废弃混凝土机械力化学活化再利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然资源的大量消耗和不合理利用造成了自然资源的日益短缺。充分
    利用各种废料、努力节约自然资源已成为工业生产中的方向之一。废弃混
    凝土作为建筑施工和拆除旧建筑产生的废料,弃置不用既会造成环境污
    染,又是巨大的资源浪费。多年来,人们对废弃混凝土的再利用进行了大
    量研究,并取得了许多研究成果。迄今为止,废弃混凝土的再利用研究大
    多是再生骨料混凝土的研究,但废弃混凝土中的胶凝基质组分-硬化水泥
    浆体(HCP)用于再生混凝土存在着许多问题,HCP在水泥生产中的再利
    用也未见研究报道。将废弃混凝土骨料分离后形成的以HCP为主要组成的
    细废弃混凝土部分(FWC)用作为水泥混合材料或水泥原料,可使它们
    得到科学、有效的合理利用,并节省天然原料资源,实现废弃物料资源化。
    这对于我国经济的长期可持续发展无疑具有重要的社会意义。本文进行了
    废弃混凝土骨料分离方法、分离后的FWC进行机械力化学活化后作为水
    泥混合材料制备水泥和作为水泥原料煅烧水泥熟料的试验研究,分析和探
    讨了FWC在熟料煅烧、水泥粉磨和水泥水化过程中的作用机理,旨在为
    FWC在水泥生产中的再利用提供理论和实践依据。
    本试验研究分为废弃混凝土骨料与HCP的分离、分离后的FWC作水
    泥混合材料和作水泥原料进行熟料煅烧三个主要部分。
    废弃混凝土骨料与HCP的有效分离是二部分材料合理再利用的关键。
    采用了表面活性剂处理和热处理二种方法结合机械粉碎进行了废弃混凝
    土骨料与HCP的分离试验研究。试验结果表明,掺加适当的表面活性剂可
    明显提高废弃混凝土骨料与PHC的分离效率,但阴离子表面活性剂木质
    素磺酸盐(CLS)、十二烷基硫酸钠(SLS)和强极性表面活性剂三乙醇胺
    (TEA)的分离效果比非极性表面活性剂好得多,其原因是它们在骨料与
    基质界面上的定向吸附更有效地降低了界面结合能,因而明显降低了界面
    结合强度。热处理温度对骨料和基质的分离效率有显著影响。热处理温度
    较低时,分离效率提高幅度不大;但500℃热处理后,分离效率显著提高。
    振动磨和球磨机的粉碎分离效率存在明显差别。粉碎分离后的FWC
    收率、化学组成及其粒度分布的综合测定结果表明,振动磨的粉碎分离效
    率优于球磨机粉碎。对于掺加表面活性剂情形,后者的FWC收率均高于
    前者,但较大颗粒含量及SiO2含量也高于前者。对于热处理情形,处理
    温度较低时,后者的FWC收率高于前者;500℃高温热处理时,FWC收
    率明显低于前者。球磨粉碎的FWC中较大粒度的物料含量明显大于振动
    
    摘要
    磨粉碎。结果表明,球磨粉碎时进入FWC的骨料比例高于振动磨粉碎,
    其原因是研磨介质对物料的体积粉碎使骨料表面较多的棱角突出部分发
    生结构破坏和断裂从而成为小颗粒。
     根据热膨胀和水化物脱水现象首次提出了界面疏松区模型。该模型较
    好地解释了骨料与胶凝组分基质在热膨胀应力、HCP水化物受热脱水条
    件下的分离机理.
