纤维高性能混凝土高温、明火力学与爆裂性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着大跨度桥梁、隧道以及高层建筑的发展,高性能混凝土(HPC)正得到日益广泛的应用。高性能混凝土具有优良的工作度、较高强度和耐久性,但是它却存在脆性高与防火性能低的缺陷,当其遭受高温或火灾时,极易发生爆裂。掺加各类纤维是提高混凝土韧性的主要手段,其研究也已取得一定的成果,但有关纤维高性能混凝土(FRHPC)高温或火灾性能的研究还不多见。本文结合国家自然科学基金项目:纤维混凝土/喷射混凝土在循环高温作用下的力学性能(50278013),主要进行了以下几方面的工作:
     (1)为更好评价钢纤维混凝土的弯曲韧性,并配合我国纤维混凝土技术规程的制定,按照不同国家标准进行了钢纤维混凝土梁的弯曲试验,并依据试验结果,对比了目前国际上应用较为广泛的钢纤维混凝土弯曲韧性标准的优缺点,为我国纤维混凝土技术规程的修订奠定了基础。
     (2)工作度、强度以及韧性是纤维高性能混凝土的主要性能指标。在研究纤维高性能混凝土工作度和强度的基础上,参照国际材料与结构联合会标准RILEM,进行了钢纤维、合成纤维以及混杂纤维(钢纤维+合成纤维)高性能混凝土梁的弯曲荷载-挠度全曲线试验。结果表明,纤维、特别是钢纤维可显著提高高性能混凝土的弯曲力学性能,并改善破坏形态。同时,纤维类型和掺量均为影响混凝土工作度、强度、弯曲韧性和断裂能的重要指标。
     (3)剩余力学性能是衡量结构材料高温性能优劣的重要标志之一。从材料和受高温温度两大方面研究了高性能混凝土在经历不同高温后抗压强度与弯曲力学性能的变化规律。分析了高温对纤维高性能混凝土梁弯曲破坏形态的影响,利用超声波法研究了混凝土受高温温度与抗压强度之间的关系,基于扫描电镜试验分析了高温后混凝土微观组织结构与力学性能之间的关系。结果表明,高温后混凝土的抗压强度与弯曲性能普遍降低。纤维、特别是钢纤维可有效提高混凝土高温后的剩余力学性能。纤维类型和掺量对高性能混凝土高温后弯曲性能的影响规律与常温下类似。
     (4)通过燃烧液化石油气模拟火灾,并对混凝土的膨胀变形进行约束,研究了高性能混凝土在不同受火方式下的爆裂性能。试验证明所采用的加热方式是可行的、有效的。结果表明,钢纤维不但不能抑制混凝土的火灾爆裂,而且随其掺量的增加,爆裂有加剧的趋势;合成纤维对抑制高性能混凝土火灾爆裂具有非常出色的表现,证明了爆裂是缘于蒸汽压机理。
Recently, high-performance concrete (HPC) is more and more widely used in construction with the development of long-span bridge, tunnel and high-rise building. HPC has been shown to have a number of advantages such as workability, strength and durability. However, it also suffers from two major weaknesses: higher brittleness and lower fire resistance. HPC has been found to be prone to spalling when subjected to high temperature or fire. The addition of fibers is a main means to improve the toughness of HPC and some progresses have also been made in the study on fiber reinforced concrete (FRC), while the investigations on the high temperature and fire resistance properties of fiber reinforced high-performance concrete (FRHPC) are still limited. Based on the project of National Nature Science Foundation of China - Investigation on bearing capacity of fiber reinforced concrete/shotcrete under the repeated high temperature (No. 50278013), the following aspects are carried out in this thesis:
    (1) In order to estimate the toughness of FRC and to establish Chinese Guideline of FRC, many experiments of flexural toughness for steel fiber reinforced concrete (SFRC) beams are completed according to different international guidelines. Based on test results, the comparisons of different foreign flexural toughness test methods are carried out. It provides basis for the establishment of guideline of FRC in our country.
    (2) Workability, strength and toughness are significant properties of FRHPC. Based on the investigations on the workability and strength of FRHPC, flexural experiments of HPC reinforced with steel fibers, polypropylene (PP) fiber and hybrid fibers (steel fiber + PP fiber) are carried out according to RILEM. Experimental results show that fibers, especially steel fibers can obviously improve the flexural properties and failure patterns of HPC. In addition, both fiber type and fiber content play important roles in the workability, strength, flexural toughness and fracture energy of HPC.
    (3) Residual mechanical properties can be used to estimate the high temperature performance for structural materials. The degenerative rules of compressive strength and flexural properties of HPC subjected to high temperatures are investigated from two aspects of material and high temperature. The effects of high temperatures on the flexural failure patterns of FRHPC are analysed. The relationship of compressive strength and temperature acting on HPC are investigated by ultrasonic. Based on SEM test, the relationship between
引文
[1] 路春森.建筑结构耐火设计.北京:中国建材工业出版社,1995.
