LC. Model of magnetorheological elastomers[J]. Journal of Applied Physics, 1999,85(6):3348-3351.
    [186]Zhu Y, Gong X, Dang H, et al. Numerical analysis on magnetic-induced shear modulus of magnetorheological elastomers based on multi-chain model[J]. Chinese Journal of Chemical Physics,2006,19:126.
    [187]陈琳.磁流变弹性体的研制及其力学行为的表征[D].合肥:中国科学技术大学,2009.
    [188]易成建,彭向和,李海涛.静磁场下磁流变液微结构形态稳定性分析[J].功能材 料,2008,39(12):1961-1964.
    [189]汤爱军,阎秋生,路家斌,等.磁极形状对磁流变抛光加工效果影响的研究[C]2007年中国机械工程学会年会会议集,November 3-6,2007,长沙,中国.
    [190]Halsey TC. Electrorheological fluids[J]. Science,1992,258(5083):761-766.
    [191]Foulc JN, Atten P, Felici N. Macroscopic model of interaction between particles in an electrorheological fluid[J]. Journal of Electrostatics,1994,33(1):103-112.
    [192]von Pfeil K, Graham MD, Klingenberg DJ, et al. Pattern formation in flowing electrorheological fluids[J]. Physical Review Letters,2002,88(18):11-14.
    [193]Men SQ, Xu XY, Lan YC, et al. The electrostatic interaction between coated particles in electrorheological fluids[J]. International Journal of Modern Physics B,2001, 15(6-7):788-794.
    [194]Klingenberg DJ, van Swol F, Zukoski CF. Dynamic simulation of electrorheological suspensions[C]. Proceedings of the ACS Division of Polymeric Materials:Science and Engineering, September 11-18,1989, Miami Beach, FL, USA.
    [195]Siu YL, Wan JTK, Yu KW. Computer simulations of electrorheological fluids in the dipole-induced dipole model[J]. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics),2001,64(5):051506-051501.
    [196]曹建国.在电场和剪切流共同作用下电流变液结构实验理论研究[D].上海:复旦大学,2006.
    [197]Bonnecaze R, Brady J. Dynamic simulation of an electrorheological fluid[J]. The Journal of chemical physics,1992,96(3):2183-2202.
    [198]路家斌,田虹,阎秋生,等.电流变效应发生装置及其应用[P].中国:ZL200720061383.9,2007.12.13.
    [199]梁基照.聚合物材料加工流变学[M].北京:国防工业出版社,2008.
    [200]Tao R, Sun JM. Three-dimensional structure of induced electrorheological solid[J]. Physical Review Letters,1991,67(3):398-401.
    [201]Wen WJ, Wang N, Ma HR, et al. Field induced structural transition in mesocrystallites[J]. Physical Review Letters,1999,82(21):4248-4251.
    [202]兵器工业无损检测人员技术资格鉴定考核委员会.常用钢材磁特性曲线速查手册[M].北京:机械工业出版社,2004.
    [203]de Vicente J, Ramirez J. Effect of friction between particles in the dynamic response of model magnetic structures [J]. Journal of Colloid and Interface Science,2007,316(2): 867-876.
    [204]Jang K-I, Min B-K, Seok J. A behavior model of a magnetorheological fluid in direct shear mode[J]. Journal of Magnetism and Magnetic Materials,2011,323(10): 1324-1329.
    [205]Lopez-Lopez MT, Kuzhir P, Duran JDG, et al. Normal stresses in a shear flow of magnetorheological suspensions:Viscoelastic versus Maxwell stresses[J]. Journal of Rheology,2010,54(5):1119-1136.
    [206]Ruzicka M. Modeling, mathematical and numerical analysis of electrorheological fluids[J]. Applications of Mathematics,2004,49(6):565-609.
    [207]Eckart W, Ruzicka M. Modeling micropolar electrorheological fluids[J]. International Journal of Applied Mechanics and Engineering,2006:813-844.
    [208]Keaveny EE, Maxey MR. Modeling the magnetic interactions between paramagnetic beads in magnetorheological fluids[J]. Journal of Computational Physics,2008,227(22): 9554-9571.
    [209]司鹄,彭向和,陈伟民.分析磁流变流体屈服应力微观力学模型[J].应用力学学报,2005,22(2):198-201.