     FWC作水泥混合材料时,在相同粉磨条件下,水泥的粉磨效率明显
    提高,表现在0.Osmm方孔筛筛余减小、比表面积提高及微细颗粒含t增
    大。FWC较低的Bond粉碎功指数Wi证明其易磨性较好,其中表面活性
    剂CLS和TEA处理及500℃热处理的易磨性相对更好。试验结果表明,掺
    加上述表面活性剂处理的FWC磨制的水泥中,小于10 pm的颗粒含t比
    未经处理的提高60%以上,28天强度提高10%以上;掺加15%500℃处理
    的FWC的水泥强度比未处理的提高近15%,与纯熟料水泥相差甚小。其
    原因是表面活性剂的助磨作用减少了用于破坏颗粒团聚体的无效功耗;高
    温热处理后的FWC结构疏松,强度降低。
     首次提出了用Wi表征物料粉碎动力学的新方法。该方法可更直观地
    反映粉磨速度与物料易磨性的密切关系。根据料层粉碎理论和选择性粉碎
    机理,从理论上解释了FWC中砂粒所含结晶51 02在水泥粉磨过程中对硬
    化HCP水化物或其脱水相的微粉磨介质作用,
     FWC的掺入量增大时,水泥的标准稠度需水量有所增大,胶砂流动
    度相应减小,凝结时间相对延长,各龄期强度也相应降低,但强度降低幅
    度小于或远小于其掺入量比例,掺入高温热处理的FWC的效果尤为明显。
    这表明FWC的水化活性虽不及水泥熟料,但的确具有较强的水化能力和
    较好的胶凝性.掺加CLS和TEA处理及500℃热处理的FWC的水泥各项
    物理性能都较好。这是因为,一方面,FWC易磨性的改善使水泥中细颗
    粒增多,因而提高了水化速率;另一方面,高温热处理过程和粉磨过程中
    的机械力化学效应引发的水化物脱水从结构本质上提高了其水化活性.
     首次提出了HCP新生态脱水相加快熟料锻烧速度和水泥水化速度的
    观点.粉磨时物料细化过程的加速促进并加强了机械力化学效应,反过来,
    机械力化学效应又强化了水化物或其脱水相更快地发生结构或相变化,因
    而生成了更多的新生态物质。这些新生态物质较多的结构缺陷和热力学高
    度不稳定是其水化活性较高的本质原因。同时,较多的细颗粒不但自身水
    化速度快,还均匀地分散填充于硬化浆体中,使硬化浆体中大孔数量显著
    减少,保证了硬化浆体的结构均匀性和致密性。
    
    山东大学博士学位论文一废弃混凝土机械力化学活化再利用研究
     与常规原料配合的生料相比,FWC配制的生料的易烧性稍差,并且
    随FWC配合?
Great quantities of consumption and unreasonable utilization of natural resources have resulted in its shortage more and more; so, the mankind is being confronted with the serious resources crisis. It has become the one of direction for industry production to utilize fully various industrial wastes and to save the natural resources as much as possible. As a sort of waste produced by demolishing old buildings, waste concrete will result in serious environment pollution if it is not reutilized. At the same time, this also is vast resource extravagance. Ones have carried out a great of studies on the reutilization of waste concrete, and have obtained many achievements. So far, however, these investigations are focused to the recycling aggregate concrete, which is feasible in technique and economy, i.e. to utilize the coarse aggregate separated from waste concrete as recycling aggregate to produce recycling aggregate concrete. But, it exits a series of questions to utilize the binding matrix component (hardened cement paste—HCP) in waste concrete for recycling aggregate concrete production, and no report on utilizing HCP in cement manufacture has been seen. It is a scientific and reasonable method for saving the natural resources that to utilize the fine waste concrete (FWC)formed from separation, which is composed mainly of HCP, as admixture to produce cement and as raw material to burning clinker. The experimental studies on the methods separating coarse aggregate from HCP, using FWC as admixture and raw material in cement production were carried out in this paper, and the mechanisms of FWC in the clinker burning, cement grinding and cement hydration were analyzed in order to supply the theoretical and practical basis for the reutilization of FWC in cement manufacture.The experimental