    [2] 蒋永琨,陈正昌.国内外火灾与爆炸事故一百例.成都:四川科学技术出版社,1986.
    [3] 陈维,刘明臣译.高层建筑火灾和防火安全.北京:群众出版社,1986.
    [4] 李引擎,边久荣,熊洪等.建筑安全防火设计手册.郑州:科学技术出版社,1998.
    [5] 霍然,袁宏永.性能化建筑防火分析与设计.合肥:安徽科学技术出版社,2003.
    [6] Amundsen F A, Ranes G. Studies on traffic accidents in Norwegian road tunnels. Tunnel Ssfety, 2000, 15(1): 3-11.
    [7] Chow W K, Li J S M. Case study: vehicle fire in a cross-harbour tunnel in Hong Kong. Tunnelling and Underground Space Technology, 2001, 16(1): 23-30.
    [8] ASTM Designation E119-97. Standard test methods for fire tests of building construction and materials, ASTM Committee E-5, 1998.
    [9] 刘永军.钢筋混凝土结构火灾反映数值模拟及软件开发:(博士学位论文).大连:大连理工大学,2002.
    [10] Gann G R. NIST/NBS fire research and frca: 25 years of progress. Annual Conference on Fire Research, Atlanta, 1998: 77-84.
    [11] Iding R H, Bresler B, Nizamuddin Z. FIRES-T3-A Computer program for the fire response of structures, Thermal, 3-Dimentional Version. Report No. UBC-FRG 77-15, University of California, Berkeley, 1977.
    [12] Iding R H, Bresler B, Nizamuddin Z. FIRES-RCⅡ-A Computer program for the fire response of structures-Reinforced Concrete Frame, Revised Version. Report No. UBC-FRG 77-8, University of California, Berkeley, 1977.
    [13] ACI Committee 216R-89. Guide for Determining the Fire Endurance ofConcrete Elements, Reapproved by Committee 216, 1994.
    [14] ACI 216, 1-97. Standard Method for Determining the Fire Resistance of Concrete and Masonry Construction Assemblies, Reapproved by Committee 216, 1997.
    [15] 吴波.火灾后钢筋混凝土结构的力学性能.北京:科学出版社,2003.
    [16] Cox G. Fire research in the 21st century. Fire Safety Journal, 1999. 32(3): 203-219.
    [17] 原有田.建筑耐火构法.日本:工业调查会,昭和48年.
    [18] 苏联建设部混凝土研究院.建筑物火灾后混凝土结构鉴定标准.1987.
    [19] 时旭东.高温下钢筋混凝土杆系结构试验研究和非线性有限元分析:(博士学位论文).北京:清华大学,1992.
    [20] 冶金部建筑科学研究总院.冶金工业厂房钢筋混凝土结构抗热设计规程(YS12-79),1981.
    [21] 闵明保,李延和,高本立等.建筑物火灾后诊断与处理.南京:江苏科学技术出版社,1994.
    [22] 袁杰.火灾后高强混凝土结构的剩余抗力研究:(博士学位论文).哈尔滨:哈尔滨工业大学,2001.
    [23] 国家标准.建筑设计防火规范TJ16-74,1974.
    [24] 国家标准.建筑设计防火规范GBJ16-87,1988.
    [25] 国家标准.高层民用建筑设计防火规范GBJ45-82,1983.
    [26] 国家标准.高层民用建筑设计防火规范GB50045-95,1995.
    [27] 上海市建筑科学研究院.火灾后混凝土构件评定标准(DBJ08-219-96),上海市建设委员会,1996.
    [28] 赵国藩,彭少民,黄承逵.钢纤维混凝土结构.北京:中国建筑工业出版社,1999.
    [29] 黄承逵.纤维混凝土结构.北京:机械工业出版社,2004.
    [30] 赵国藩.高等钢筋混凝土结构学.北京:中国电力出版社,1999.
    [31] 赵国藩,黄承逵.钢纤维混凝土增强机理及其结构设计理论课题研究总结.大连:大连理工大学土木系结构研究室,1993.
    [32] 中国工程建设标准化协会.钢纤维混凝土结构设计与施工规程CECS 38:92.北京:中国建筑工业出版社,1992.
    [33] 中国工程建设标准化协会.钢纤维混凝土试验方法CECS 13:89.北京:中国建筑工业出版社,1989.
    [34] 中国工程建设标准化协会.钢纤维混凝土JG/T3064-1999.北京:中国计划出版社,1999.
    [35] 秦开颜.钢纤维混凝土路面的工程应用分析.土工基础,2006,20(2):35-37.
    [36] 胡庆军,戴恩梁.圭塘河大桥拱脚C50钢纤维自流平混凝土的设计与应用.商品混凝土,2006(1):32-35.
    [37] 张大勇,董吉斌,王江.浅谈钢纤维混凝土的应用.辽宁交通科技,2006(3):39-40.