    [210]翁建生,胡海岩,张庙康.磁流变液体的流变力学特性试验和建模[J].应用力学学报,2000,17(03):1-5,140.
    [211]金昀,张培强,汪小华,等.磁流变液剪切屈服应力的数值计算[J].中国科学技术大学学报,2001,31(2):168-173.
    [212]方生,张培强.旋转磁场作用下磁流变液颗粒运动及结构演化的模拟[J].化学物理学报,2001,14(05):562-566.
    [213]Tateishi T, Shimada K, Yoshihara N, et al. Effect of electrorheological fluid assistance on micro ultrasonic machining[J]. Ultra-Precision Machining Technologies, 2009,69-70:148-152.
    [214]Jones TB. Electromechanics of particles[M]. New York:Cambridge University Press, 1995.
    [215]徐游.电磁学[M].北京:科学出版社,2004.
    [216]Clercx H, Bossis G. Many-body electrostatic interactions in electrorheological fluds[J]. Physical Review E,1993,48(4):2721-2738.
    [217]Promislow JHE, Gast AP. Magnetorheological fluid structure in a pulsed magnetic field[J]. Langmuir,1996,12(17):4095-4102.
    [218]Tang X, Chen Y, Conrad H. Structure and interaction force in a model magnetorheological system[J]. Journal of Intelligent Material Systems and Structures, 1996,7(5):517-521.
    [219]Gross M, Kiskamp S, Eisele H, et al. On the interaction of dipolar chains[C]. Proceedings of the 6th International Conference on Electro-Rheological Fluids, Magneto-Rheological Suspensions and their Applications, July 22-25,1997, Yonezawa, Japan.
    [220]Bossis G, Volkova O, Lacis S, et al. Magnetorheology:fluids, structures and rheology[J]. Lecture Notes in Physics,2002,594:202-230.
    [221]Lide DR. CRC handbook of chemistry and physics (87th Edition)[M]. Boca Raton: CRC Press,2007.
    [222]Park JH, Chin BD, Park OO. Rheological properties and stabilization of magnetorheological fluids in a water-in-oil emulsion[J]. Journal of Colloid and Interface Science,2001,240(1):349-354.
    [223]Guo H, Zhao X. The synthesis of composite particles responsive to electric and magnetic fields[J]. Optical Materials,2003,22(1):39-44.
    [224]田虹.电磁流变效应微砂轮研抛加工机理研究[D].广州:广东工业大学,2008.
    [225]刘毅.三维微结构电磁流变效应创成加工研究[D].广州:广东工业大学,2009.
    [226]Genin FY, Salleo A, Pistor TV, et al. Role of light intensification by cracks in optical breakdown on surfaces[J]. Journal of the Optical Society of America A:Optics and Image Science, and Vision,2001,18:2607-2616.
    [227]Kirchner HP. Damage penetration at elongated machining grooves in hot-pressed Si3N4[J]. Journal of the American Ceramic Society,1984,67(2):127-132.
    [228]Lawn BR, Evans AG. Model for crack initiation in elastic-plastic indentation fields[J]. Journal of Materials Science,1977,12(11):2195-2199.
    [229]Ludema K. Friction, wear, lubrication:a textbook in tribology[M]. CRC Press Inc., 1996.
    [230]Gates JD. Two-body and three-body abrasion:A critical discussion[J]. Wear,1998, 214(1):139-146.
    [231]Kato K. Micro-mechanisms of wear-wear modes[J]. Wear,1992,153(1):277-295.
    [232]Bhushan B著,葛世荣译.摩擦学导论[M].北京:机械工业出版社,2007.
    [233]Shi LH, Tam WY, Huang XX, et al. Static shear modulus of electrorheological fluids[J]. Physical Review E,2006,73(5).
    [234]Zhu Y, Umehara N, Ido Y, et al. Computer simulation of structures and distributions of particles in MAGIC fluid[J]. Journal of Magnetism and Magnetic Materials,2006, 302(1):96-104.
    [235]苗运江.磁流变液屈服应力测试影响因素与磁流变液软启动装置的研究[D].徐州:中国矿业大学,2009.
    [236]Wang HJ, Zhang FH, Zhang Y, et al. Research on material removal of ultrasonic-magnetorheological compound finishing[J]. International Journal of Machining and Machinability of Materials,2007,2(1):50-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700