study is divided to three sections, i.e. to separate coarse aggregate form binding matrix by different methods, to utilize FWC as admixture to prepare cement and raw material to burning clinker.The key to reutilize reasonably waste concrete is to effectively separae the coarse aggregate and FWC. The separation experiments were carried out by combining surface active agents treatment and heat treatment of waste concrete with mechanical pulverization. The experimental results indicate that the separating efficiency of waste concrete increases significantly by adding suitable surface active agents. It is found that the effects of anion typed surface active agents Calcium Lignie Sulphonate (CLS) and Sodium Lauryl sulfate (SLS), and strong polar surface active agent Triethanolamine (TEA) are much
    
    better than that of non-polar surface active agent. The reason is that they adsorb orientably on the interface of aggregate and binding matrix so that deduce efficiently the interface energy and the interfacial binding strength. The heat treatment temperature has a significant influence on the separating efficiency. When the temperature lower, the separating efficiency only increases slightly; After treated at 500℃, the separating efficiency increases remarkably, which is because the interfacial strength decreases evidently resulted from heat expansion and dehydration of the hydrates in HCP.The separating efficiency of vibrating mill is different evidently from that of ball mill. It is found from comprehensive evaluation of recovery of FWC that the separating efficiency of vibrating mill is higher than that of ball mill. For the case of adding surface active agents, FWC recovery of the latter is higher than that of the former, but the contents of larger particles and SiO2 in the latter are higher than that in the former. For the case of heat treatment, FWC recovery of the latter is higher than that of the former when treated at lower temperature; Whereas the result is opposite when treated at 500℃. In addition, the content of larger particles for ball milling is higher evidently than that for vibrating milling. The results indicate that, more aggregate particles enter into FWC for the case of ball milling because the volume pulverization makes more
引文
1. 王伟.我国水泥技术现状及对未来的思考.新世纪水泥导报,2003, (5) :14-18,31
    2. 张长清.混凝土材料的环境资源问题和对策.建筑技术开发,2000,27 (3) :6-8
    3 . Chan C. Use of recycled aggregate in plain and fiber-reinforced shotcrete[J]. ACI ConcrInt, 2000, 22(6) :41-45
    4. Poon C. S, Ann T, W. Yu, NgLH. On-site sorting of construction and demolition waste in HongKong[J]. Resources, Con-servation and Recycling, 2001, 32(1) : 157-172
    5. 王伯泉.关于再生资源产业化的探讨.再生资源研究,1994,(4) :4-6
    6. 刘庆山.开发利用再生资源,缓解自然资源短缺.再生资源研究,1994, (10) :5-7
    7. 季成富,项平,任炳湘.固体废物资源化新技术.再生资源研究,1994, (Z1) :26-29
    8. 金逸民.提高废弃物利用水平实施可持续发展战略.再生资源研究, 1995,(4) :4
    9. 靳宝安,崔华,刘选秀.固体废物回收与再生利用标准化研究.再生资 源研究,1996,(2) :42-44