    [38] 张伟,顾红军,余晓青.钢纤维混凝土在机场道面快速修补中的应用.常州工学院学报,2005,18(S):119-123.
    [39] 刘明高,高文学,张为等.钢纤维喷射混凝土及其在隧道工程中的应用.铁道建筑,2006(2):43-45.
    [40] 王德傲.钢纤维混凝土在连拱坝加固中的应用.安徽水利水电职业技术学院学报,2006,6(1):5-8.
    [41] 江文明,曾浩,张雪华.钢纤维混凝土在路面工程中的应用研究.交通科技,2006(1):62-64.
    [42] 黄伟,徐桂丽,钟毅.钢纤维混凝士的特性及其在井壁结构中的应用.露天采矿技术,2006(1):55-58.
    [43] 陆学元,张素云.钢纤维混凝土路面在穿城改造中的应用研究.混凝土,2006(1):86-89.
    [44] 刘剑平,朱浮声,韩桂武.喷射钢纤维混凝土的工程特性及在深基坑支护中的应用.混凝土,2005(12):88-90.
    [45] 陆忠信,许笑慧,潘万宝.钢纤维混凝土在老桥维修中的应用.交通标准化,2005(12):73-74
    [46] 陶满军.钢纤维在大管桩中的应用.水运工程,2005(11):78-80.
    [47] 王鸷,刘海军,刘文先.泵送钢纤维混凝土在超级地下工程中的应用.建筑施工,2005,27(11):19-21.
    [48] 沈益源.湿喷钢纤维混凝土支护在工程中的应用.混凝土,2005(11):88-91.
    [49] 张帆,王婷,乐金朝.钢纤维混凝土及其在桥面铺装中的应用.混凝土与水泥制品,2005(4):41-43.
    [50] 韦爱凤.钢纤维混凝土在高层建筑抗震结构中的应用研究.铁道建筑,2005(9):102-103.
    [51] 唐斌,胡建立.钢纤维喷射混凝土在瀑布沟水电站导流洞工程中的应用.水电站设计,2005,21(2):43-45.
    [52] 汪汲,代英春,王洪岭.钢纤维混凝土在薄板、薄壁领域里的应用及应注意的问题.工程建设与设计,2005(3):28-31.
    [53] 李宏伟,高峻峰,孙秀丽.钢纤维混凝土材料在旧混凝土路面修补工程中应用.黑龙江交通科技,2005(1):51-52.
    [54] 唐云伟,陆永军.钢纤维混凝土在桥面铺装中的应用.交通科技,2004(6):36-38.
    [55] 葛光华,孙军.钢纤维混凝土在旧混凝土路面修补工程中的应用.盐城工学院学报(自然科学版),2004,17(4):63-65.
    [56] 杨增兴,钟辉虹.钢纤维混凝土材料在桥面工程中的应用.广州大学学报(自然科学版),2004,3(4):376-378.
    [57] 周小勇,王德傲.钢纤维混凝土在佛子岭水库连拱坝加固中的应用.第十届全国纤维混凝土学术会议论文集:先进纤维混凝土.上海:同济大学出版社,2004:124-129.
    [58] 罗保恒,卢九章,张恺.喷射钢纤维混凝土与碳纤维布在拱桥补强加固的应用.第十届全国纤维混凝土学术会议论文集:先进纤维混凝土,同济大学出版社,2004:71-77.
    [59] 林宝玉,卢安琪.硅粉钢纤维混凝土在水工建筑上的应用.赵国藩,黄承逵编:纤维混凝土的研究与应用.大连:大连理工大学出版社,1992:12-16.
    [60] 罗保恒.钢纤维混凝土桥面设计应用与调查分析.赵国藩,黄承逵编:纤维混凝土的研究与应用.大连:大连理工大学出版社,1992:63-66.
    [61] 许贤敏.国外混合钢纤维的应用.建材发展导向,2003(1):77-78.
    [62] Dobashi H, Konishi Y, Nakayama M et al. Development of steel fiber reinforced high fluidity concrete segment and application to construction. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2006, 21(3-4): 422.
    [63] Falkner H, Henke V. Application of Steel Fiber Concrete for Underwater Concrete Slabs. Cement and Concrete Composites, 1998, 20(5): 377-385.
    [64] 徐至钧.纤维混凝土技术及应用.北京:中国建筑工业出版社,2003.
    [65] 邓宗才.高性能合成纤维混凝土.北京:科学出版社,2003.
    [66] 陈润锋,张国防,顾国芳.我国合成纤维混凝土研究与应用现状.建筑材料学报,2001,4(2):168-174.
    [67] 周明耀,杨鼎宜,汪洋.合成纤维混凝土材料的发展与应用.水利与建筑科学工程,2003,1(4):1-4.
    [68] 曹继锋.聚丙烯长纤维混凝土性能研究:(硕土学位论文).大连:大连理工大学,2005.
    [69] 石岩,刘长怡,才海峰.抗裂合成纤维混凝土在尼尔基发电厂房工程中的应用.水力发电,2005,31(11):48-50.
    [70] 陆同庆,龙家杰.合成纤维在国内混凝土建材中的应用.苏州大学学报(工科版),2005,25(2):39-42.
    [71] 冷发光,邢锋,冯乃谦.合成纤维(克裂速)增强砼的特性及其在工程中的应用.混凝土与水泥制品,2001(2):41-44.
    [72] 谷章昭,倪梦象,樊钧等.合成纤维混凝土的性能及其工程应用.建筑材料学报,1999,2(2):59-62.
    [73] 顾书英,岳莉.合成纤维在混凝土中的应用.合成纤维,2000(1):16-19.
    [74] Xu G, MagnaniS, Hannant D J. Durability of hybrid polypropylene-glass fiber cement corrugated sheets. Cement and Concrete Composites, 1998, 20(1): 79-84.
    [75] Komlos K, Babal B, Brnbergerova T. Hybrid fiber-reinforced concrete under repeated loading. Nuclear Engineering and Design, 1995, 156(1-2): 195-200.
    [76] Sahmaran M, Yurtseven A, Yaman I O. Workability of hybrid fiber reinforced self-compacting concrete. Building and Environment, 2005, 40(12): 1672-1677.
    [77] Qian C X, Stroeven P. Development of hybrid polypropylene-steel fiber-reinforced concrete. Cement and Concrete Research, 2005, 30(1): 63-69.
    [78] Sun W, Chen H, Luo X, Qian H. The effect of hybrid fibers and expansive agent on the shrinkage and permeability of high-performance concrete. Cement and Concrete Research, 2001, 31(4): 595-601.
    [79] 钱红萍,贡浩平,孙伟.纤维混杂增强水泥基复合材料特性的研究.混凝土与水泥制品,1997(6):43-47
    [80] 焦楚杰,孙伟,秦鸿根等.聚丙烯—钢纤维高强混凝土弯曲性能试验研究.建筑技术,2004,35(1):48-50.
    [81] 孙伟,钱红萍,陈惠苏.纤维混杂及其与膨胀剂复合对水泥基材料的物理性能的影响.硅酸盐学报,2000,28(2):95-100.
    [82] 钱红萍,贡浩平,孙伟.纤维混杂与微膨胀复合对混凝土阻裂性能的影响.东南大学学报,1996,26(5):107-114.
    [83] Yao W, Li J, Wu K. Mechanical properties of hybrid fiber-reinforced concrete at low fiber volume fraction. Cement and Concrete Research, 2003, 33(1): 27-30.
    [84] Chen B, Liu J. Contribution of hybrid fibers on the properties of the high-strength lightweight concrete having good workability. Cement andConcrete Research, 2005, 35(5): 913-917.
    [85] 丁一宁,王岳华,董香军等.纤维自密实高性能混凝土工作度的试验研究.土木工程学报,2005,38(11):51-57.
    [86] 丁一宁,董香军,王岳华.混杂纤维自密实混凝土的强度和抗弯韧性.建筑材料学报,2005,8(3):294-298.
    [87] 杨楠.玻璃纤维及混杂纤维高性能混凝土的试验研究:(硕土学位论文).大连:大连理工大学,2005.
    [88] 王成启,吴科如.混杂纤维水泥基复合材料及其应用.工业建筑,2002,32(9):51-53.
    [89] 杨萌.钢纤维高强混凝土增强、增韧机理及基于韧性的设计方法研究::(博士学位论文).大连:大连理工大学,2006.
    [90] 冯乃谦.高性能混凝土结构.北京:机械工业出版社,2004.
    [91] 赵铁军,李秋义.高强与高性能混凝土及其应用.北京:中国建材工业出版社,2004.
    [92] High performance concretes and applications. London: Edward Arnold, 1994.
    [93] Neville A, Aitcin P C. High performance concrete-an overview. Material AND structure, 1998, 31: 111-117.
    [94] Duval R, Kadri E H. Influence of Silica Fume on the Workability and the Compressive Strength of High-Performance Concretes. Cement and Concrete Research, 1998, 28(4): 533-547.
    [95] Persson B. Hydration and strength of high performance concrete. Advanced Cement Based Materials, 1996, 3(3-4): 107-123.
    [96] 蒲心诚,王志军,王冲等.超高强高性能混凝土的力学性能研究.建筑结构学报,2002,23(6):49-55.
    [97] 杨竹鹃,段晓农.高性能混凝土的工作特性及在我国的研究应用状况.海南大学学报(自然科学版),2000,18(2):202-206
    [98] H.索默(奥地利).高性能混凝土的耐久性.北京:科学出版社,1998.
    [99] Aitcin P C. The durability characteristics of high performance concrete: a review. Cement and Concrete Composites, 2003, 25(4-5): 409-420.