    10. 赵正湘.再生资源与环境保护.再生资源研究,1997,(1) :16-17
    11. 郭廷杰.依靠科技进步提高资源再生利用水平.再生资源研究,1997, (2) :5-8
    12. 祁福寿.再生资源利用的意义、现状及对策.再生资源研究,1997, (3) :10-12
    13. 武云亮.论可持续发展与再生资源回收利用.再生资源研究,1998, (2) :9-13
    14. 陈宗胜,周云波.我国经济的可持续发展与再生资源的回收利用.再 生资源研究,1998,(3) :20-22
    
    15. 李驰.加强生态环境建设,走可持续发展之路.再生资源研究,1998, (6) :12-13
    16. 陈凯安.建筑垃圾综合利用势在必行.再生资源研究,1999,(2) :33-34
    17. 李湘洲.废物利用与环境保护.再生资源研究,1999,(4) :38-40
    18. 李湘洲.建筑材料的再生循环与利用.再生资源研究,2000,(1) :38-39
    19. 黄子夷,葛宝祥.谈城市废弃物的资源化.再生资源研究,2000,(3) : 36-37
    20. 唐家富,马鸿发,张建.城市生活垃圾资源化利用探讨.再生资源研 究,2000,(4) :31-33
    21. 赵正湘.再生资源研究与可持续发展战略.再生资源研究,2001,(1) : 39-41
    22. 邢振贤,胡玉珊.废旧混凝土资源化再生利用技术.再生资源研究, 2001,(5) :32-33
    23. 武云亮,袁平红.我国再生资源产业发展的十点对策.再生资源研究, 2003,(3) :1-4
    24. 侯景鹏,史巍,宋玉普.再生混凝土技木的研究开发与应用推广.建 筑技术,2002,33(1) :15-17
    25. 杨子江.废弃混凝土的开发利用.再生资源研究,2003,(5) :33-35
    26. 侯景鹏,宋玉普,史巍.再生混凝土技术研究与应用开发.低温建筑 技术,2001,(2) :9-10,62
    27. 史巍,侯景鹏.再生混凝土技术及其配合比设计方法.建筑技术开发, 2001,28(8) :18-20
    28. 黄显智,王子明,姜德义.再生集料混凝土循环利用的试验研究.混 凝土,2003,(10) :24-27
    29. 吴贤国,郭劲松,李惠强等.建筑废料的再生利用研究.建材技术与应 用,2004,(1) :21-23
    30. 林楠,林杉,包力新.保护环境,开发利用废弃混凝土.建筑技术开 发,2003,30(6) :99-100
    31. 范小平,徐银芳.再生骨料混凝土的开发利用.建筑技术开发,2003, 30(10) :46-47
    
    32. 许贤敏.再生骨料在国外的应用.吉林建材,2002,(2) :47-51
    33. 王武祥,刘立,尚礼忠等.再生混凝土集料的研究.混凝土与水泥制 品2001,(4) :9-12
    34. 尚建丽,李占印,杨晓东.再生粗集料特征性能试验研究.建筑技术, 2003,34(1) :52-53
    35. 陈莹,严捍东,林建华等.再生骨料基本性质及对混凝土性能影响的 研究.再生资源研究.2003,(6) :34-37
    36. 孙振平,谭国强,王新友.再生混凝土技术.混凝土,1998,(5) :36-40
    37. 孔德玉,方诚,杜建根.再生骨料高强高性能混凝土配制研究.工业 建筑,2003,33(10) :50-53
    38. 孙增寿,朱缨,张浩华.建筑废弃混凝土再生利用的分析与研究.河 南科学,2003,21(4) :486-489
    39. F. T. Olorunsogoa, N. Padayachee. Performance of recycled aggregate concrete monitored by durability indexes. Cement and Concrete Research, 32(2002) : 179-185
    40. 许贤敏.再生骨料混凝土的性能.山东建材,1999,(2) :9-12
    41. 肖建庄,李佳彬,兰阳.再生混凝土技术研究最新进展与评述.混凝 土,2003,(10) :17-21
    42. 屈志中.钢筋混凝土破坏及其利用技术的新动向.建筑技术,2001, 32(2) :102-104
    43. 李松岭,杜惠芳.再生混凝土的技术特点及应用的可行性探讨.焦 作工学院学报(自然科学版),2001,20(4) :312-313
    44. 沈宏波,肖建庄.高性能混凝土中再生骨料的应用.住宅科技,2003 (3) :33-35
    45. 杜婷,李惠强,周玉峰等.再生骨料混凝土基本特性的研究思路探讨. 建筑技术开发,2002,29(6) :37-39
    46. 孔德玉,吴先君,韦苏.再生骨料混凝土研究.浙江工业大学学报, 2003,31(1) :28-32
    47. 杜婷,李惠强.强化再生骨料混凝土的力学性能研究.混凝土与水泥 制品.2003,(2) :19-20
    48. Hansen. T. C. Recycling of demolished concrete and masonry. RILEM Report NO. 6, E&FNSPON, London, 1992.
    
    49. Topcu I. B., N. F. Gunean. Using waste concrete as aggregate. Cement and Concrete Research, 1995, 25(7)
    50. Topcu I. B. Pysical and mechanical properties of concrete produced with waste concrete. Cement and Concrete Research, 1997, 27(12) : 1817-1823
    51. T. Yamato, et al. Mechanical properties, drying shrink age and resistance of freezing and thawing of concrete using recycled aggregate. ACI Special Publicaan, 1998, 179(6)
    52. Saroj MANDAL, Arundeb GUPTA. Strength and durability of recycled aggregate concrete. LAB SESYMPOSIUM MELBOURNE, Australia. 2002.