    [100] Qian C, Patnaikuni I. Properties of high-strength steel fiber-reinforced concrete beams in bending. Cement and Concrete Composites, 1999, 21(1): 73-81.
    [101] 焦楚杰,孙伟,秦鸿根等.聚丙烯-钢纤维高强混凝土弯曲性能试验研究.建筑技术,2004,35(1):48-50.
    [102] Yan H, Sun W, Chen H. The effect of silica fume and steel fiber on the dynamic mechanical performance of high-strength concrete. Cement and Concrete Research, 1999, 29(3): 423-426.
    [103] 尹健,周士琼.高性能混凝士与与自密实混凝土在国外桥梁中的应用.国外公路,2000,20(4):52-54.
    [104] 杨小兵,侯建国,周圣斌等.高性能混凝土的性能及其工程应用述评.三峡大学学报(自然科学版),2003,25(1):62-65.
    [105] 王启华.高性能混凝土(HPC)在海港工程中的应用.水运工程,2004(12):46-48.
    [106] 邓旭华.高性能混凝土的研制及其在地铁工程中的应用.施工技术,2004,33(8):44-45.
    [107] 曹依水.高性能混凝土在广东奥林匹克体育场工程中的施工应用.广东建材,2004(6):38-41.
    [108] 赵国藩.高性能混凝土的发展简介.施工技术,2002,31(4):1-3.
    [109] Schneider U. Concrete at high temperatures-a general review. Fire Safety Journal, 1988, 13(1): 55-68.
    [110] 胡海涛,董毓利.高温时高强混凝土强度和变形的试验研究.土木工程学报.2002,35(6):44-47.
    [111] 李卫,高温下混凝土强度和变形的试验研究:[硕士学位论文].北京:清华大学,1991.
    [112] 李卫,过镇海.高温下混凝土的强度和变形性能试验研究.建筑结构学报,1993,14(1):8-16.
    [113] Janotka I, Bágel L. Pore structures, permeabilities, and compressive strengths of concrete at temperatures up to 800 ℃. ACI Materials Journal, 2002, 99(2): 196-200.
    [114] 张彦春,胡晓波,白成彬.钢纤维混凝土高温后力学强度研究.混凝土,2001,9:50-53.
    [115] Poon C S, Shui Z H, Lam L. Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures. Cement and Concrete Research, 2004, 34(12): 2215-2222.
    [116] 徐彧,徐志胜,朱玛.高温作用后混凝士强度与变形试验研究.长沙铁道学院学报,2000,18(2):13-17.
    [117] 吴波,袁杰,杨成山.高温后高强混凝土的微观结构分析.哈尔滨建筑大学学报,1999,32(3):8-12.
    [118] Chen B, Liu J. Residual strength of hybrid-fiber-reinforced high-strength concrete after exposure to high temperatures. Cement and Concrete Research, 2004, 34(6): 1065-1069.
    [119] Xiao J, Falkner H. On residual strength of high-performance concrete with and without polypropylene fibers at elevated temperatures. Fire Safety Journal, 2006, 41(2): 115-121.
    [120] Chan Y N, Peng G F, Anson M. Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high temperatures. Cement and Concrete Composites, 1999, 21(1): 23-27.
    [121] Luo X, Sun W, Chan S Y N. Effect of heating and cooling refimes on residual strength and microstructure of normal strength and high-performance concrete. Cement and Concrete Research, 2000, 30(3): 379-383.
    [122] 郭进军,宋玉普,张雷顺.混凝土高温后进行粘结劈拉强度试验研究.大连理工大大学学报,2003,43(2):213-217.
    [123] 阎继红.高温作用下混凝土材料性能试验研究及框架结构性能分析:(博士学位论文).天津:天津大学,2000.
    [124] 过镇海,时旭东.钢筋混凝土的高温性能及其计算.北京:清华大学出版社,2002.
    [125] 谢狄敏,钱在兹.高温作用后混凝土抗拉强度与粘结强度的试验研究.浙江大学学报:自然科学版,1998,32(5);
    [126] Chan S Y N, Luo X, Sun W. Effect of high temperature and cooling regimes on the compressive strength and pore properties of high performance concrete. Construction and Building Materials. 2000. 14 (5): 261-266.
    [127] 王晴,刘永军,刘磊.轻质混凝土耐火性能研究进展.混凝土,2005,12:29-31.
    [128] Phan L T, Carino N J. Effects of test conditions and mixture proportions on behaviour of high-strength concrete exposed to high temperatures. ACI Materials Journal, 2002, 99(1): 54-66.
    [129] 姚亚雄.钢筋混凝土框架火灾反应分析及火灾温度鉴定的研究:(硕士学位论文).上海:同济大学,1991.
    [130] 钮宏,马云凤,姚亚雄.轻骨料混凝土构件抗火性能的研究.建筑结构,1996,26(7):29-33.
    [131] 吕天启.高温后混凝土静置性能的试验研究及已有建筑物的防火安全评估:(博士学位论文).大连:大连理工大学,2002.
    [132] Chan Y N, Luo X, Sun W. Compressive strength and pore structure of high-performance concrete after exposure to high temperature up to 800 ℃. Cement and Concrete Research, 2000, 30(2): 247-251.
    [133] 袁杰,吴波.PP纤维高强混凝土的和易性及高温后抗压强度的试验研究.混凝土,2001,3:30-33.
    [134] 罗欣.高性能混凝土的防火性能、机理及数值模拟研究:(博士学位论文).南京:东南大学,2001.
    [135] 钱在兹,谢狄敏,金贤玉.混凝土受明火高温作用后的抗拉强度与粘结强度的试验研究.工程力学增刊,1997:1-5.
    [136] 朱伯龙,陆洲导,胡克旭.高温(火灾)下混凝土与钢筋的本构关系.四川建筑科学研究,1990(1):37-43.
    [137] Zhang B S, Bicanic N, Pearce C J et al. Assessment of toughness of concrete subject to elevated temperatures from complete load-displacement curve, Part Ⅱ: Experimental investigations. ACI Materials Journal, 2000, 97 (5): 556-566.
    [138] 谢狄敏,钱在兹.高温(明火)作用后混凝土强度与变形试验研究.工程力学增刊,1996:54-58.
    [139] 钮宏,陆洲导,陈磊.高温下钢筋与混凝土本构关系的试验研究.同济大学学报,1990,18(3):287-297.
    [140] 吴波,袁杰,王光远.高温后高强混凝土力学性能的试验研究.土木工程学报.2000,33(2):8-13.
    [141] Meda A, Gambarova P G, Bonomi M. High-performance concrete in fire-exposed reinforced concrete sections. ACI Structural Journal, 2002, 99(3): 277-287.
    [142] Connolly R J, Purkiss J A, Morris W A. The spalling of concrete in fire. Proceedings of International Conference on Concrete in the Service of Mankind-Concrete Repair, Rehabilitation and Protection, June, 1996, E&FN Spon, Dundee, Scotland, UK, 1996: 39-44.
    [143] Poon C S, Azhar S, Anson M et al. Performance of metakaolin concrete at high temperatures. Cement and Concrete Composites, 2003, 25(1): 83-89.
    [144] Kalifa P, Menneteau F D, Quenard D. Spalling and pore pressure in HPC at high temperatures. Cement and Concrete Research, 2000, 30 (1): 1915-1927.
    [145] Hertz K D. Danish investigations on silica fume concretes at elevated temperatures. ACI Materials Journal, 1992, 89(4): 345-347.
    [146] Ahmed G N, Hurst J P. An analytical approach for investigating the causes of spalling of high-strength concrete at high temperatures. Proceedings of international workshop on fire performance of high strength concrete, NIST SP 919, Gaithersburg in USA, Feb. 13-14, 1997: 95-108.
    [147] Chan S Y N, Peng G F, Anson M. Fire behavior of high-performance concrete with silica fume at various moisture contents. ACI Materials Journal, 1999, 96(3): 405-409.
    [148] Hertz K D. Limits of spalling of fire-exposed concrete. Fire Safety Journal, 2003, 38(2): 103-116.
    [149] Chan S Y N, Peng G F, Chan J K W. Comparison between high strength concrete and normal strength concrete subjected to high temperature. Materials and Structures, 1996, 29: 616-619.
    [150] 朋改非,陈延年,Mike A.高性能硅灰混凝土的高温爆裂与抗火性.建筑材料学报,1999,2(3):193-198.
    [151] 李敏,钱春香,王珩等.高性能混凝土火灾条件下抗爆裂性能的研究.工业建筑,2001,31(10):47-50.
    [152] Sanjayan G, Stocks k J. Spalling of high-strength silica fume concrete in fire. ACI Materials Journal, 1993, 90(2): 170-173.
    [153] Kalifa P, Chéné G, Gallé C. High-temperature behaviour of HPC with polypropylene fibers from spalling to microstructure. Cement and Concrete Research, 2001, 31(10): 1487-1499.
    [154] Hertz K D, Serensen L S. Test method for spalling of fire exposed concrete. Fire Safety Journal, 2005, 40(5): 466-476.
    [155] Peng G F, Chan Y N, Song Q M, et al. Effect of high temperature on concrete: A review. Key Engineering Materials, 2006, (302-303): 138-149.
    [156] 董香军,王岳华,高淑玲.钢纤维和聚丙烯纤维混凝土的试验研究.混凝土,2003,11:14-16.
    [157] ASTM C1018-98. Standard Test Method for Flexural Toughness and First-Crack Strength of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading).
    [158] Morgan D R, Chen L, Beaupré D. Toughness of Fiber Reinforced Shotcrete. Proceedings of the Engineering Foundation Conference, Shotcrete for Underground Support Ⅶ. Telfs, Austria, 1995: 66-87.