    53. K.Ramamurthy, et al. Properties of recycled aggregate concrete. The Indian concrete Journal, J alluary,1998.
    54. 张亚梅,秦鸿根,孙伟.再生混凝土配合比设计初探.混凝土与水泥 制品,2002,(1) :7-9
    55. 彭献生等.再生骨料混凝土强度性质之探讨.新世纪海峡两岸高性能 混凝土研究与应用学术会议论文集[J].上海同济大学出版社, 2002:115-120
    56. 邢振贤,周日农.再生混凝土的基本性能研究.华北水利水电学院学 报,1998,19(2) :30-32
    57. 柯国军,张育霖,贺涛等.再生混凝土的实用性研究.混凝土,2002, (4) :47-49
    58. Mostafa T avakoli, et al. Drying shrink age behavior of recycled aggregate concrete. Concrete International, 1996, 18(11) : 58-61
    59. Hansen, T. C. Recycled aggregate and recycled aggregate concrete. Second state of art report, development from 1945-1985. RILM Technical Committee 37DRC. Material and Structures, 1986, 19(5) : 201-246
    60. How-Ji Chen, Tsong Yen, Kuan-Hung Chen. Use of building rubbles as recycled aggregates. Cement and Concrete Research, 33 (2003) : 125-132
    61. Maria Arm. Self-cementing properties of crushed demolished concrete in unbound layers: results from triaxial tests and field tests. Waste Management, 21 (2001): 235~239
    
    62. K. K. Sagoe-Crentsil, T. Brown, A. H.Tylor. Performance of concrete made with commercially produced coarse recycled concrete aggregate. Cement and Concrete Research, 31(2001): 707—712
    63. C. S. Poon, Z. H. Shui, L. Lam, et al. Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of concrete. Cement and Concrete Research, 34 (2004): 31-36
    64. T. Mangialardi. Sintering of MSW fly ash for reuse as a concrete aggregate. Journal of Hazardous Materials B87 (2001) 225 - 239
    65. Andrzej Ajdukiewicz, Alina Kliszczewicz. Influence of recycled aggregates on mechanical properties of HS/HPC. Cement & Concrete Composites, 24 (2002): 269-279
    66. Roumiana Zaharieva, Francois Buyle-Bodin, Frederic Skoczylas , et al. Assessment of the su(?)ace permeation properties of recycled aggregate concrete, Cement & Concrete Composites, 25 (2003): 223-232
    67. C. S. Poon, S. C. Kou, L. Lam. Use of recycled aggregates in molded concrete bricks and blocks. Construction and Building Materials, 16 (2002) 281 - 289
    68. Roumiana Zaharieva, Francois Buyle-Bodin, Frederic Skoczylas, et al. Assessment of the surface permeation properties of recycled aggregate concrete. Cement & Concrete Composites, 25 (2003): 223- 232
    69. C. Ferreira, A. Ribeiro, L. Ottosen. Possible applications for municipal solid waste fly ash. Journal of Hazardous Materials, B96 (2003): 201 - 21
    70. Ilker Bekir Topcu, Mehmet Canbaz. Properties of concrete containing waste glass. Cement and Concrete Research, 34 (2004) : 267 - 274
    71. Yixin Shao, Thibaut Lefort, Shylesh Moras, et al. Studies on
     concrete containing ground waste glass. Cement and Concrete Research, 30 (2000) : 91-100
    
    72. R. Yang, N. R. Buenfeld. Binary segmentation of aggregate in SEM image analysis of concrete. Cement and Concrete Research, 31 (2001) : 437-441
    73. Ahmad Shayan, Aimin Xu. V lue-added utilisation of waste glass in concrete. Cement and Concrete Kesearch, 34 (2004) : 81-894.
    74. Carlo Collivignarelli, Sabrina Sorlini. Reuse of municipal solid wastes incineration fly ashes in concrete mixtures. Waste Management 22 (2002) : 909-912
    75. Ni-Bin Chang, H. P. Wang, W.L. Huang, et al. The assessment of reuse potential for municipal solid waste and refuse-derived fuel incineration ashes. Resources, Conservation and Recycling, 25 (1999) : 255-270
    76. 徐浩.废弃混凝土回收利用中的几个问题.建筑技术,2001,32(2) : 106-10
    77. Jose' M. V. Go'mez-Sobero'n. Porosity of recycled concrete with substitutionof recycled concrete aggregate. An experimental study. Cement and Concrete Re(?)arch 32 (2002) : 1301-1311
    78. Roumiana Zaharieva, Franco's Buyle-Bodin, Frederic Skoczylas et al. Assessment of the surface permeation properties of recycled aggregate concrete. Cement & Concrete Composites, 25 (2003) : 223-232
    76. 陈兵,吕子仪.再生骨料高强混凝土研究.建筑石膏与凝胶材料, 2003,(10) :15-17
    80. 郭太平,李惠强.再生骨料应用的技术经济性分析.国外建材科技, 2003,(6) :64-65
    81. 邢振贤,周日农.再生混凝土性能研究与开发思路.建筑技术开发, 1998,25(5) :27-30
    82. 万惠文,水中和,林宗寿等.再生混凝土的环境评价.武汉工业大学 学报,2003,25(4) :17-21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700