    [159] Ding Y. Eigenschaften yon Faserbeton und Faserspritzbeton. Ibidem Verlag, ISBN3-89821-295-5, 2003.
    [160] Designation C 1550-02. Standard Test Method for Flexural Toughness of Fiber Reinforced Concrete (Using Centrally Load Round Panel), 2002 Book of ASTM Standards, Vol. 04.02.
    [161] DBV-Merkblatter Stahlfaserbeton, Richtlinie. Deutscher Beton-und Bautechnik-Verein E. V. 2001, 10.
    [162] EFNARC. European Specification for Sprayed Concrete. European Federation of Producers and Applicators of Specialist Products for Structures, 1996.
    [163] RILEM TC 162-TDF. Test and design methodsfor steel fiber reinforced concrete, BENDING TEST, Material and Structures / Matériaux et Constructions, 2002, 35 (11): 579-582.
    [164] Barr B, Gettu R, Al-Oraimi S K A et al. Toughness Measurement -- the Need to Think Again. Cement and Concrete Composites, 1996, 18(4): 281-297.
    [165] JSCE-G 552-1999. The method for bending strength and bend toughness of steel fiber reinforced concrete, Japan Society of Civil Engineering, 2002: 58-61, (in Japanese).
    [166] Jeng Fushu, Lin Ming-Lang, Yuan Shih-Che. Performance of toughness indices for steel fiber reinforced shotcrete. Tunneling and Underground Space Technology, 2002, 17(1): 69-82.
    [167] 邓宗才,何唯平,张国庆.高性能腈纶纤维混凝土韧性评价方法.混凝土,2003,11:11-13.
    [168] Norwegian Concrete Association. Guidelines for Shotcrete. PublicationNo. 7-1993.
    [169] Oesterreichische Richtlinie Spritzbeton. Oesterreichischer Betonverein. 1998.
    [170] Banthia N, Dubey A. Measurement of Flexural Toughness of Fiber-Reinforced Concrete Using a Novel Technique-Part 1: Assessment and Calibration. ACI Materials Journal, 1999, Nov/Dec: 651-656.
    [171] Banthia N, Dubey A. Measurement of Flexural Toughness of Fiber-Reinforced Concrete Using a Novel Technique-Part 2: Performance of Various Composites. ACI Materials Journal, 2000, Jan/Feb: 3-11.
    [172] EFNARC. Specification and Guidelines for Self-compacting Concrete. EFNARC Association House, 2002.
    [173] RILEM Draft Recommendation TC50-FCM. Determination of Fracture Energy of Mortar and Concrete by Means of Three Point Bend Tests on Notched Beams. Materials and Structures, 1985, 18(106): 285-290.
    [174] 聂鹏.混凝土含气量对其力学性能的影响.东北公路,2000(2):30-33.
    [175] 吕丽华,柳俊哲,李玉顺等.混凝土中含气量影响因素的研究.低温建筑技术,2004(6):3-4.
    [176] 赵晓娟.混凝土含气量的影响因素的探讨研究.中国科技信息,2005(2):143.
    [177] 张晏清.影响混凝土拌合物含气量的若干因素.混凝土与水泥制品,1998(2):5-8.
    [178] 魏恩良,马景峰.影响混凝土含气量的因素.山东建材,2004(6):61-62.
    [179] Krüger M. Prüfmethoden zur Untersuchung der Verarbeitbarkeit von selbstverdichtenden Betonen. Werkstoffe und Werkstoffprüfung im Bauwesen. Hamburg: Libri, 1999: 177-191.
    [180] Grünewald S, Walraven J. Patterer study on the influence of steel fibers and coarse aggregate content on the fresh properties of self-compacting concrete. Cement and Concrete Research, 2001, 31(12): 1793-1798.
    [181] 田稳苓,黄承逵,李子祥.异形钢纤维粘结机理研究.混凝土与水泥制品,2000(增刊).
    [182] 李方元,赵人达.高强混凝土和钢纤维高强混凝土断裂性能试验研究.混凝土,2002(8):29-31.
    [183] Petersson P E. Fracture energy of concrete. Cement and Concrete Research, 1980, (10): 78-101.
    [184] Felicetti R, Gambarova P G. Effects of high temperature on the residual compressive strength of high- strength siliceous concrete. ACI Materials Journal, 1998, 95(4): 395-406.
    [185] Mohamedbhai G T G. Effect of exposure time and rates of heating and cooling on residual strength of heated concrete. Magazine of Concrete Research, 1986, 38(136): 151-158.
    [186] Velasco R V, Filho R D T, Fairbairn E M R et al. Spalling and stress-strainbehaviour of polypropylene fiber reinforced HPC after exposure to high temperatures. 6th RILEM Symposium on Fiber-Reinforced Concrete (FRC)-BEFIB, 2004, 20-22 September, Varenna, Italy, 699-708.
    [187] Nielsen C V, Bicanic. Residual fracture energy of high-performance and normal concrete subject to high temperatures. Materials and Structures, 2003, 36(262): 515-521.
    [188] Baker G. The effect of exposure to elevated temperatures on the fracture energy of plain concrete. Materials and Structures, 1996, 29(190): 383-388.
    [189] Zhang B, Bicanic N, Pearce C J et al. Assessment of toughness of concrete subjⅠct to elevated temperatures from complete load-displacement curve, Part Ⅰ: General introduction. ACI Materials Journal, 2000, 97 (5): 550-555.
    [190] Shah S P, Kuder K G, Mu B. Fiber-reinforced cement-based composites: a forty year odyssey. 6th RILEM Symposium on Fiber-Reinforced Concrete (FRC)-BEFIB, 2004, 20-22 September, Yarenna, Italy: 3-30.
    [191] Kazemi M T, Naraghi M, Shahvari F V. Fracture energy determination of SFRC from notched beam tests. 6th RILEM Symposium on Fiber-Reinforced Concrete (FRC)-BEFIB, 2004, 20-22 September, Varenna, Italy: 359-368.
    [192] Gopalaratnam V S. On the characterization of flexural toughness in fiber reinforced concretes. Cement and Concrete Composites, 1995, 17(3): 239-254.
    [193] International Standard IS0834. Fire-resistance tests-elements of building construction. 1975.
    [194] Zhang B, Bicanic N, Pearce C Jet al. Relationship between brittleness and moisture loss of concrete exposed to high temperatures. Cement and Concrete Research, 2002, 32(3): 363-371.
    [195] Short N R, Purkiss J A, Guise S E. Assessment of fire damaged concrete using colour image analysis. Construction and Building Materials, 2001, 15(1): 9-15.
    [196] 徐泽晶.火灾后钢筋混凝土结构的材料特性、寿命预估和加固研究:(博士学位论文).大连:大连理工大学,2005.
    [197] Xiao J, Koenig G. Study on concrete at high temperature in China-an overview. Fire Safety Journal, 2004, 39(1): 89-103.
    [198] 贾锋.受高温后混凝土抗压强度的试验研究.青岛建筑工程学院学报,1997,18(1):10-14.
    [199] 过镇海.钢筋混凝土原理.北京:清华大学出版社,1999.
    [200] Tasker C G, Smith R L. Ultrasonic techniques for the non-destructive testing of concrete. Reliability in Non-Destructive Testing, Proceedings of the 27thAnnual British Conference on Non-Destructive Testing, United Kingdom: Portsmouth, 12-15 Sep. 1998: 299-307.
    [201] 杨彦克,郑盛娥.用超声法估定火伤混凝土构件截面上的温度分布.西南交通大学学报,1993,(4):78-83.
    [202] 中华人民共和国行业标准.回弹法检测混凝土抗压强度技术规程(JGJ/T 23-92).北京:中国建筑工业出版社,1993.
    [203] 中国工程建设标准化协会标准.超声回弹综合法检测混凝土强度技术规程(CECS02:88).北京:中国建筑工业出版社,1988.
    [204] 中国工程建设标准化协会标准.钻芯法检测混凝土强度技术规程(CECS03:88).北京:中国建筑工业出版社,1988.
    [205] 董毓利.混凝土结构的火安全设计.北京:科学出版社,2001.
    [206] Bazant Z P, Part P C. Effect of temperature and humidity on fracture energy of concrete ACI Materials Journal, 1988, 85(4): 262-271.
    [207] Nielsen, C V, Bicanic N. Residual fracture energy of high-performance and norma concrete subject to high temperatures. Materials and Structures, 2003, 36(262): 515-521
    [208] Menou A, Mounajed G, Boussa H et al. Residual fracture energy of cement paste, morta and concrete subject to high temperature. Theoretical and Applied Fracture Mechanics, 2006 45(1): 64-71.
    [209] 中国腐蚀与防护学会/李铁藩.金属高温氧化和热腐蚀.北京:化学工业出版社,2003.
    [210] 周志朝,杨辉.无机材料显微结构分析.杭州:浙江大学出版社,2000.
    [211] 钱在兹,吴慧.混凝士高温后的扫描电镜实验研究.福州大学学报(自然科学版),1996,24(增刊).
    [212] CEN, DAFT ENV 1992-1-2, Eurocode 2: Design of concrete structure Part 1-2: General Rules - Structural Fire Design, 1996.
    [213] Chow W K, Chan Y Y. Computer simulation of the thermal fire resistance of building materials and structural elements. Construction and Building Materials, 1996, 10(2): 131-140.
    [214] 时旭东,过镇海.钢筋混凝士结构的温度场.工程力学,1996,13(1):35-44.
    [215] Harmathy T Z. Simultaneous moisture and heat transfer in porous system withparticular reference to drying. Ind Chem Fundam, 1969, 8(1): 92-103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700